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We have proposed the quantization of the gravitational field in a synchronous
reference frame taking as independent position fields, the six spatial components
of the metric tensor. The Einstein-Hilbert Lagrangian is quadratic in the space
time derivatives of these metric tensor components and hence in particular, the
momentum fields become linear functions of the space-time derivatives of the
position fields. It is this fact that gives a simple form to the Hamiltonian den-
sity of the gravitational field in a synchronous frame, this simple form of the
Hamiltonian being a quadratic function of the momentum fields with a shift
that is linear in the spatial derivatives of the metric, very much like the Hamil-
tonian of a non-relativistic particle moving in a vector potential. Differential
equations for the gravitational field propagator are derived and we explain how
approximations to this propagator can be derived and used to deduce the gravi-
ton propagator corrections caused by nonlinear interactions of the graviton field
with itself. We explain how this corrected graviton propagator can be used
to deduce how much mass the graviton acquires due to these self-interactions
of cubic and higher order. We then consider the important problem involving
the coupling of a nonlinear field theory described by its Lagrangian density to
a quantum noisy bath and explain how the resulting Hamiltonian of the field
plus bath can be used to derive the Hudson-Parthasarathy noisy Schrodinger
equation (HPS) which is a quantum stochastic differential equation for the joint
unitary evolution of the field interacting with the noisy bath. We explain this
in the context of gravity coupled to a noisy bath like a noisy electromagnetic
field. The HPS equation contains linear as well as quadratic terms in the white
bath noise with the linear terms representing quantum annihilation and cre-
ation/quantum Brownian motion process differentials and the quadratic terms
representing quantum conservation/Poisson processes differentials. Finally we
explain how using Feynman path integrals for fields for evaluating the quantum
effective action produced by higher order cumulants of the current field, we can
calculate corrections to the quantum effective action produced by higher order
cumulants of the current field and hence demonstrate how gauge symmetries of
the classical action get broken when we pass over to the quantum effective action
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with additional symmetry breaking terms produced by the presence of higher
order cumulants of the current. This kind of approximate symmetry breaking
is known to give masses to massless particles or more generally, corrections to
the masses of already massive particles and we illustrate this idea in the context
of interactions of the gravitational field with a random electromagnetic field
being regarded as the current. This interaction is the standard Maxwell action
used in general relativity. The drawback of our approach to quantum gravity is
that is its not diffeomorphic invariant since we have chosen our frame to be al-
ways synchronous. Further work on how one can incorporate interactions of the
gravitational field with a random non-Abelian gauge field is in progress which
becomes important because it generates non only quadratic but also cubic and
fourth degree terms in the gauge field when it interacts with gravity.

1 Quantum gravity in the synchronous frame,
some perturbative calculations for the equal
time commutators

The independent components of the metric are just six in number: ϕ = (ϕr)
6
r=1 =

{grs : 1 ≤ r ≤ s ≤ 3} since our coordinates are synchronous, ie, chosen so that
the four conditions g00 = 1, g0r = 0, r = 1, 2, 3 are satisfied. The Lagrangian
density for ϕ, namely the Einstein-Hilbert Lagrangian has the form

L(ϕ, ϕ,0, ϕ,r) = (1/2)F1,rs(ϕ)ϕr,0ϕs,0+(1/2)F2rksm(ϕ)ϕr,kϕs,m+F3rsm(ϕ)ϕr,0ϕs,m

The position fields are ϕ = (ϕr)
6
r=1. The momentum field conjugate to the

position field ϕr is

Pr = ∂L/∂ϕr,0 = F1rs(ϕ)ϕs,0 + F3rsm(ϕ)ϕs,m

let
((Grs(ϕ))) = ((F1rs(ϕ)))

