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We study the symplectic structure and dynamics of Yang-Mills theory in the presence of a boundary.

We introduce a decomposition of the fields on a Cauchy slice such that the symplectic form splits

cleanly into independent bulk and edge parts. However, we find that the dynamics inherently couples

these two symplectic sectors, a feature arising from the non-abelian nature of the gauge group. This is

shown by extending to Yang-Mills theory the dynamical edge mode boundary condition recently

introduced in Maxwell theory. We finish with analyses of the weak-field expansion and the horizon

limit, finding in the latter case that the dynamical interplay between bulk and edge degrees of freedom

persists.
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1. Introduction

As intuition suggests, the properties of a physical system on a constant-time slice can be analyzed by

partitioning the slice into smaller regions and studying how the regions interact at their boundaries

through cutting and gluing procedures. In gauge theories, the inherently nonlocal nature of the gauge

constraints requires a careful examination of the dynamical fields at the boundaries to ensure gauge

covariance. These boundary fields, often referred to as edge modes, have garnered increasing attention

within the scientific community. Notably, edge modes have been identified as essential in gauge theories

for correctly accounting for entanglement entropy across boundaries. This has been appreciated in

abelian gauge theory[1][2][3][4][5][6][7][8][9], in lattice gauge theory[10][11][12], and to a lesser extent in non-

abelian gauge theory[13][14][15][16][17][18][19][20][21][22].

Qeios

qeios.com doi.org/10.32388/P9MNG4 1

mailto:aball1@perimeterinstitute.ca
mailto:ciambelli.luca@gmail.com
https://www.qeios.com/
https://doi.org/10.32388/P9MNG4


Edge modes have proved instrumental in understanding the gravitational degrees of freedom as well.

Gravitational edge modes have been studied in[15][23][24][25][26][27][28][29][30][31][32][33][34][35]. In the

framework of the corner proposal in[15][36][37][38][39][40]  (see also the reviews[41][42][43]  and references

therein), edge modes are fundamental data sourcing the Noether charges at corners.1 Therefore edge

modes are naturally related to (quantum) reference frames[44][45][46]. Furthermore, similar to gauge

theories, having localized degrees of freedom at the edge is necessary to address the problem of bulk

factorization[47][48][49][50][51]. The importance of edge modes has also been discussed both in AdS and in

flat holography[52][53][54][55][56][57].

The common thread among these diverse applications of edge modes is the necessity of incorporating

localized fields at the boundary when analyzing local subsystems in gauge theories and gravity. These

boundary fields are indispensable for restoring gauge covariance, ensuring the correct description of the

subregion’s Hilbert space, and accurately accounting for entanglement entropy. Given their importance,

the corner proposal postulates that they are fundamental ingredients of any gravity-quantization scheme.

In[7], the authors initiated a far-reaching analysis of suitable boundary conditions and decomposition of

fields in the presence of edges. They successfully applied a boundary condition, called the dynamical edge

mode (DEM) boundary condition, to Maxwell theory[7] and to  -form gauge theories[8]. The final aim of

these works has been to carefully separate the bulk physics from the edge physics, both at the symplectic

and dynamical levels.

In this work, we upgrade the analysis proposed in[7] to non-abelian gauge theories. We find a suitable field

decomposition leading to a bulk-edge split of data,2 and compute the Poisson brackets among all

elementary fields. In spite of this split, we observe that the dynamics mixes bulk and edge physics, due to

the non-abelianity of the gauge group. Our results provide important clues as to whether and how a

similar split plays out in full non-perturbative gravity, which is the ultimate goal of this line of research.

Yang-Mills and gravity both have non-abelian symmetry groups, so the successful split of phase space

herein makes us optimistic for gravity. Furthermore, despite the failure of the Yang-Mills Hamiltonian to

split, the gravitational Hamiltonian is famously a pure boundary term, so its split seems automatic.

The paper is organized as follows. We start in section 2 reviewing the basic ingredients of Yang-Mills

theory and the conventions employed. We then propose in section 3 the field decomposition leading to the

symplectic bulk-edge split, and compute the Poisson brackets. We study the dynamics for a timelike

boundary in section 4, showing how it inevitably mixes the bulk and edge data. Selected topics are then
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presented in section 5: the fate of the dynamical mixing in the weak field expansion, and the horizon

limit, in which we still find a non-trivial dynamical mixing. We relegate to appendix A some calculations

relevant for this last point. We eventually gather concluding remarks in section 6.

2. Review of Yang-Mills

We work with classical Yang-Mills theory on a  -dimensional Lorentzian manifold  . We initially take 

 to be a causal diamond, i.e. the causal domain   of some spatial hypersurface  , although later in

section 4.1 we will study the case when  ’s boundary is timelike. Our gauge group is  , and we write 

  for the corresponding Lie algebra. The gauge field    is a  -valued connection. It defines the gauge-

covariant derivative  , which acts on  -valued objects as

The corresponding field strength is

Note this is not quite the gauge-covariant exterior derivative of the gauge field. Under a finite gauge

transformation parametrized by  -valued   we have

Likewise, under an infinitesimal gauge transformation parametrized by  -valued   we have

The action is

where we have suppressed the integration measure  . The coupling   plays no role in most of

our discussion, so for convenience we set it to unity. The Lagrangian variation can then be written as

