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There are many solutions to polynomial equations that have been developed by

mathematicians over the centuries. These methods adopt different approaches such

as substitution, complex number algebra, trigonometry, reduction to depressed

form, elimination, and decomposition of the original polynomial into solvable

products of polynomials of lesser degree.  In this paper, a historical preview of the

methods used to solve polynomial equations is provided, together with a review of

recent methods demonstrated for solving polynomial equations. This paper also

proposes a new uni�ed method of solving polynomial equations based on the

inversion of the nth roots of variables that will explicitly determine the root. The

method is applicable to all polynomials within the limits of solvability of

polynomials by radicals. The method follows a reverse route to the common

methods and logically �nds roots that are algebraically expressed as radicals of real

numbers, although the formulation of the solution starts with inversion by �nding

the nth root of either real or complex numbers. By contrast, methods such as

Cardan’s solution to cubic equations give solutions that have cube roots of complex

numbers, whereas the roots are real numbers. The proposed method is simple and

intuitive to understand and use. Examples have been provided to demonstrate the

application of the proposed method.
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forward to the authors

1. Introduction

The techniques for solving polynomial equations,

including quadratic and cubic equations, have been

recorded since ancient times, with the Babylonians around

2000 BC. The algebraic solutions to cubic and quartic

equations were successfully established during the

Renaissance period (1450-1630). Scipione Del Ferro (1465-

1526) found the solution for the cubic equation formulated

in reduced form, but his solution was kept secret (Conner,

1956). Tartaglia also developed the solution to the cubic

equation, which was also not published but only told to

Cardano. Girolamo Cardano (1501-1576) published the �rst

public method of solving cubic equations, crediting Del

Ferro for the method. Francois Viete (1540-1603) similarly

established a method for solving cubic equations using a

two-step transformation involving one variable only,

rather than the two variables involved in Cardano’s

method. The original solutions for cubic equations by

both Cardano and Viete are not exactly intuitive and look

somehow like magical discoveries. Later attempts at more

explicit and intuitive approaches have been forwarded

(Mukundan, 2010).  Simpli�cations of the solution using

derivatives have also been used (Abesheck Das, 2014;

Tiruneh, 2020). 

Joseph Luis Lagrange (1736-1813) used a combination of

symmetric functions that are enough to specify the

polynomial equations in reduced form and thus solve

them.   Lagrange’s solution, as such, implicitly used the

Fourier transform, though the Fourier transform was not

yet established during that time (Jansen, 2009).
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Lagrange’s method is also said to be a precursor to the

Group theory credited to Evariste Gallois (1811-1832).

The solution to quartic polynomial equations was �rst

established by Ferrari (1522-1565). However, since the

method involves solving a resolvent cubic equation,

Ferrari’s method became public only when the method for

solving cubic equations was established (Dickson, 1920).

Rene Descartes (1596-1650) and a number of other

mathematicians also suggested methods of solving

quartic polynomial equations (Dickson, 1914).   The

occurrence of repeating roots in quartic equations could

be apparent when the resolvent cubic also has a repeating

root (Neumark, 1965). Leonard Euler (1707-1783) made use

of the fact that the sum of the four roots is equal to zero

for the reduced quartics and hence was able to offer a

solution by solving a resolvent cubic arising out of the

three variables (Nickalls, 2009). Fathi and Sharifan (2013)

provided a new method of solving quartic equations by

expressing the original root x as a sum of three

transformed variables u, v, and w in a manner similar to

the solution provided by Cardano. Kulkarni (2006)

suggested a uni�ed method for solving polynomial

equations that has a more explicit and intuitive form

compared to earlier methods. 

Over the centuries since the attempts at solving cubic and

quartic equations became successful, numerous methods

have been proposed for solving polynomial equations of

degree less than �ve. These methods demonstrate the

dynamics of the different ways in which polynomial

equations can be solved and the intelligence of the authors

who came up with solutions to the polynomial equations.

While the complexity of the solutions proposed over the

years varies, there are certain aspects of the solutions that

are apparent in each method. For example, for solving a

polynomial equation of degree N, the methods involve

solving a resolvent polynomial equation of degree N-1.

This means cubic equations involve solving a quadratic of

a transformed variable, and quartic equations involve

solving a cubic resolvent equation. 

The attempt at solving quintic and higher degree

polynomial equations using the same techniques as those

of lesser degree polynomials was not successful, and

mathematicians successfully established the condition for

the solvability of polynomials, which proved that all

polynomials of degree less than �ve are solvable in terms

of radicals, as the historical development of the solutions

also suggests. Early attempts at solving quintic equations

using methods similar to those of quartic and cubic

equations resulted in a resolvent polynomial equation that

is a six-degree polynomial, which is greater than the

original �ve-degree polynomial.   This provided an early

hint to mathematicians like Lagrange that quintic and

higher degree polynomial equations may be impossible to

solve in terms of radicals like those of lesser degree

polynomials. This led to attempts at proving the general

non-solvability of polynomials of degree �ve and greater.

On the other hand, there were apparently quintic and

higher degree polynomial equations such as p(x) = x5-1=0,

that can be solved as they occur in solvable form. The

condition for the solvability of such polynomials has been

provided through Galois Group Theory (Nguyen and Ruan,

2024). The proof and demonstration of the non-solvability

of certain polynomials of degree �ve and higher have

earlier been provided by Abel and Ruf�ni (Tignol, 2016). 