−1

Then, we find that the velocity fields are given by

ϕr,0 = Grs(ϕ)Ps −Grk(ϕ)F3ksm(ϕ)ϕs,m

or in matrix notation,

ϕ,0 = G(ϕ)P −G(ϕ)F3(ϕ)(∇⊗ ϕ)

where ∇ = (∂r)
3
r=1 is the spatial gradient operator. In order to make ϕ,0 self-

adjoint after quantization, we replace the above by

ϕr,0 = (Grs(ϕ)Ps + PsGrs(ϕ))/2−Grk(ϕ)F3ksm(ϕ)ϕs,m

The equal time CCR’s in matrix notation are

[ϕ(t, r), P (t, r′)T ] = iδ3(r − r′)
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so it follows that

[ϕ(t, r), ϕ,0(t, r
′)T ] = iG(ϕ(t, r))δ3(r − r′)

The field equations

∂0∂L/∂ϕk,0 + ∂r∂L/∂ϕk,r − ∂L/∂ϕk = 0

can be expressed as

(∂2
0 − c(r, s)∂r∂s − b1(r)∂0∂r − b2∂0 − b3(r)∂r)ϕ = N(ϕ)

where N(ϕ) is of the form

N(ϕ) = A1rs(ϕ)ϕ,rs +A2r(ϕ)(ϕ,0 ⊗ ϕ,r) +A3(ϕ)(ϕ,0 ⊗ ϕ,0) +A4r(ϕ)(ϕ,0 ⊗ ϕ,r)

+A5rs(ϕ)(ϕ,r ⊗ ϕ,s)

We can expand the nonlinear functional ϕ → N(ϕ) as Volterra series:

N(ϕ(x)) =
∑
n≥1

δnKn(ϕ)(x)

where

Kn(ϕ)(x) =

∫
Kn(x, x1, ..., xn)⊗n

m=1 ϕ(xm)dx1...dxn

δ is a small perturbation parameter. We also expand the field solution as

ϕ(x) = ϕ0(x) +
∑
n≥1

δnϕn(x)

where ϕ0, the zeroth order field satisfies

□ϕ0(x) = 0,□ = ∂2
0 − c(r, s)∂r∂s − b1(r)∂0∂r − b2∂0 − b3(r)∂r

and for n ≥ 1
□ϕn(x) =

coefficient of δn in N(ϕ)(x). Writing

ϕ0(x) = u(r)exp(−iωt)

gives us

(−ω2 − c(k, s)∂k∂s + iωb1(k)∂k + iωb2 − b3(k)∂k)u(r) = 0

After applying the boundary conditions on u(r) the possible ”eigenfrequencies”
ω assume only discrete values and we can express the solution as

ϕ0(x) = ϕ0(t, r) =
∑
n

c(n)exp(−iω(n)t)un(r)
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Note that if un(r) is an ”eigen-solution” corresponding to the frequency eigen-
value ω(n), then ūn(r) is an eigensolution corresponding to the frequency eigen-
value −ω(n). Thus, taking into account the fact that ϕ0(x) is self-adjoint (which
corresponds in classical field theory to a real field), we can better express the
above expansion as

ϕ0(x) =
∑
n≥1

[c(n)un(r)exp(−iω(n)t) + c(n)∗ūn(r)exp(iω(n)t)]

The zeroth order term in the commutation relation

[ϕ(t, r), ϕ,0(t, r
′)T ] = iG(ϕ(t, r))δ3(r − r′)

is given by
[ϕ0(t, r), ϕ0,0(t, r

′)T ] = iG(ϕ0(t, r))δ
3(r − r′)

Remark: We are assuming that Planck’s constant h is very small and actually
appears on the rhs of the above commutation relation. Hence, G(ϕ0) must ac-
tually be replaced by G(< ϕ0(t, r) >) where < ϕ0 > is the Vacuum expectation
of ϕ0. Writing