The first term gives the equation of motion,

From the total derivative term we read off the (pre-)symplectic potential density

D M

M D(Σ) Σ

M G

g Aμ g

D g

(⋅) = (⋅) + [ , ⋅].Dμ ∇μ Aμ (2.1)

= − + [ , ].Fμν ∂μAν ∂νAμ Aμ Aν (2.2)

G Λ

→ ( + )Λ, → Λ.Aμ Λ−1 Aμ ∇μ Fμν Λ−1Fμν (2.3)

g λ

δ = λ, δ = [ ,λ].Aμ Dμ Fμν Fμν (2.4)

S = L = Tr[ ],∫
M

−1

4g2
YM

∫
M

FμνF
μν (2.5)

xdD −g−−−√ gYM

δL = Tr[δ ] − Tr[ δ ].AνDμF
μν ∇μ F μν Aν (2.6)

= 0.DμFμν (2.7)

≡ −Tr[δ ].θν AμFμν (2.8)
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Viewing   as the exterior derivative on (pre-)phase space and writing   for the wedge product on phase

space, we define the (pre-)symplectic density as

It is a one-form on spacetime and a two-form on phase space. We obtain the (pre-)symplectic form by

integrating  ’s flux through a Cauchy slice,

Since   on shell, this is independent of the choice of   as long as    is fixed.3 We will work on

shell from now on.

Splitting the coordinates as  , with coordinates   on   and  , we define the “electric”

field on   as

where    is the future-directed unit normal vector to  . The equation of motion implies the Gauss

constraint

In terms of   we have

Phase space is defined as the quotient of solution space by the degenerate directions of  ,4 all of which

will arise from gauge transformations. First note that any gauge parameter   restricting to zero on   will

constitute a degeneracy of  . We can use these to set    everywhere on  . Once this is done,

solutions are uniquely specified by data  ,   on  .

There are still time-independent residual gauge transformations, parametrized by the gauge parameter’s

value on  . Consider plugging one of these into  . We write   for the phase space interior product with

the infinitesimal gauge transformation parametrized by  , so for example    and 

. One finds after some algebra that

where   is the outward unit normal to   in  . We see that any   without support on   gives zero and

therefore constitutes a degenerate direction of  , which must be quotiented out. We call such gauge

δ ∧

≡ δ = Tr [δ ∧ δ ] .ων θν Aμ
Fμν (2.9)

ω

Ω ≡ ⋆ω.∫
Σ

(2.10)

d ⋆ ω = 0 Σ ∂Σ

= (t, )xμ xi xi Σ = 0gti|Σ

Σ

≡Ei Fiμt
μ (2.11)

tμ Σ

= 0.DiE
i (2.12)

Ei

Ω = Tr [δ ∧ δ ] .∫
Σ

Ai Ei (2.13)

Ω

λ Σ

Ω = 0At M

Ai Ei Σ

Σ Ω I
λ̂

λ δ = λI
λ̂
Ai Di

δ = [ ,λ]I
λ̂
Ei Ei

Ω = Tr [λδ ] ,I
λ̂

∫
∂Σ

Ein
i (2.14)

ni ∂Σ Σ λ ∂Σ

Ω
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transformations “small”. In contrast, when   is supported on   it is symplectically nontrivial and we call

it “large”. In general the Noether (surface) charge of a (gauge) symmetry is extracted as  . The

charge associated with a large gauge transformation is then

To recapitulate, phase space is obtained by taking the space of  ,    on    with    and

quotienting by small gauge transformations. This leaves an infinite set of physical large gauge

symmetries and corresponding charges. Our primary goal in this paper is to understand to what extent

the associated degrees of freedom, i.e. the edge modes, can be isolated and separated from the remaining

bulk degrees of freedom.

3. Bulk-Edge Split

In this section we separate the degrees of freedom of Yang-Mills theory on a causal diamond 

 into bulk and edge parts, where the bulk modes are parametrized by functions on   and the

edge modes are parametrized by functions on  . In this context the boundary   can also be referred to

as the corner, surface, or edge. In section 3.1 we demonstrate how to split the symplectic form, and in

section 3.2 we invert the symplectic form to obtain the Poisson brackets among the elementary fields.

3.1. Symplectic Split

We now introduce a decomposition of the phase space variables  ,    that leads to a split of the

symplectic form and a consequent factorization of phase space into bulk and edge parts. This

decomposition is motivated by the successful decomposition made in  [7]  for Maxwell, and carefully

improved to take into account the non-abelian nature of the theory at hand. We write

where the non-dynamical function    is positive and real-valued, the field    is  -valued, and the other

fields are  -valued. We will impose certain conditions to make this decomposition unique. Then a choice

of  ,   will be equivalent to a choice of  ,  ,   on   and a choice of   on the boundary. By

construction  ,  , and   will be gauge-invariant, and under a gauge transformation by   we will simply

have  .