Examples of recent demonstrations of methods for

solving polynomials are discussed below, including

uni�ed approaches that apply to all polynomial equations,

such as ones that are given by Vieira (2011) and Kulkarni

(2006). In the case of the method shown by Vieira (2011),

which is related to the use of complex numbers by

Lagrange, the direct application of complex numbers for

solving quadratic, cubic, and quartic equations is

demonstrated.

i. Uni�ed approach using complex number

substitution (Vieira (2011)

The solution to the quadratic, cubic, and quartic equations

in reduced form given below is solved by substituting z= x

+ w*y, where x and y are real numbers and w is the nth

root of negative one (for quadratic and cubic equations)

and the nth root of one for quartic equations

For each of the equations, substituting z = x + w*y and

separating the real and imaginary parts of the equations

gives a system of two equations in two unknowns, i.e., x

and y. Eliminating y from the equations gives a single

equation in x that can be solved in explicit form.

ii. Uni�ed method for solving polynomials by Kulkarni

(2010),

A given polynomial of degree N is decomposed into the

form shown below:

Where VM(x) and WM(x) are polynomials of degree M<N,

and p is an unknown constant to be determined. The

decomposed polynomial has degree KM = N. There are a

total of 2M+1 unknowns, m coef�cients of the polynomial

from each of VM(x) and WM(x), and the additional

unknown, which is the p value. In order for the system to

+ az + b = 0 ;  z = x + wy ;  w =     = iz2 −1−−−√

+ az + b = 0 ; z = x + wy ;  w =     =  z3 −1−−−√3 1 ± −3−−−√

2

+ a + bz + c = 0 ;  z = x + wy;  w =     =   ± iz4 z2 1–√4

−  [ (x)]VM
K

pK [ (x)]VM
K

1 − pK
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be solvable, 2M+1 = N for odd values of N, and 2M+1 = N+1

for even N.

The following decomposed forms of the polynomials have

been suggested for the quadratic, cubic, and quartic

equations:

Quadratic:

Cubic:

Quartic:

The choices such as c0=0 and c1=0 are taken so that the

number of unknowns in the decomposed polynomial is

equal to the number of coef�cient terms in the given

polynomial. Once the undetermined coef�cients of the

decomposed polynomial, together with the p value, are

determined explicitly by solving a polynomial equation of

degree N-1 (for an equation involving a polynomial of

degree N), the solution proceeds by decomposing the

polynomial and equating each term to zero. The

decomposable polynomial can be decomposed into the

following:

Where FN-M(x) is a decomposed polynomial of degree N-

M. Each of the polynomials in brackets in the above

expression is of degree less than N (the degree of the given

polynomial) and is solved to determine the roots of the

polynomial. Kulkarni (2006) further suggested a similar

procedure for solving quintics by transforming them into

sextic equations, which probably leads to coef�cients of

the original polynomials being dependent on each other,

making them solvable quintics. This, however, cannot be

taken as a general solution as it belongs to only a certain

class of quintic polynomials in which the coef�cients of

the polynomial are not independent from each other.

iii. Solution to cubic equations by Mochimaro (2015)

A given equation x3+Ax2+Bx+C= 0 is transformed through

a new variable y such that x=y+β to the form:

Further condition is attached to the transformation such

that b2=3ac. This condition imposed on the b and c

coef�cients of y will give the following quadratic equation

that determines the variable transformation constant β:

The coef�cients a, b, and c are now worked out once β is

determined, and it is easy to see that the new cubic

equation in y with the condition b2 = 3ac imposed can be

reformulated as follows:

Finally, the three roots of y are determined from the

following equation that also makes use of De Movire’s

theorem;

Special conditions where either of a, b, or c=0 are handled

differently in the above method by Mochimaro (2015).

iv. Quartic equation solution by Tehrani (2020)

Given a quartic equation in depressed form:

An equivalent polynomial is constructed in decomposed

form, which is given by:

Comparison of the coef�cients with the original equation

gives:

The three by three non-linear equation in q, γ, and λ above,

when solved for γ2, will give a cubic equation that always

has a real number solution. After this, the other unknowns

q and λ are determined from the three by three equations

above. This will, in turn, provide the roots R1 and R2 from

the quadratic equations of R1+R2 = γ and R1R2 = λ. The

other roots are likewise determined by solving z2+pz+q=0.

 ;   = 0
−  ( + ))x0 b0

2
p2( + )x0 c0

2

1 − p2
c0

−  ( + ))x0 b0
3

p3( + )x0 c0
3

1 − p3

 ;     = 0
−  ( + x + ))x2 b1 b0

2
p2( + x + )x2 c1 c0

2

1 − p2
c1

 
−  [ (x)]VM

K
pK [ (x)]VM

K

1 − pK

=  ( )( )
(x) −  p (x)VM VM

1 − p

(x)FN−M

∑K−1
i=0 pi

+ a + by + c = 0y3 y2

a = A + 3β

b = 3 + 2Aβ + Bβ2

c =   + A + Bβ + Cβ3 β2

( − 3B) +  (AB − 9C)β + − 3AC = 0A2 β2 B2

= 1 −  ( + 1)
b

ay

3 3b

a2

  =   − 1 + ω  ;  ω =  
b

ay
(1 − )

3b

a2

1

3
e2nπi/3

f(z) =   + a + bz + c = 0z4 z2

f(z) =   (z − ) (z − ) ( + pz + q)R1 R2 z2

=   [ − ( + ) z +   ] [ + pz + q]z2 R1 R2 R1R2 z2

p =   + =  γR1 R2

a = q + λ − γ2

b =  γ(λ − q)

c = qλ

qeios.com doi.org/10.32388/P9YVIN.2 3

https://www.qeios.com/
https://doi.org/10.32388/P9YVIN.2


v. Sousa’s Solution (2021)

Jose Risomar Sousa (2021) provided a solution to cubic

equations based on completing the cube in a manner

similar to completing the squares that lead to the

quadratic equation solution. According to Sousa (2021), the

solution to the cubic equation can be directly worked on

without conversion to a depressed form. For a given cubic

equation

The equation is transformed by de�ning a new variable π
such that

This results in the equation in π:

The following expression is true from Sousa’s Solution:

Inserting the expression above:

Simplifying the above expression further:

The solution for m is obtained using the quadratic

formula:

The transformed cubic equation in π is now transformed

as:

Completing the cube is done by adding and subtracting

(δπ)3 as follows:

The above equation is solved for π, which will eventually

give the solution in x as follows:

Where:

And

However, the author did not specify how to handle the

situation where (bc-9ad)=0, which will not allow the

quadratic solution for the m value.