G0(t, r) = G0(x) = G(< ϕ0(t, r) >)

it then follows that the zeroth order commutation relation is

[ϕ0(t, r), ϕ0,0(t, r
′)T ] = iG0(t, r)δ

3(r − r′)

where now G0(t, r) is a c-number field. Let us consider the particular case when
< ϕ0(t, r) > is independent of time. Then we have

[ϕ0(t, r), ϕ0,0(t, r
′)T ] = iG0(r)δ

3(r − r′)

It follows then that writing

[c(n), c(m)] = 0, [c(n), c(m)∗] = λ(n)δ[n−m]

that the above commutation relations are satisfied iff∑
n≥1

λ(n)ω(n)un(r)un(r
′)∗ = G0(r)δ

3(r − r′)

Now observe that the u′
ns satisfy

(ω(n)2 + c(r, s)∂r∂s − iω(n)b1(k)∂k − iω(n)b2 + b3(k)∂k)un(r) = 0, n ≥ 1

We are assuming that the ω(n)′s are real. Taking the conjugate of this equation
gives

(ω(m)2 + c(k, s)∂k∂s + iω(m)b1(k)∂k + iω(m)b2 + b3(k)∂k)ūm(r) = 0

Multiply the first equation by ūm(r), integrate over space, then multiply the
second equation by un(r), integrate over space, subtract the second from the
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first, integrate by parts and assume that the u′
ns vanish on the boundary. We

get

(ω(n)2 − ω(m)2) < um, un > +i(ω(n)− ω(m))b1(k) < ∂kum, un >

−ib2(ω(n) + ω(m)) < um, un > −2b3(k) < ∂kum, un >= 0

Taking m ̸= n gives us
< um, un >= 0

and if either b1(k) ̸= 0 or b3(k) ̸= 0, then also

< ∂kum, un >= 0

Taking m = n gives us
b2 = 0,

For simplicity, we assume that b1(k) = b3(k) = b2 = 0 and hence

□ = ∂2
0 − c(r, s)∂r∂s

so that the field equation reads

□ϕ = N(ϕ)

Therefore since now c(r, s)∂r∂s is a self adjoint operator and −ω(n)2 are its
eigenvalues with corresponding normalized eigenfunctions un(r), we have the
result from the spectral theorem that u′

ns form a complete orthonormal basis
for the spatial domain within which the field is enclosed. Then,∑

n

λ(n)ω(n)un(r)un(r
′)∗ = G0(r)δ

3(r − r′)

and ∑
n

un(r)un(r
′)∗ = I6.δ

3(r − r′)

These equations imply

λ(n)ω(n)δ[n−m] =< un, G0um >=

∫
un(r)

∗G0(r)um(r)dr

which is possible iff

G0(r)um(r) = λ(n)ω(n)um(r)∀m

which is impossible to satisfy unlessG0(r) = λ(n)ω(n) = cI where c is a constant
ie G0(r) = cI and λ(n) = 1/ω(n). We therefore modify the CCR to

[c(n), c(m)∗] = λ(n,m)
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and derive

[ϕ0(t, r), ϕ0,0(t, r
′)T ] =

∑
n,m

λ(n,m)ω(m)un(r)um(r′)∗ = G0(r)δ
3(r − r′)

In view of the orthonormality of the u′
ns, this is equivalent to requiring that

< un, G0um >= λ(n,m)ω(m)∀n,m

This is equivalent to requiring that

G0(r)um(r) = ω(m)
∑
n

λ(n,m)un(r)∀n,m

2 Quantum gravity in N dimensional space-time,
Hamiltonian formulation

The metric tensor is gµν(x) where 0 ≤ µ, ν ≤ N − 1. x0 is time and xr, r =
1, 2..., N −1 are the spatial coordinates. There are N coordinate conditions and
these coordinate system can be chosen so that g00 = 1 and g0r = 0, 1 ≤ r ≤ N−
1. Having done so, the metric tensor now has just