To start, we require the bulk fields to have vanishing boundary normals,

λ ∂Σ

Ω = δQ[λ]I
λ̂

Q[λ] ≡ Tr [λ ] .∫
∂Σ

Ein
i (2.15)

Ai Ei Σ = 0DiE
i

M = D(Σ) Σ

∂Σ ∂Σ

Ai Ei

= ( + )U, = ( + S β)U,Ai U −1
A
~
i ∇i Ei U −1

E
~
i ∇i (3.1)

S U G

g

Ai Ei A
~
i E

~
i U Σ βni∇i |∂Σ

A
~
i E

~
i β Λ

U → UΛ

= = 0.A
~
in

i |∂Σ E
~
in

i |∂Σ (3.2)
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We also require the terms in   to separately satisfy the Gauss constraint, which implies

where   is the gauge-covariant derivative with respect to  , as opposed to  . As long as   is within

the Gribov horizon[58]  there is a unique solution for  ,5 with    as Neumann

data. This in turn determines  , and thus the decomposition is unique. We need another condition to

make  ’s decomposition unique, but we leave it unspecified for now. A natural choice will arise

momentarily.

Using our decomposition and the identity

we can manipulate the symplectic form and obtain

The only obstruction to a bulk-edge split is the term  . This motivates imposing the condition

which at a mathematical level is essentially Lorenz or Landau gauge. The question of whether or not this

can be uniquely achieved is difficult[58], but beyond the scope of this paper. There is at least no issue in

perturbative contexts, where Landau gauge is standard. We will proceed under the assumption that (3.6)

can be imposed. Given (3.1), it is equivalent to the following condition on  ,

along with the Neumann data  . These determine  ’s bulk values in terms of its

boundary values, up to an ambiguity under left multiplication by any constant,  . This is the

non-abelian version of a zero mode ambiguity. This ambiguity manifests in (3.6) as  . We

assume a smooth choice of representative is made for  . Then   and   are uniquely determined by  .6

Ei

= (S β) = 0,D
~
iE

~i
D
~
i ∇i (3.3)

D
~
i A

~
i Ai A

~
i

β S β = Uni∇i |∂Σ niEiU
−1|∂Σ

E
~
i

Ai

δ = δ U + ( δU),Ai U −1 A
~
i Di U

−1 (3.4)

Ω = −δ Tr[δ ]∫
Σ

AiE
i

= −δ Tr[( δ U + ( δU)) ]∫
Σ

U −1 A
~
i Di U

−1 Ei

= −δ Tr[ δ U ] − δ Tr[ δU ]∫
Σ

U −1 A
~
i Ei ∫

∂Σ
U −1 Ein

i

= −δ Tr[δ ( + S β)] − δ Tr[ δU ]∫
Σ

A
~
i E

~i
∇i ∫

∂Σ
U −1 Ein

i

= Tr[δ ∧ δ + δ ∧ S δβ] − δ Tr[ δU ]∫
Σ

A
~
i E

~i
A
~
i ∇i ∫

∂Σ
U −1 Ein

i

= Tr[δ ∧ δ − δ( (S )) ∧ δβ] − δ Tr[ δU ].∫
Σ

A
~
i E

~i
∇i A

~i
∫

∂Σ
U −1 Ein

i

(3.5)

δ( (S ))∇i A
~i

(S ) = 0,∇i A
~i

(3.6)

U

(S U ) = (SU ),∇i ∇i U −1 ∇i AiU −1 (3.7)

= UniAi |∂Σ U −1ni∇i |∂Σ U

U → UΛ0

→A
~
i Λ0A

~
iΛ

−1
0

A
~
i A

~
i U Ai
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In turn   and   are determined as well. We return to these questions about determining  ,  ,  ,   in

terms of   and   in a perturbative context in section 5.1.

The decomposition for   in (3.1) is now unique, and the symplectic form reduces to

Recalling that  , we see that the bulk integral involves only the bulk fields  , 

 and the boundary integral involves only the edge degrees of freedom   and  . These edge

modes are independent functions on the edge  . The bulk extension of   is determined by (3.3). The bulk

extension of    satisfies (3.7), but if we view    as the independent variable then any bulk extension is

admissible by an appropriate choice of  . However, since the symplectic form only involves  ’s boundary

values, all extensions of a given   are equivalent in the symplectic reduction. This is just the familiar

fact, discussed near (2.14), that small gauge transformations are symplectically trivial.

To write   in its final form we define

and we note

We then have

This split of the symplectic form into bulk and edge parts is our first main result, enabled by our

decomposition (3.1). Consequently the total phase space,  , factorizes as a direct product, 

. This property is nontrivial, particularly for non-abelian gauge theories, where it was

generally only known that  . In our approach, we have successfully constructed two independent

symplectic structures: one for the bulk and another for the edge. As we will show, unlike the scenario

in  [7], the Hamiltonian dynamics introduce a temporal intertwining of these symplectic pairs, a

phenomenon dictated entirely by the non-abelianity of the gauge group.