2. Method Development

The uni�ed procedure for �nding the roots of polynomial

equations is based on inversion through �nding the roots

of the following systems of equations:

The variables A, B, C, and D in Equations (1) and (2) each

can be a real (without a complex part) or a complex

number (without a real part). The root of a polynomial

equation is related through the inversion procedure that

solves the system of equations above for the variable A,

i.e.,

The above solution is solved separately for two cases,

which are shown below:

2.1. Case I: Both C and D are either purely real

numbers or purely complex numbers

When both C and D are either real numbers or both

complex numbers, the solution is solved without involving

complex numbers. This is seen from the following

relation:

If C and D are both real numbers, a and b should also be

real numbers since by de�nition they cannot have a mixed

part (they are both either purely real numbers or purely

complex numbers).

Similarly, if both C and D are purely complex numbers, the

following relation holds true:

a + b + cx + d = 0x3 x2

x  =  π + m

a + (3am + b) + π (3a + 2bm + c)a + b + cmπ3 π2 m2 m3 m2

+ d = 0

  = a + b + cm + dΔ3 m3 m2

3 δ = 3a + 2bm + cΔ2 m2

3Δ = 3am + bδ2

  =   ( )
Δ3

3 δΔ2

1

3

3 δΔ2

3Δδ2

  =   ( )
a + b + cm + dm3 m2

3a + 2bm + cm2

1

3

3a + 2bm + cm2

3am + b

( − 3ac) +  (bc − 9ad)m + − 3bd = 0b2 m2 c2

m =  
−(bc − 9ad) ± (bc − 9ad − 4 ( − 3ac) ( − 3bd))2 b2 c2− −−−−−−−−−−−−−−−−−−−−−−−−−−−

√

2(bc − 9ad)

a + 3Δ(δπ + 3 δπ + = 0π3 )2 Δ2 Δ3

a − (δπ + (δπ + 3Δ(δπ + 3 δπ + = 0π3 )3 )3 )2 Δ2 Δ3

(δπ + Δ =   − (a − ))3 π3 δ3

π =  
−Δ

δ + ω(a − )δ3 1/3

x =  π + m = m −
−Δ

δ + ω(a − )δ3 1/3

Δ = a + b + cm + dm3 m2− −−−−−−−−−−−−−−−−
√3

δ =
3a + 2bm + cm2

3Δ2

(A + B   = C + D;  (1))N

  =  C − D (2) (A − B)N

A =   ( )   ± ) (3)
1

2
C + D
− −−−−√N C − D

− −−−−√N

both real numbers :  (a + b   = c + d;)N
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It is clear that both a and b should also be both purely

complex numbers since a mixed number such as a+bi

when raised to the power of n will also have a mixed

number c+di, which contradicts the assumption that both

c and d are complex numbers of the form ci and di.

Therefore, the system reverts to a real number form since

the complex term i is cancelled from both sides of the

equation. The solution belonging to case I is solved as the

roots of real numbers, whose solution can be a real

number or a complex number depending on the

discriminant, as will be shown further.

2.2. Case II: Either C or D is a complex number and

the other a real number

When either C or D is a complex number and the other a

real number, for convenience, we switch the real part

designation as C=c and the complex part as D=di.

Therefore,

It is clear that a and b should also be mixed, i.e., when one

is real, the other should be a complex number. For

convenience, the real part is designated as A=a and the

complex part as B=bi. The system is solved by �nding the

roots of complex numbers, which, as will be shown

further, turn out to be real numbers. The application of De

Movier’s Theorem is relevant for this case where the

solution involves �nding the cube roots of a complex

number.

The detail of the development of the method for quadratic,

cubic, and quartic equations is now provided below.

2.3. Method for Quadratic Equations

For a quadratic equation, n=2, the solution for A is given

from the equation:

Taking the square roots of each term on either side of both

equations,

The solution for A is found by adding the equations

together:

As will be shown further, the above solution gives two

independent roots, although it initially appears that there

are four solutions from the combination of the plus and

minus signs. This is due to the fact that the variable A is

related to the variable in the quadratic equation X through

X = A2, and the values of A that are equal in magnitude but

opposite in sign will both give the same value of X when

squared through X= A2.

To relate the above solution A to the quadratic equation,

consider the system of equations again:

Adding and subtracting the above equations in turns

gives:

Eliminating B from the equation containing C gives:

Rearranging gives:

Let X = A2 so that:

Given the quadratic equation: X2 + RX +S and equating the

constants gives:

From the solution obtained above for A, i.e.,

The value of X is then obtained:

Now we consider the solution for the two cases.

Case I: Solution for quadratic in the real number domain of

both C and D

In this case, A=a, b=b, c= C, and D=d are all taken as real

numbers.