(
N
2

)
independent component

which we denote by ϕr(x), r = 1, 2, ..., N(N−1)/2. This is called a synchronous
system of coordinates and the proper time element in these coordinates is given
by

dτ2 = dt2 − grs(x)dx
rdxs

We write
ϕ(x) = ((ϕr(x))

K
r=1,K = N(N − 1)/2

The Einstein-Hilbert Lagrangian density then has the form

L(ϕ, ϕ,0, ϕ,r) =

(1/2)ϕT
,0F1(ϕ)ϕ,0 − (1/2)(∇⊗ ϕ)TF2(ϕ)(∇⊗ ϕ)

+ϕT
,0F3(ϕ)(∇⊗ ϕ)

where F1(ϕ) is an K×K symmetric (real) matrix which is a function of ϕ(x)
and not its space-time partial derivatives. F2(ϕ) is an (N − 1)K × (N − 1)K
symmetric real matrix which is once again a function of ϕ(x) alone. Finally
F3(ϕ) is a K×K(N−1) real matrix that is again a function of ϕ(x) alone. Note
that ∇ = (∂r)

N−1
r=1 is the spatial gradient operator. The canonical momentum

vector (ϕ is the canonical position field) is given by

P = ∂L/∂ϕ,0 = F1(ϕ)ϕ,0 + F3(ϕ)(∇⊗ ϕ)
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Thus
ϕ,0 = F1(ϕ)

−1(P − F3(ϕ)(∇⊗ ϕ))

and hence the Hamiltonian density is

H = PTϕ,0 − L = (1/2)ϕT
,0F1(ϕ)ϕ,0 + (1/2)(∇⊗ ϕ)TF2(ϕ)(∇⊗ ϕ)

= (1/2)(P − F3(ϕ)(∇⊗ ϕ))TF1(ϕ)
−1(P − F3(ϕ)(∇⊗ ϕ))

+(1/2)(∇⊗ ϕ)TF2(ϕ)(∇⊗ ϕ)

The Euler-Lagrange field equations are

∂0∂L/∂ϕ,0 + ∂r∂L/∂ϕ,r = ∂L/∂ϕ

These give
(F1(ϕ)ϕ,0),0 − (∇T ⊗ I)(F2(ϕ)(∇⊗ ϕ))

+(F3(ϕ)(∇⊗ ϕ)),0 + (∇T ⊗ I)(F3(ϕ)
Tϕ,0) = 0

This equation expands to give (ie we, separate out the components in this field
equation that are linear in the space-time partial derivatives and those that are
nonlinear in the same)

ϕ,00 − F−1
1 (ϕ)F2(ϕ)(∇⊗∇ϕ) + F1(ϕ)

−1F3(ϕ)(∇⊗ ϕ,0)

= N1(ϕ)

where
N1(ϕ) = −F1(ϕ)

−1F ′
1(ϕ)(ϕ,0 ⊗ ϕ,0)

+F1(ϕ)
−1F ′

2(ϕ)((∇⊗ ϕ)⊗ (∇⊗ ϕ))

−2F1(ϕ)
−1F ′

3(ϕ)(ϕ,0 ⊗ (∇⊗ ϕ))

We shall be assuming that the term N1(ϕ) that is quadratic in the field space-
time partial derivatives are small. We shall in addition, be assuming that

F1(ϕ)
−1F2(ϕ) = C +N2(ϕ)

where C = ((C(r, s)))1≤r,s≤(N−1) is a block structured (N − 1)K × (N − 1)K
matrix with C(r, s) being a K×K matrix. C is assumed to be large while N2(ϕ)
is assumed to be small. Without loss of generality, C(r, s)T = C(s, r). We shall
also assume that