3.2. Poisson Brackets

We now derive the Poisson brackets satisfied by our fields by explicitly inverting the symplectic form. The

object   is somewhat unnatural, outputting a tangent vector at the base point  . In contrast, the object 

E
~
i β A

~
i U E

~
i β

Ai Ei

Ai

Ω = Tr[δ ∧ δ ] − δ Tr[ δU ].∫
Σ

A
~i

E
~
i ∫

∂Σ
U −1 Ein

i (3.8)

= S βUniEi |∂Σ U −1 ni∇i A
~
i

E
~
i U|∂Σ βni∇i |∂Σ

∂Σ β

U U

Ai U

U|∂Σ

Ω

≡ ,E⊥ niEi |∂Σ (3.9)

δ( δU) = − δU ∧ δU.U −1 U −1 U −1 (3.10)

Ω = Tr[δ ∧ δ ] + Tr[ δU ∧ δ + δU ∧ δU ].∫
Σ

A
~i

E
~
i ∫

∂Σ
U −1 E⊥ U −1 U −1 E⊥ (3.11)

Γ

Γ = ×Γbulk Γedge

⊂ ΓΓedge

δU U
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  outputs a tangent vector at the identity, which is canonically identified as an element of the

algebra. Thus we can define the phase space one-form

where   is a generator of   satisfying  . Using this we define a convenient frame of one-

forms on phase space,

In this expression and what follows, we are using   for bulk points and   for boundary points. Contraction

of the multi-index   involves summing over discrete labels and integrating over   or  . The symplectic

form in these variables reads

where the structure constants are defined by  . The matrix representation in terms of

our frame is

where   denotes the covariant Dirac delta function. The inverse matrix is

One confirms this by explicitly computing  .

The Poisson bracket on functionals  ,   on phase space is defined by

where   is the frame of vectors dual to  . Explicitly we have

δUU −1

≡ Tr[ δU],ua T
a
U −1 (3.12)

T a g Tr[ ] =T aT b δab

≡ (δ (x), δ (x), (y), δ (y)) .eM A
~a
i E

~i,a
ua Ea

⊥ (3.13)

x y

M x y

Ω = ∧
1

2
ΩMNe

M eN

= δ (x) ∧ δ (x) + ( (y) ∧ δ (y) + (y) ∧ (y) (y)) ,∫
Σ

A
~a
i E

~i,a
∫

∂Σ
ua Ea

⊥

1

2
f abcua ub Ec

⊥

(3.14)

[ , ] =T a T b f abcT c

= ,ΩMN

⎛

⎝

⎜⎜⎜⎜⎜

0

− δ(x − )δabδij x′

0

0

δ(x − )δabδ
j
i x′

0

0

0

0

0

(y)δ(y − )f abcEc
⊥ y ′

− δ(y − )δab y ′

0

0

δ(y − )δab y ′

0

⎞

⎠

⎟⎟⎟⎟⎟
(3.15)

δ(x − )x′

= .ΠMN

⎛

⎝

⎜⎜⎜⎜⎜

0

δ(x − )δabδij x′

0

0

− δ(x − )δabδ
j
i x′

0

0

0

0

0

0

δ(y − )δab y ′

0

0

− δ(y − )δab y ′

(y)δ(y − )f abcEc
⊥ y ′

⎞

⎠

⎟⎟⎟⎟⎟
(3.16)

=ΠMN ΩNP δMP

F G

{F,G} = [F] [G],ΠMN eM eN (3.17)

eM eM

= , ,U(y) , ,eM
⎛

⎝

δ  

δ (x)A
~a
i

δ  

δ (x)E
~i,a T a δ  

δ (y)Ea
⊥

⎞

⎠
(3.18)
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where   is viewed as a tangent vector at the identity in the copy of   at  . We evaluate   using the

natural action of vectors on functions. For example    and 

. The non-vanishing Poisson brackets among the elementary fields

are

As anticipated, the bulk and edge degrees of freedom do not talk to each other. The Poisson brackets of the

edge modes among themselves have appeared in (2.39-41) of  [15], but the vanishing of the brackets

between bulk and edge modes is new to the literature, and is a nontrivial consequence of our particular

choice of decomposition in (3.1).

Note that the Poisson bracket with the charge

generates a gauge transformation by  , as it should. These charges represent the large gauge algebra as

In conclusion, we have demonstrated a consistent method for decoupling the bulk symplectic structure

from its edge counterpart, all while preserving a non-vanishing Noether charge in a fully gauge-covariant

framework. This approach not only resolves a crucial structural challenge but also lays the groundwork

for significant advancements in the quantization of the theory. In particular, it holds the potential to

address longstanding questions about the factorization of the Hilbert space, and may instruct us on other

non-abelian theories such as gravity. These developments form a cornerstone of our ongoing research

agenda, opening new avenues for exploration in the interplay between gauge theories, symmetries, and

the covariant phase space.

4. Timelike Boundary

To understand how the dynamics impacts the kinematic split of the symplectic form, we consider in this

section a timelike boundary and study the effects of our field decomposition on the Hamiltonian

evolution. We begin in section 4.1 by reviewing and adapting to our non-abelian setting the dynamical

edge mode boundary condition of[7], then in section 4.2 we discuss how the Hamiltonian gives rise to a

term mixing the bulk and edge physics.