Given the quadratic equation: X2 + RX +S and 

both complex numbers :  (ai + bi =  )N

± i((a + b = ci + di = i(c + d))N

(a + b = ±(c + d))N

(a + bi   = c + di)N

(A + B   = C + D)2

(A − B   =  C − D)2

(A + B)  = ± C + D
− −−−−√

(A − B)  =   ± C − D
− −−−−√

A =   (   ± )  (4)
1

2
C + D
− −−−−√ C − D

− −−−−√

(A + B   = C + D)2

(A − B   =  C − D)2

+     = C and 2AB = DA2 B2

+   − C = 0A2 ( )
D

2A

2

− C +     = 0A4 A2 D2

4

− CX +     = 0 (5)X 2 D2

4

C =   − R and D =   4S−−√

A =   (   ± )
1

2
C + D
− −−−−√ C − D

− −−−−√

X =     =    (6)A2 1

4
(   ± )C + D

− −−−−√ C − D
− −−−−√

2
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Equating the constants gives:

Substituting the values of    in

the above equation gives the quadratic formula as shown

below:

− CX +     = 0X 2 D2

4

C =   − R and D =   4S−−√

X =     =  A2 1

4
(   ± )C + D

− −−−−√ C − D
− −−−−√

2

C =   − R and D =   4S
−−

√

X =     =  A2 1

4
(   ± )−R + 4S−−√

− −−−−−−−−
√ −R − 4S−−√

− −−−−−−−−
√

2
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This gives the familiar quadratic formula. The

discriminant:

Will determine if the system has a real or complex root. If

C is less than D, the roots are both complex, and if C is

greater than D, the roots are both real.

Case II: Solution for quadratic in the Complex number

domain of c+di

This case occurs when C and D are mixed, i.e., one is real

and the other complex. For convenience, C=c is taken to be

the real part and D= di the complex part. The application

of De Moivre’s theorem is used as follows:

Let   and 

It turns out that both roots are always real numbers. This

is seen from the relation

For D to be a complex number, S should be less than zero,

or a negative number. The discriminant R2- 4S = c2+d2

will always be positive, as is shown below, guaranteeing

the roots are both real numbers.

2.4. Method for Cubic Equations

A similar procedure is followed for cubic equations

whereby the variable A is solved by taking the cubic roots

of C+D, i.e.,

Taking the cube roots of the expressions on either side of

the above equations:

Eliminating B by adding the two equations yields the

solution for A, i.e.,

Now we consider the two cases for the solution to cubic

equations.

Case I: Solution for cubic equation in the real number

domain of C and D

As has been mentioned above, when both C and D are

either purely real or purely complex, the solution occurs in

the real number domain. Expanding the cubic power of

both equations gives:

Adding and subtracting the above two equations gives:

Eliminating the variable B from the above two equations

will give the equation in a as follows:

Using the substitution m = a3 to convert the above

equation into a general cubic equation gives;

The above equation is converted into depressed form and

equated to the given polynomial equation in x. To do this,

the usual variable transformation equation to depressed

cubic form is used, i.e.,

Using this transformation, the cubic equation in m is

transformed into the x variable as follows:

X =     =   (−R + − R −   ±  )A2 1

4
4S−−√ 4S−−√ ((−R − 4S))2

− −−−−−−−−−−
√

X =     =   (−R ±  )A2 1

2
− 4SR2− −−−−−−

√

− 4S =   −R2 C2 D2

X =     =  A2 1

4
(   ± )c + di

− −−−−√ c − di
− −−−−√

2

r =   +  c2 d2− −−−−−√ θ =   ( )Cos−1 c
r

  =   (Cos( )+ i Sin( ))c + di
− −−−−√ r1/2 θ

2

θ

2

  =   (Cos( )+ i Sin( ))c − di
− −−−−√ r1/2 −θ

2

−θ

2

X =    A2

=   (( (Cos( )+ i Sin( )))  
1

4
r1/2 θ

2

θ

2

±( (Cos( )+ i Sin( ))))r1/2 −θ

2

−θ

2

2

X =     = {r ,   − r  }  (7)A2 (Cos( ))
θ

2

2

(Sin( ))
θ

2

2

C =   − R and D =   4S−−√

− 4S =   − =   − (di =   +R2 C2 D2 c2 )2 c2 d2

(A + B   = C + D)3

(A − B   =  C − D)3

A + B =   C + D
− −−−−√3

A − B =   C − D
− −−−−√3

A =       +      (8)
1

2
C + D
− −−−−√3 1

2
C − D
− −−−−√3

(A + B   = + 3 B +  3a +     =  C + D)3 a3 a2 B2 B3

− 3 B + 3a −   = C − D(A − B   = a)3 3
a2 B2 B3

+ 3a   = C ;  3 B + =  Da3 B2 a2 B3

  −   −   −     = 0a9 3

4
ca6

[15 − 27 ]c2 d2

64
a3 c3

64

  −   c −   m −     = 0m3 3

4
m2

[15 − 27 ]c2 d2

64

c3

64

m = x − ( c)   =  x +    c
1

3

−3

4

1

4
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Equating the terms of the above equation to that of the

given equation: x3 + Rx + S = 0,

Solving for c and d in terms of R and S will eventually give:

In order for Case I to be true, both c and d should be real

numbers. For the given cubic equation:

Since c = 4S/R, the condition for c to be a real number is

automatically satis�ed since R and S are both assumed to

be real numbers in the given cubic equation. From the

expression for d given in terms of the coef�cients of the

cubic equation, for d to be a real number, the following

condition shall be satis�ed:

In other words, the discriminant has to be positive. It is

interesting to note that this condition is similar to that of

Cardan's solution where the discriminant is positive in

case the solution does not involve manipulating complex

numbers or where there is no need to apply De Moivre’s

Theorem.