T a G y [F]eM

[ ( )] = δ(x − )δ  

δ (x)A
~a
i

A
~b
j x′ δabδij x′

(U(y) )[U( )] = U(y) δ(y − )T a y ′ T a y ′

{ (x), ( )}E
~i,a

A
~b
j x′

{ (y),U( )}Ea
⊥ y ′

{ (y), ( )}Ea
⊥ Eb

⊥ y ′

= δ(x − ),δabδij x′

= U(y) δ(y − ),T a y ′

= (y)δ(y − ).f abcEc
⊥ y ′

(3.19)

Q[λ] = Tr[λ(y) (y)]∫
∂Σ

E⊥ (3.20)

λ

{Q[ ],Q[ ]} = Q[[ , ]].λ1 λ2 λ1 λ2 (3.21)
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4.1. Dynamical Edge Mode Boundary Condition

We now consider placing Yang-Mills theory on a Lorentzian manifold   whose boundary   is timelike,

rather than null. For simplicity we assume that   is static with metric

and that    lies tangent to  . The theory requires a boundary condition to be well-defined on this

manifold. Consider the variation of the action around a solution to the equation of motion (2.7),

Here   is the outward unit normal vector to  . If   does not vanish then we do not have a true saddle,

and the theory is said to be variationally ill-defined.7

This can be remedied by imposing a boundary condition. An obvious option is to require the pullback of

the gauge field   to vanish on the boundary. That is, writing   for the pullback to  ,

This is a minor generalization of the perfectly electrically conducting (PEC) or “relative” boundary

condition in electromagnetism. Another obvious choice is to require the normal components of the field

strength to vanish, or equivalently that the pullback of the dual field strength vanishes,

This generalizes the perfectly magnetically conducting (PMC) or “absolute” boundary condition in

electromagnetism.

However, neither PEC nor PMC gives rise to edge modes: The PEC boundary condition disallows large

gauge transformations, while the PMC boundary condition sets  . The crucial observation in[7],

which also applies here, is that one can define a new “dynamical edge mode” (DEM) boundary condition

allowing both   and large gauge transformations,

This is essentially PEC for the time component and PMC for the spatial components. Through an analysis

nearly identical to that in section 3.1 one can show that the resulting phase space splits into bulk and edge

parts. Furthermore, in this case the bulk phase space is precisely what one would get from the PMC

boundary condition, so we can write

M ∂M

M

d = d + d d ,s2 gtt t2 gij xi xj (4.1)

∂t ∂M

on-shell: δS = Tr[δ ].∫
∂M

AμFμνn
ν (4.2)

nμ ∂M δS

A i∂M ∂M

PEC: A = 0.i∂M (4.3)

PMC: ∗ F = 0.i∂M (4.4)

= 0E⊥

E⊥

DEM: = 0 = .At |∂M nμFμi|∂M (4.5)

= × ,ΓDEM ΓPMC Γedge (4.6)
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where the edge phase space is symplectomorphic to the causal diamond one.

Different boundary conditions are appropriate in different contexts, but the DEM boundary condition

appears to be natural whenever edge modes are expected to play a role. This includes the calculation of

entanglement entropy, the characterization of subregions, and the calculation of partition functions in the

presence of horizons. Furthermore it was argued in[7]  that in Maxwell theory the DEM boundary

condition is shrinkable,8 and it is highly plausible that this important property also holds in Yang-Mills.

4.2. Failure of the Hamiltonian Split

Unlike in the abelian case, our decomposition (3.1) will not lead to a clean bulk-edge split of the

Hamiltonian. The unit time vector is  , so the Hamiltonian generating   on a constant

time slice   is

Recalling the decomposition of the electric field in (3.1), and noting

we see that the Hamiltonian is completely independent of  . This makes sense since it is gauge-invariant.

Using the decomposition (3.1) we can proceed further and obtain

Defining bulk, cross, and edge terms as

we have

The cross term can be further simplified using the Gauss constraint,

−gtt
− −−−

√ ∂t S−1 −gtt
− −−−

√ ∂t

Σ

H = Tr[ + ] .∫
Σ

1

S

1

2
EiE

i 1

4
FijF

ij (4.7)

U = − + [ , ] ≡ ,FijU
−1 ∂iA

~
j ∂jA

~
i A

~
i A

~
j F

~
ij (4.8)

U

H = Tr[ + β + S( β)( β) + ]∫
Σ

1

2S
E
~
iE

~i
E
~i

∇i
1

2
∇i ∇i 1

4S
F
~
ijF

~ij

= Tr[ + − β − β (S β)] + Tr [βS β] .∫
Σ

1

2S
E
~
iE

~i 1

4S
F
~
ijF

~ij
∇iE

~i 1

2
∇i ∇i 1

2
∫

∂Σ
ni∇i (4.9)

Hbulk

Hcross

Hedge

≡ Tr[ + ] ,∫
Σ

1

S

1

2
E
~
iE

~i 1

4
F
~
ijF

~ij

≡ − Tr[β + β (S β)] ,∫
Σ

∇iE
~i 1

2
∇i ∇i

≡ Tr [βS β] = Tr [β(U )] ,
1

2
∫

∂Σ
ni∇i

1

2
∫

∂Σ
E⊥U

−1

(4.10)

H = + + .Hbulk Hcross Hedge (4.11)

= Tr[β[ , ] + β[ ,S β]] .Hcross ∫
Σ

A
~
i E

~i 1

2
A
~
i ∇i (4.12)
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Since the number of derivatives is now minimal,    cannot be simplified further. Thus we conclude

that it is non-vanishing, demonstrating that the bulk and edge degrees of freedom in Yang-Mills theory

are dynamically coupled. Physically, this implies that while the kinematic phase space can be decomposed

into bulk and edge components on each Cauchy slice, the dynamics inherently intertwines these two

sectors. As a result, the decomposition of bulk and edge fields on an evolved slice will incorporate a

mixing of the fields from the previous slice, driven by the presence of the cross term in the Hamiltonian.

Notably, since this term is entirely expressed through commutators, its origin can be traced to the non-

abelian structure of the gauge group. In contrast, this coupling is absent in Maxwell theory[7].

The edge Hamiltonian in terms of   is  . From the condition (3.3) one can in

principle deduce    from    and vice versa. To formalize this let us define an operator    on 

 by

The edge Hamiltonian can then be written

where   is the inverse of  . However, one must be careful with these simple-looking expressions. Since 

  depends implicitly on  , the edge Hamiltonian is not truly independent of the bulk degrees of

freedom. Along with the cross term, this obstructs a bulk-edge split of the dynamics.

5. Special Cases

In this section we consider some special cases of our construction, and study whether simplifications

occur. We start by analyzing the weak field limit, where we observe that the dynamics decouples into bulk

and edge parts, since the cross term is subleading and the edge Hamiltonian’s leading term is free of bulk

influence. We then probe the horizon limit, where we demonstrate that the dynamical bulk-edge mixing

persists.

5.1. Weak Field Expansion

We now consider the weak field expansion. Since the action in (2.5) is related to the action with a

canonically normalized kinetic term by the field redefinition  , the weak field expansion is

equivalent to the small coupling expansion. For clarity we will restore the coupling in this subsection. We

expand our fields order by order as

Hcross

β = Tr [βS β]Hedge
1
2
∫∂Σ ni∇i

βni∇i |∂Σ β|∂Σ K

∂Σ

Kβ ≡ S β .|∂Σ ni∇i |∂Σ (4.13)

= Tr[βKβ] = Tr[Kβ (Kβ)],Hedge
1

2
∫

∂Σ

1

2
∫

∂Σ

1

K
(4.14)

1
K

K

K A
~
i

→Aμ gYMAμ
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The field   is slightly special, since small   does not necessarily imply that   itself is near the identity.

Rather   must be small. We can then use a constant   and a  -valued field   to parametrize 

, with the expansion

The phase space splits exactly, so it will continue to split at every order in the weak field expansion. The

situation for the Hamiltonian is more interesting. The bulk and edge parts in (4.10) contain terms

quadratic in the fields, while the cross term is cubic in the fields and so it is relatively suppressed,

Furthermore, as we will demonstrate shortly,   depends only on the boundary data. Therefore there is

an emergent split in the weak field limit, reducing to the abelian case. This limit is often physically

relevant. For example in the perturbative evaluation of a Euclidean partition function the one-loop

correction involves only the quadratic terms in the action, or equivalently in the Hamiltonian. We

therefore reach an important feature of Yang-Mills theory in the weak field expansion: The bulk and edge

fields are symplectically and dynamically completely disentangled.

We now revisit the conditions defining   and  . Implicit in our decomposition (3.1) is the idea that, given 

 and  , one should be able to deduce  ,  ,  , and  . In principle this can be accomplished by first

using (3.7) to solve for   in terms of  ,9 then stripping off   from   to get  , then using (3.3) to solve

for   in terms of   and  , and finally stripping off   and   from   to get  . We are now in a position

to comment on the existence of solutions at each step in this procedure. The condition on    has the

expansion

Note that   has dropped out completely, due to the above-mentioned ambiguity under left multiplication

by a constant. The    term is the same sourced elliptic PDE found in  [7]  for the Maxwell case. It

uniquely determines   up to a constant shift, with   as Neumann data. The only unknown part

of the   term is then  , and we find the same type of elliptic PDE for it, with Neumann data

A
~
i

E
~
i

β

= + + … ,gYMA
~(1)

i g2
YMA

~(2)

i

= + + … ,gYME
~(1)

i g2
YME

~(2)

i

= + + … .gYMβ (1) g2
YMβ (2)

(5.1)

U Ai U

UU −1∇i ∈ GU0 g α

U = U0e
α

α = + + … .gYMα(1) g2
YMα(2) (5.2)

H = + + = ( + ) + O( ).Hbulk Hcross Hedge g2
YM H

(2)
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H
(2)
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g3
YM

(5.3)

H
(2)
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Ai Ei A
~
i U E

~
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~
i

β A
~
i Ei U β Ei E
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(1) A
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i
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This pattern of PDEs determining   in terms of lower order data continues to all perturbative orders,

fully determining  ’s expansion up to zero modes. These zero modes and   are then fully determined by

the choice of representative. Therefore   is perturbatively well-defined.

With   in hand,   is determined as

The condition (3.3) on   can be expanded as

giving a series of PDEs for  . The Neumann data at each order follow from

The zero modes of the   are undetermined, but they are unimportant since they drop out of  , which

is what actually shows up in the field decomposition. We fix this ambiguity by choosing  .

Now    is perturbatively well-defined. Note in particular that the leading order condition on    does not

involve  , so there are no bulk contributions to the relationship between   and its normal derivative.