The solution in the real number domain of c = real and D =

real proceeds �rst by computing the values of c and d from

the coef�cients of the given equation: x3 + Rx + S = 0

The roots of the cubic equation are then given by:

Case II: Solution for cubic equation in the complex number

domain of C +D = c+di

The solution to the equation when C+D takes the form c+di

is obtained through the cubic root of a complex number c

+ di such that:

Expanding the (a+bi)3 term and equating it to c+di gives:

From which it is apparent that:

Eliminating the complex coef�cient b and expressing the

above equation in terms of the real part of a+bi, i.e., a only,

gives:

Using the substitution m = a3 to convert the above

equation into a general cubic equation gives;

The above equation is converted into depressed form and

equated to the given polynomial equation in x. To do this,

the usual variable transformation equation to depressed

cubic form is used, i.e.,

Using this transformation, the cubic equation in m is

transformed into the x variable as follows:

Equating the terms of the above equation to that of the

given equation: x3 + Rx + S = 0,

Solving for c and d in terms of R and S will eventually give:

Now, working backwards from c and d to the equation in

the x variable, since a +bi is the cube root of c +di, the

value of a is computed using De Moivre’s Theorem as the

real part of the cube root of the complex number c +di as

follows:

Where the values of r and θ are given by:

The roots of the cubic equation are given by:

Using the relation:

− [ ( −   )]x −  [ ( −   c)] = 0x3 27

64
c2 d2 27

256
c3 d2

R =   − [ ( −   )]  ;  S =   −  [ ( −   c)]
27

64
c2 d2 27

256
c3 d2

c =    ;  d =   ±    (9)
4S

R

4

3   R3
–√

(4 + 27 )R3 S 2
− −−−−−−−−−−

√

+ Rx + S = 0x3

(4 + 27 ) < 0R3 S 2

c =    ;  d =   ±  
4S

R

4

3   R3–√
(4 + 27 )R3 S 2
− −−−−−−−−−−

√

x =   −    (10)a3 S

R

(a + bi   = c + di)3

[   − 3a ]   +   [3 b − ] i  =  c + dia2 b2 a2 b3

  − 3a   = c ;  3 b − = da2 b2 a2 b3

  −   −   −     = 0a9 3

4
ca6

[15 + 27 ]c2 d2

64
a3 c3

64

  −   c −   m −     = 0m3 3

4
m2

[15 + 27 ]c2 d2

64
c3

64

m = x − ( c)   =  x +    c
1

3
−3
4

1

4

− [ ( +   )]x −  [ ( +   c)] = 0x3 27

64
c2 d2 27

256
c3 d2

R =   − [ ( +   )]  ;  S =   −  [ ( +   c)]
27

64
c2 d2 27

256
c3 d2

c =    ;  d =   ±  
4S

R

4

3   R3–√
− (4 + 27 )R3 S 2
− −−−−−−−−−−−−

√

a =    [Cos( )]  n = 0,  1,  2 (11)r1/3 θ + 2nπ

3

r =    ;  θ  =   ( )  (12)+  c2 d2− −−−−−
√ Cos−1 c

r

x =  m −   c
1

4

m =    ;  c =  a3 4S

R
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gives:

It is apparent from the two cases that the same formula is

used with different signs of the discriminant in the square

root. Which of the cases applies depends on the

discriminant 

The expression in the square root is negative for it to be

formulated through the complex number of the c+di,

which requires applying De Moivre’s Theorem.   This is

seen from the formula for c and d:

While c is automatically a real number in both cases, to get

a real number from the square root, the discriminant

should be negative, i.e.,

This means that the expression for d is always a real

number, whereas in Cardan’s method, d can have a

complex number part although the solution is a real

number whereby the complex parts cancel each other.

 The table below provides a comparison of the conditions

between Cardan’s Method and the proposed method.

x =   −  a3 S

R

(4 + 27 )R3 S 2

c =    ;  d =   ±  
4S

R

4

3   R3
–√

− (4 + 27 )R3 S 2
− −−−−−−−−−−−−

√

(4 + 27 ) < 0R3 S 2

qeios.com doi.org/10.32388/P9YVIN.2 9

https://www.qeios.com/
https://doi.org/10.32388/P9YVIN.2


Discriminant Cardan’s method Proposed method

Discriminant  Positive Negative Positive Negative

Solution formulated as

average of cube roots of

real numbers C+D and C-

D

Solution  involves

complex numbers and

formulated using De

Movire’s Theorem

Solution formulated as average

of cube roots of the real

numbers C+D and C-D same as

Cardan’s Method

Solution starts with

complex numbers but

eventually formulated in

real number form

Table 1. Formulation of solution to cubic equation based on the sign of discriminant: Comparison of the proposed method with

Cardan’s solution

2.5. Method for Quartic equations

The quartic equation is solved as a combination of the

roots of two quadratic equations as follows. For a given

four-degree polynomial equation that is expressed in

depressed form:

The solution to the equation is obtained through the

square roots of a pair of complex numbers A, B, C, D, E, F,

and H such that:

 (15)

To solve this quartic equation as a product of two

quadratics, the following relationships are established

whereas E, F, C, and H are de�ned similarly like AB, C, and

D to have real or complex number form:

With the de�nition X=A2 and E= X2, two sets of quadratic

equations are formed:

Multiplying the two quadratics and using lower case

symbols gives:

Equation (16) is expanded further as follows:

Equating the coef�cients p, q, and r of the given quartic

polynomial equation given in Equation (13) with those of

equation (17) will give the following:

Solving Equations 18, 19, and 20 simultaneously for the

variable c gives the following six-degree equation:

and using the substitution:

Gives a cubic equation in y, i.e.,

Once the value of y is found by solving the cubic equation

given in Equation (23), the values of c, d, and h are found

as given by the equations stated in Section 2.1:

The values of d and h are found from:

4 + 27R3 S 2

  + p + qx + r  = 0 (13)x4 x2

(A + B   = C + D;   =  C − D (14))2  (A − B)2

(E + F   = −C + H;   =   − C − H)2  (E − F)2

(A + B   = C + D)2

(E + F   = −C + H)2

− CX +     = 0X 2 D2

4

+ CX +     = 0X 2 H 2

4

( − xc + )( + xc + )   =  0 (16)x2 d2

4
x2 h2

4

−  ( + +   ) +( −   ) (c)x +  x4 d2

4

h2

4
c2 x2 h2

4

d2

4

h2d2

16

=  0 (17)

+ +   =   − p (18)
d2

4

h2

4
c2

( −   ) (c)  = q (19)
h2

4

d2

4

  = r (20)
h2d2

16

  + 2 p + ( − 4r)   −   = 0 (21)c6  c4 p2 c2 q2

y  =    (22)c2

  + 2p + ( − 4r)y −  (23)y3 y2 p2 q2

c  =    (24)y√

d =    (25)−2( ) − 2p − 2
q

c
c2

− −−−−−−−−−−−−−−
√

h =    (26)+2( ) − 2p − 2
q

c
c2

− −−−−−−−−−−−−−−
√
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The values of d and h serve as the discriminant of the

quartic equations with the following relationship to the

roots:

�. If both D and H are real numbers, all the roots of the

quartic equation are real numbers, and De Movier’s

formula can be applied.

�. If both D and H are complex numbers, the roots of

the quartic equations are either real or complex

numbers, and interestingly, De Movie’s formula

cannot be used as the solution is expressed in real

number coef�cients, whereas the roots may turn out

to be real numbers or complex numbers depending

on the occurrence of the square root of a positive

number or a negative number, respectively.

�. If either of D or H is a complex number, the quartic

equation has two real number and two complex

conjugate solutions. De Movier’s Formula can be

applied to the part (d or h) that is a real number.

Case 1: Solution when D and H are complex numbers

This corresponds to Case I above in which both D and H

are real numbers, all the roots are real numbers, and De

Movier’s formula can be applied.

The values of a and e to the left sides of equations (14) and

(15) are determined using De Moivre's Formula.

Let   and 

Let   and 

Case 2: Solution when both D and H are real numbers

This is the case in which the roots can be real or complex.

In this case, De Movier’s formula cannot be applied, and

the roots are found from the following solutions:

Case 3: Solution when either D or H (but not both) is either

a real number or a complex number

This is a mixed case which results in roots, at least two of

which are real numbers corresponding to either D or H

being a complex number as for Case I above. The

remaining two roots can be real or complex conjugates

like it was for Case II above. If, for example, D is a complex

number and H is a real number, the solution is obtained as

follows:

In general, the expressions for d and h given by:

will determine the nature of the roots being real, complex,

or a combination of real and complex numbers.

3. Application Example

3.1. Quadratic Equation Examples

Example 3.1.1. x2-2x-3 = 0; R = -2 and S = -3

This is Case II, where C+D is in the complex form: C+D =

c+di

The application of De Moivre’s Theorem is shown below

for this example:

Let   and 

=  rA +  c2 d2− −−−−−
√ =   ( )θA Cos−1 c

rA

=     = { ,   −   }XA A2 rA(Cos( ))
θA
2

2

rA (Sin( ))
θA
2

2

=  rE +  c2 h2
− −−−−−

√ =   ( )θE Cos−1 c
rE

=     = { ,   −   }XE E2 rE(Cos( ))
θE

2

2

rE (Sin( ))
θE

2

2

=     =   (C ± )XA A2 1

2
−C2 D2− −−−−−−√

=     =   (C ± )XE E2 1

2
−C2 H 2− −−−−−−

√

=     = { ,   −   }XA A2 rA(Cos( ))
θA
2

2

rA (Sin( ))
θA
2

2

=     =   (C ± )XE E2 1

2
−C2 H 2− −−−−−−

√

d =   −2( ) − 2p − 2
q

c
c2

− −−−−−−−−−−−−−−
√

h =   +2( ) − 2p − 2
q

c
c2

− −−−−−−−−−−−−−−
√

C =   − R  = 2 and d  =   =     =   i4S−−√ 4 ∗ −3− −−−−√ 12−−√

X =     =  A2 1

4
(   ± )C + D

− −−−−√ C − D
− −−−−√

2

X =  
1

4
(   ± )2 + i12−−√

− −−−−−−
√ 2 − i12−−√

− −−−−−−
√

2

= (2 + i + 2 − i  ± 2 ∗( ))
1

4
12−−√ 12−−√ −22 ( i)12−−√ 2

− −−−−−−−−−
√

= (4 ± 8)  =   {3,   − 1}
1

4

r =   +  c2 d2− −−−−−
√ θ =   ( )Cos−1 c

r

r =     = 4+  22 12−−√ 2
− −−−−−−−−

√

θ =   ( )   =  Cos−1 2

4
600

X =     = {r ,   − r  }A2 (Cos( ))
θ

2

2

(Sin( ))
θ

2

2

X =     = {4 ,   − 4  }A2 (Cos ( ))300 2
(Sin ( ))300 2

X =     = {4 ,   − 4  }A2 ( )
3–√

2

2

( )
1

2

2
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Example 3.1.2. x2+2x+10 = 0; R = 2 and S = 10

This is Case I, where C+D is in the real number form: C+D =

c+d

X =     = {3,   − 1}A2

C =   − R  = −2 and d  =   =     =  4S−−√ 4 ∗ 10− −−−−√ 40−−√

X =     =  A2 1

4
(   ± )C + D

− −−−−√ C − D
− −−−−√

2

X =  
1

4
(   ± )−2 + 40−−√

− −−−−−−−
√ −2 − 40−−√

− −−−−−−−
√

2
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3.2. Cubic equations Examples

The method developed is tested through three cubic

equation examples having discriminants negative, zero,

and positive respectively. The solutions are worked out for

each case as provided below:

Example 1: x3 - 6x + 4 = 0

In this equation, R = -6 and S = 4. The Discriminant

This corresponds to Case II of C+D being in the form C+D =

c+di, i.e., complex number domain. All the solutions of the

cubic equations must be real numbers.