This shows that   depends only on boundary data, as mentioned above. It

only remains to define the bulk electric field,

This completes the process of deducing  ,  ,  ,   from   and  .

5.2. Horizon Limit

We now study the horizon limit of our timelike boundary. The setup is as in section 2.5 of [7]. Specifically,

consider a static manifold whose boundary is a static bifurcate horizon and let our   be the subregion

whose boundary is at a small spatial distance   from the horizon. Within each time slice   we establish

Gaussian normal coordinates in a neighborhood of the horizon, so that the full metric is

Here    is the normal coordinate, with    on the bifurcation surface and    on  . The    are

coordinates on  . Our assumption of a static bifurcate horizon implies

= ( + [ , ]) .ni∇iα
(2) |∂Σ ni A(2)

i

1

2
α(1) ∇iα

(1) |∂Σ (5.5)

α(n)
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U

U A
~
i

= U − U .A
~
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β

0 = (S β)D
~
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(5.7)
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where    is the surface gravity. In this subsection we will take  , corresponding to the

Hamiltonian generating  .

We have shown that the bulk and edge degrees of freedom are dynamically coupled at finite  , but we

would like to know if this mixing persists in the horizon limit. We will tackle this question in the weak

field approximation. The leading term of   is already  ,

Note this only involves the   parts of the fields, which obey the same PDEs as in the abelian case,

and so their properties can be borrowed from [7]. In particular we have

as well as

and

The main observation is that the leading behavior of the Hamiltonian cross term is

which, as we show in appendix A, is of the same order as  . This behavior is readily seen in the first

term of (5.12). The second term in   also contributes with this leading behavior, which can be deduced

from the part of the integral near the boundary.10

In conclusion we have found that    is of the same order as  , and therefore is not relatively

suppressed in the horizon limit. This is a clear indication that the dynamical mixing of the bulk and edge

degrees of freedom persists in the horizon limit.11

6. Final Words

In this paper we discussed a suitable decomposition of the dynamical fields — the electric field and the

spatial gauge field — in Yang-Mills theory on a Cauchy surface with boundary. We found an appropriate

way to disentangle the bulk fields from the edge modes, such that the symplectic structure splits and thus

= − + O( ),gtt κ2r2 r4 (5.11)

κ S = −gtt
− −−−

√

∂t

ε

Hcross O( )g3
YM

= Tr[ [ , ] + [ , ]] + O( ).Hcross g3
YM ∫

Σ
β (1) A

~(1)

i E
~(1),i 1

2
β (1) A

~(1)

i −gtt
− −−−

√ ∇iβ (1) g4
YM

(5.12)

O( )gYM

= O( ) , = O( ) , = O( ) ,β (1) r0

log ε−1
−gtt
− −−−

√ ∇rβ
(1) log r−1

log ε−1
−gtt
− −−−

√ ∇aβ
(1) r−1

log ε−1
(5.13)

= O(r ), = O( ),E
~(1)

r ε0 E
~(1)

a r0ε0 (5.14)

= O(r ), = O( ).A
~(1)

r ε0 A
~(1)

a r0ε0 (5.15)

= O( ) ,H
(3)
cross

1

log ε−1
(5.16)

H
(3)
edge

Hcross

H
(3)
cross H

(3)
edge

qeios.com doi.org/10.32388/P9MNG4 15

https://www.qeios.com/
https://doi.org/10.32388/P9MNG4


the phase space factorizes. With this decomposition, we computed the Poisson brackets and showed that

the bulk and edge degrees of freedom do not talk to each other. That is, bulk fields Poisson-commute with

edge fields. We then switched our attention to timelike boundaries, and discussed how to implement the

DEM boundary condition proposed for Maxwell theory in[7]. Contrary to Maxwell theory, we showed that

the Yang-Mills Hamiltonian couples the bulk and edge contributions, due to a cross term. We rewrote this

cross contribution in terms of commutators to emphasize that it is entirely due to the non-abelianity of

the gauge group. Indeed, we then provided a weak field expansion in  , in which we demonstrated that

the cross term in the Hamiltonian vanishes at leading order. We then discussed the horizon limit of the

timelike boundary. Here the cross term survives, leading to a mixed evolution that survives the limit.

There are many future avenues of investigation for which this work sets the stage. First, a careful analysis

of the partition function and entanglement structure of Yang-Mills theory with the DEM boundary

condition remains to be done, and is currently under investigation. The one-loop partition function uses

only the quadratic part of the action, and so it essentially reduces to the abelian case. At higher loops the

mixed term in the Hamiltonian poses an interesting challenge, and we may anticipate that it will lead to

important modifications with respect to the abelian analysis.

Another interesting road to explore is the relationship between this work and Yang-Mills theory in

Minkowski space. First of all, we wish to understand how the DEM boundary condition and the

symplectic split relates to the asymptotic symmetries of Yang-Mills[59][60][61][62]  and Einstein-Yang-

Mills[63][64]. Secondly, we intend to study how the field decomposition proposed here intertwines with the

celestial holographic description[65][66][67][68][69]. Lastly, we ask if our work informs the soft split[70]

[71] and gluon soft theorems[72][73][74][75].

The most important future direction to explore is gravity. While there has been much progress in recent

years in the understanding of gravitational edge modes[23][24][25][27][28][29][30][31][32][33][34][35], it would be

rewarding to study the field decomposition and achieve a complete symplectic split among bulk and

corner fields. To the best of our knowledge, this is still missing in the literature, and could constitute an

important step forward in the corner proposal[15][36][37][38][39][40]. We expect that our main results in this

manuscript will extend to gravitational theories, and we intend to study exactly how this can be achieved.

Indeed, the fact that the symplectic structure still splits when non-abelian effects are taken into account

was an important cornerstone of this paper, and paves the way for a similar pattern in gravity.

Furthermore, the fact that the gravitational Hamiltonian is already a boundary term indicates that such a

symplectic split should be preserved in the gravitational dynamics. In conclusion, the journey from

gYM
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Maxwell theory[7]  to gravity had to pass through Yang-Mills theory. This work has filled that gap,

preparing the ground for future explorations.

Appendix A. Weak and Horizon Limit of 

In this appendix we show that in the simultaneous weak field and horizon limits the edge Hamiltonian’s

first subleading term in   is of order

We start from (4.10),

Both   and   are independent of  , which follows from the fact that their path integral measure can be

read off from the symplectic form, and that    is manifestly independent of  . Considering also that 

 starts at order  , we see that the   dependence of   will come entirely from  .

Consider the horizon limit of the weak field expansion (5.7) of the condition satisfied by  . The leading

term is

It was shown in[7] that this PDE admits the separation of variables

where the    are orthonormal eigenmodes of the Laplacian on  , with non-negative eigenvalues 

, and we omit the zero mode from the sum since it drops out of the PDE. The

asymptotic solution near the horizon was shown to be

from which one can deduce that the operator  , defined in (4.13), reduces in the   limit to

Since the quantity   is independent of  , this implies that  .

The first subleading term in  ’s condition (5.7) is

Hedge

gYM
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(3)
edge
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= Tr[β(U )].Hedge
1

2
∫

∂Σ
E⊥U

−1 (A.2)

E⊥ U ε

Ωedge ε

UE⊥U
−1 O( )gYM ε H

(3)
edge β (2)

β

0 = ( ).∇i −gtt
− −−−

√ ∇iβ (1) (A.3)

(r, ) = (r) ( ),β (1) xa ∑
k≠0

β
(1)
k

fk xa (A.4)

( )fk xa ∂Σ

( ) = ( )Δ∂Σfk xa λkfk xa

(r) ∝ 1 + log r + O( ),β
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This is a PDE for  , similar to the previous PDE for   except that now it is sourced by the commutator

term. Although   due to the condition  , the other components   are not small.

Overall the commutator term is of order  , i.e. the same size as  , and so the inhomogeneous

part of   will be of this same size. Note this means   is affected by  , indicating some dynamical

mixing of the bulk and edge degrees of freedom, as mentioned near (4.14).

The homogeneous part of   is determined by the Neumann data

Once again neither   nor   scales with  , so the homogeneous part of   is  , just like for  .

Then overall

and in turn we have the desired property (A.1).

Acknowledgements

We thank Glenn Barnich, Laurent Freidel, Rob Leigh, and Aldo Riello for useful discussions and feedback.

AB is supported by the Celestial Holography Initiative at the Perimeter Institute for Theoretical Physics

and the Simons Collaboration on Celestial Holography. Research at Perimeter Institute is supported in part

by the Government of Canada through the Department of Innovation, Science and Economic

Development Canada and by the Province of Ontario through the Ministry of Colleges and Universities.

Footnotes

1 In this framework edges are typically referred to as corners.

2 Here by “bulk” we mean the interior of the Cauchy surface.

3 Recall we are currently working on a causal diamond.

4 See however[17] for another perspective.

5   is unique up to a constant shift, which drops out of    and is therefore unimportant. We fix this

ambiguity by requiring  .

0 = ( ) + [ , ].∇i −gtt
− −−−

√ ∇i
β (2) A

~(1)
i −gtt

− −−−
√ ∇i

β (1) (A.7)

β (2) β (1)

= O(r)A
~(1)

r = 0niA
~
i|∂Σ A

~(1)

a

O( )1

log ε−1 β (1)

β (2) β (2) A
~(1)

a

β (2)

= (Kβ = (U .−gtt
− −−−

√ ni∇iβ
(2)|∂Σ )(2) E⊥U

−1)(2) (A.8)

E⊥ U ε β (2) O( )1

log ε−1 β (1)

= O( ),β (2) 1

log ε−1
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β β∇i

β = 0∫∂Σ
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6 For completeness we note a further subtlety, analogous to the coordinate singularity at the origin in

polar coordinates. When    the transformation    does not affect    at all. It represents a

symplectic degeneracy, which is quotiented out.

7 This is closely related to the symplectic form being independent of deformations of the Cauchy surface’s

boundary  .

8 A boundary condition is said to be shrinkable if when applied to an infinitesimally small Euclidean hole

the result is as if there were no hole at all. See[7] for more details.

9 Recall this leaves an ambiguity by constant left multiplication  , which we choose to fix with

some arbitrary smooth choice of representatives.

10 Specifically one uses  .

11 In fact, there is also mixing of bulk and boundary data in   itself, due to the   dependence in the

operator  .
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