The values of c and d are given by:

The value of a is computed using De Moivre’s Theorem as

the real part of the cube root of the complex number c + di

as follows:

Where the values of r and θ are given by:

The values of a are worked out as follows:

The roots of the cubic equation are then given by:

Example 2: x3 - 3x - 2 = 0

In this equation, R = -3 and S = -2. The Discriminant

This cubic equation has repeating roots since Discr = 0.

The values of c and d are given by:

The value of a is computed using De Moivre’s Theorem as

the real part of the cube root of the complex number c + di

as follows:

Where the values of r and θ are given by:

The values of a are worked out as follows:

X  = (−2 + + −2 −   ± 2 ∗ ( ))
1

4
40−−√ 40−−√ (−2 −)2 ( )40−−√ 2

− −−−−−−−−−−−
√

X  = (−4 ± 12i)  =   {−1 + 3i,   − 1 − 3i }
1

4

Discr =  4 + 27 = 4(−6 + 27(4 =   − 432  ≤  0R3 S 2 )3 )2

c =     =   =   −  ;
4S

R

4 ∗ 4

−6

8

3

d =   ±     =  
4

3   R3–√
− (4 + 27 )R3 S 2
− −−−−−−−−−−−−

√

±     =   ±
4

3   (−6)3–√
−(−432)
− −−−−−−

√
8

3

a =    [Cos( )]  n = 0,  1,  2r1/3 θ + 2nπ

3

r =     =    ;+  c2 d2− −−−−−
√

8 2–√

3

θ  =   ( ) =   ( ) =  Cos−1 c

r
Cos−1 −1

2–√

3π

4

=    [Cos( )]   =   [Cos( )]a1 r1/3 θ

3
( )

8 2–√

3

1/3
π

4

= ( )( )
8 2–√

3

1/3
1

2–√

=     =     =  m1 a1
3 8 2–√

3

⎛

⎝
1

( )2–√
3

⎞

⎠
4

3

=    [Cos( )]   =   [Cos( )]a2 r
1

3
θ + 2π

3
( )

8 2–√

3

1

3 11π

12

=   (−0.965925826) =   − 1.503505501( )
8 2–√

3

1/3

=     =   − 3.398717474m2 a2
3

=    [Cos( )]   =   [Cos( )]a3 r
1

3
θ + 2π

3
( )

8 2–√

3

1

3 19π
12

= (0.258819045) =  0.402863084( )
8 2–√

3

1/3

=     =  0.06538414m3 a3
3

=   −     =     −  ( ) = 2x1 a1
3 S

R

4

3

4

−6

=   −     =   − 3.398717474  −  ( ) =x2 a2
3 S

R

4

−6

−2.732050808

=   −     =  0.06538414  −  ( ) = 0.732050807x3 a3
3 S

R

4

−6

Discr =  4 + 27 = 4(−3 + 27(−2 =  0R3 S 2 )3 )2

c =     =   =    ;
4S

R

4 ∗ −2

−3

8

3

d =   ±     =  
4

3   R3–√
− (4 + 27 )R3 S 2
− −−−−−−−−−−−−

√

±     =  0
4

3   (−3)3–√
−(0)
− −−−

√

a =    [Cos( )]  n = 0,  1,  2r1/3 θ + 2nπ

3

r =     =    ;+  c2 d2− −−−−−
√ 8

3

θ  =   ( ) =   (1) =  0Cos−1 c

r
Cos−1
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The roots of the cubic equation are then given by:

The repeating root is x=1 as the solution indicates.

Example 3: x3 - 2x + 4 = 0

In this equation, R = -2 and S = 4. The Discriminant

This corresponds to Case I where C+D is in the real

number domain C+D = c+d, both c and d are real numbers.

This equation has one real root and two complex roots. To

get the real root, the formula given in Case 2 of the

Methods section is applied.

The values of c and D are given by:

Both +D and –D give the same result; hence, choose D =

7.698003589

The value of a is given by:

The real root of the cubic equation is then given by:

To obtain the other (complex) roots, synthetic division of

the cubic equation by x + 2 gives:

The roots of the quadratic equation using function

evaluation:

Therefore, the other complex roots of the cubic equation

are 1 + it and 1 - i.

3.3. Quartic equations

Let us now try to solve the following quartic polynomial

equation that is given in depressed form as follows (to

avoid the hustle of having to convert other forms to the

depressed form):

In Equation (37), p = -19.375; q = -20.625; and r = 26.05078.

Now we try to solve the resolving cubic equation given by

Equation (16), i.e.,

Taking one of the roots of the above cubic equation in y,

=    [Cos( )]   =   [Cos(0)] = (1)a1 r1/3 θ

3
( )

8

3

1/3

( )
8

3

1/3

=     =   ( )   =  m1 a1
3 8

3
13 8

3

=    [Cos( )]   =   [Cos( )]a2 r
1

3
θ + 2π

3
( )

8

3

1

3 2π

3

=   ( )( )
8

3

1/3 −1

2

=     =  ( )   =   −m2 a2
3 8

3
( )

−1

2

3 1

3

=    [Cos( )]   =   [Cos( )]a3 r
1

3
θ + 4π

3
( )

8

3

1

3 4π

3

=   ( )( )
8

3

1/3 −1

2

=     =  ( )   =   −m3 a3
3 8

3
( )

−1

2

3 1

3

=   −     =     −  ( ) = 2x1 a1
3 S

R

8

3

−2

−3

=   −     =   − −  ( ) = −1x2 a2
3 S

R

1

3

−2

−3

=   −     =   − −  ( ) = −1x3 a3
3 S

R

1

3

−2

−3

Discr =  4 + 27 = 4(−2 + 27(4 =  400 >  0R3 S 2 )3 )2

C =     =     =   − 8 ;
4S

R

4 ∗ 4

−2

D =   ±  
4

3   R3–√
(4 + 27 )R3 S 2
− −−−−−−−−−−

√

= ±     =   ∓   =   ∓ 7.698003589
4

3   (−2)3–√
400−−−√

40

3 3–√

  =     =   − 0.670914627C + D
− −−−−√3 −8 + 7.698003589− −−−−−−−−−−−−−√3

  =     =   − 2.503887477C − D
− −−−−√3 −8 − 7.698003589− −−−−−−−−−−−−−√3

a =       +    
1

2
C + D
− −−−−√3 1

2
C − D
− −−−−√3

a =    (−0.670914627  − 2.503887477) =   − 1.587401052
1

2

=     =  (−1.587401052   =   − 4m3 a3
3 )3

x =   −   =   − 4 − [ ]   =   − 4 + 2 =   − 2a3 S

R

4

−2

  =   − 2x + 2
− 2x + 4x3

x + 2
x2

z =   −   = 1
−2

2

f(z) =   − 2(1) + 1 = 112

x = z  ±     = 1 ± i−f(z)
− −−−−

√

− 19.375 − 20.625 x + 26.05078  = 0x4 x2

  + 2p + ( − 4r)y −   = 0y3 y2 p2 q2

  + 2 ∗ (−19.375) ∗ + ((−19.375 − 4 ∗ 26.05078)yy3 y2 )2

− (−20.625 = 0)2

− 38.75 ∗ + 271.1875 ∗ y − 425.390625 = 0y3 y2

y = 2.25 ,  c =     =     =   ± 1.5y√ 2.25− −−−√
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The values of d and h are found from Equations (18) and

(19)

The above pair of values show that instead of four, only

two solutions are unique. The solutions for a and e are

therefore interchangeable and can proceed with either of

these as follows. Choosing the real part of a +bi as the

alternative:

Using {c, d} = {1.5, 7.85812},

Using {-c. h} = {-1.5, 2.5980}

d =    (18)−2( ) − 2p − 2
q

c
c2

− −−−−−−−−−−−−−−
√

d =    −2( )− 2(−19.375) − 2
−20.625

±1.5
∗(±1.5)2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

=  {7.85812,  2.5980}

h =    (19)+2( ) − 2p − 2
q

c
c2

− −−−−−−−−−−−−−−
√

h =    +2( )− 2(−19.375) − 2
−20.625

±1.5
∗(±1.5)2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

=  {2.5980,  7.85812}

=    ;     =   ( )  (21)ra +  c2 d2− −−−−−√ θa Cos−1 c

ra

=   = 8 ;     =   ( )ra +  1.52 7.858122− −−−−−−−−−−−−
√ θa Cos−1 1.5

8
= 1.38218

=     = { ,   −   }XA A2 rA(Cos( ))
θA

2

2

rA (Sin( ))
θA

2

2

= 8 ∗ ( ) = 4.75xa1 Cos2 1.38218

2

= −8 ∗ ( ) = −3.25xa2 Sin2 1.38218

2

=   = 3 ;     =   ( )re +  1.52 2.59802− −−−−−−−−−−−
√ θe Cos−1 −1.5

3

= 2.094395
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The solution set, therefore, is:

4. Conclusion

Methods for solving polynomial equations have been

developed over the years that adopt variable approaches

and involve varying degrees of complexity. The methods

are broad in approach, involving substitution, complex

number algebra, and trigonometry, reduction to depressed

form, elimination, and decomposition of the original

polynomial into solvable products of polynomials of lesser

degree. Some methods are uni�ed in that they apply to the

broader range of the degree of polynomial equations,

while others are speci�c, such as applying to cubic or

quartic equations only. 

This paper presented and discussed a uni�ed approach for

solving polynomial equations of degrees 2, 3, and 4. The

method uses an inversion of the roots of variables that

allows explicit determination of the roots within the limits

of solvability of polynomials by radicals. The approach is

simple to develop, understand, and even formulate the

solution, as the discussion on method development

shows. The method, in addition, follows a reverse route to

the common methods of solving polynomials, starting

with the dependent variable of the polynomials and

inverting through the nth root to �nd an explicit solution

of the roots of the equations.

In following up through �nding the roots of the equations

in this method, it is noticed that the �nal solution to the

roots of the equation eventually appears in the form they

have to appear. In other words, real roots appear as real

numbers, and complex roots appear as complex numbers.

As a comparison, Cardan’s solution starts with real

numbers and arrives at a solution that involves complex

number manipulation, whereas the roots are eventually

real numbers. In this proposed method, the solution starts

with a general form irrespective of whether the solutions

are real or complex but arrives at the solutions that are

always expressed as radicals of real numbers. Moreover,

this method proceeds from complex to real numbers and

hence takes a reverse detour to Cardan’s Method. The use

of complex number arithmetic for solving equations that

may eventually be expressed in real number forms is also

further demonstrated.  This approach is one further

example of the many ways in which polynomial equations

can be solved.
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{ ,   } =    Xe1 Xe2 E2

= {3 ∗ ,   − 3 ∗   }(Cos( ))
2.094395

2

2

(Sin( ))
2.094395

2

2

X =   {4.75,  3.25,  0.75,   − 2.25}
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