F1(ϕ)
−1F3(ϕ) = B +N3(ϕ)

where B is a large constant matrix decomposed as ((B(r)))N−1
r=1 and N3(ϕ) is

small. Then, the above field equations can be expressed as

(∂2
0 − C(r, s)∂s∂s +B(r)∂0∂r)ϕ = N(ϕ)

where
N(ϕ) = N1(ϕ) +N2(ϕ)(∇⊗∇ϕ)−N3(ϕ)(∇⊗ ϕ,0)
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Now we come to the discussion of the CCR. Since for x0 = y0, we have

[ϕ(x), P (y)T ] = iδ3(x− y)

it follows that
[ϕ(x), ϕ,0(y)

T ] = iF1(ϕ(x))
−1δ3(x− y)

It is clear that by assuming C and B to be respectively the constant parts of
F1(ϕ)

−1F2(ϕ) and of F1(ϕ)
−1F3(ϕ), it follows that N(ϕ) has an expansion in ϕ

that begins with quadratic terms in ϕ, ie, we can write

N(ϕ)(x) =
∑
n≥2

δn−1Kn(ϕ)(x)

where Kn has an nth order Volterra expansion:

Kn(ϕ)(x) =

∫
Kn(x, x1, ..., xn)(⊗n

k=1ϕ(xk))dx1...dxn

3 How do you take into account quantum noise
while formulating a quantum theory of gravity
?

hint: Consider the metric field ϕ(x) ∈ R6 in a synchronous frame with La-
grangian density

L(ϕ(x), ϕ,0(x),∇⊗ ϕ(x))

that is a quadratic form in ϕ,0,∇ϕ with coefficients that can be complicated
nonlinear functions of ϕ. Express it as

L = (1/2)ϕT
,0F1(ϕ)ϕ,0 − (1/2)(∇⊗ ϕ)TF2(ϕ)(∇⊗ ϕ)

+ϕT
,0F3(ϕ)(∇⊗ ϕ)

To add quantum noise to this Lagrangian, replace ϕ(x) by

ϕ(x) +W (x) +W (x)∗

where W (x) = W (t, r) is quantum Brownian noise satisfying the CCR

[W (t, r),W (t′, r′)∗] = min(t, t′)F (r, r′)

This noise CCR is equivalent to requiring that

[∂tW (t, r), ∂t′W (t′, r′)∗] = δ(t− t′)F (r, r′)
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Taking the adjoint of this equation, it immediately follows that

F̄ (r, r′) = F (r′, r)

ie F is a Hermitian kernel and hence admits the spectral expansion

F (r, r′) =
∑
k

λ(k)ϕk(r)ϕ̄k(r
′)

where λ(k) ∈ R and ϕ′
ks form an orthonormal basis for L2(R3). Now let

Ak(t), k ≥ 1 be an infinite sequence of annihilation processes so that they satisfy
the CCR

[Ak(t), Am(t′)∗] = δ(k,m).min(t, t′)

and hence also the quantum Ito formula

dAk(t)dAm(t)∗ = δ(k,m)dt

Then, we can write

Wk(t, r) =
∑
k

√
λ(k)Ak(t)ϕk(r)

provided that we assume λ(k) ≥ 0∀k. Now we compute the noise modified
Lagrangian of the gravitational field as

L(ϕ+W,ϕ,0 +W,0,∇⊗ ϕ+∇⊗W )

where the unperturbed Lagrangian is

L(ϕ, ϕ,0,∇⊗ ϕ) = (1/2)ϕT
,0A0(ϕ)ϕ,0

+ϕ,0A1(ϕ)(∇⊗ ϕ)− (1/2)(∇⊗ ϕ)TA2(ϕ)(∇⊗ ϕ)

Assuming that the amplitude of quantum noise is small, it follows that upto
quadratic orders in the noise amplitude, assuming that this Lagrangian density
as above is of quadratic orders in the spatial and temporal derivatives of the
field ϕ,the Hamiltonian density can be computed using the Legendre transform
as follows:

P = ∂L/∂ϕ,0 = A0(ϕ+W )(ϕ,0 +W,0) +A1(ϕ+W )(∇⊗ ϕ+∇⊗W )

so that upto linear terms in the noise,

P = A0(ϕ)ϕ,0 +A0(ϕ)W,0 +A′
0(ϕ)(W ⊗ ϕ,0)+

+A1(ϕ)(∇⊗ ϕ) +A1(ϕ)(∇⊗W )

+A′
1(ϕ)(W ⊗∇⊗ ϕ)

H = (P, ϕ,0)− L =
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(1/2)ϕT
,0A0(ϕ+W )ϕ,0 + (1/2)WT

,0A0(ϕ+W )W,0

−WT
,0A1(ϕ+W )(∇⊗ϕ)− (1/2)(∇⊗ϕ+∇⊗W )TA2(ϕ+W )(∇⊗ϕ+∇⊗W )

Retaining upto linear terms in the noise, this Hamiltonian density approximates
to the form

H =

(1/2)(P −A1(ϕ))(∇⊗ ϕ))T (P −A1(ϕ)(∇⊗ ϕ))

+(1/2)(∇⊗ ϕ)TA2(ϕ)(∇⊗ ϕ)

+H1(ϕ,∇ϕ, P,W,0,∇⊗W )

where the last term H1 is linear in W,W,0,∇W and linear quadratic in ϕ,∇⊗
ϕ, P . It follows that the Schrodinger equation taking into account the linear
components in the noise will have the form after spatial discretization,

dU(t) = (−i(H0(ϕ, P )+S(ϕ, P ))dt+f1(ϕ, P )⊗dB(t)−f1(ϕ, P )∗⊗dB(t)∗+f2(ϕ, P )⊗B(t)dt−f2(ϕ, P )∗⊗B(t)∗dt)U(t)

where B(t) is a quantum annihilation process in the language of Hudson and
Parthasarathy. It should be noted that W,0 is white noise and hence W,0dt =
dB(t) after spatial discretization. This means that the Hudson-Parthasarathy
qsde now contains apart from quantum Brownian differentials in addition terms
proportional to the Brownian motion processes themselves which reflect the
presence of the terms W and ∇⊗W . Here, ϕ is the position vector and P rhe
corresponding momentum vector arising from spatial discretization of the fields.
S(ϕ, P ) is the quantum Ito correction term and is given by

S(ϕ, P ) = (1/2)f1(ϕ, P )f1(ϕ, P )∗

and is required to ensure unitarity of the evolution. Here,

H0 =

∫
[(1/2)(P −A1(ϕ))(∇⊗ ϕ))T (P −A1(ϕ)(∇⊗ ϕ))

+(1/2)(∇⊗ ϕ)TA2(ϕ)(∇⊗ ϕ)]d3x

is the gravitational Hamiltonian in the absence of noise and by calculating ϕ, P
from the linearized solution to the Einstein field equations, these can be ex-
pressed as polynomials in the graviton creation and annihilation operators.

Remark: We can also take into account quadratic terms in the noise to
give a more accurate description of the unitary evolution. Quadratic terms in
the noise can be expressed in terms of the conservation process of the Hudson-
Parthasarathy quantum stochastic calculus. If we take Fermionic quantum noise
also into account arising from contributions from the Dirac action, then we
obtain a supersymmetric signal and noise theory for the joint evolution of system
and bath.
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4 Stochastic problems in quantum general rela-
tivity based on the quantum effective action,
symmetry breaking caused by higher order
cumulants of the random current

If J(x) is a random current field with mean M1(x) = EJ(x) and higher moments

Mr(x1, ..., xr) = E(J(x1)⊗ ...⊗ J(xr)), r ≥ 1

The quantum effective action should then be based on the functional

Z(Mr, r ≥ 1) =

∫
E[exp(iS[ϕ] + iJ.ϕ)]Dϕ

where

J.ϕ =

∫
J(x)ϕ(x)d4x

Note that we can write

Z(Mr, g ≥ 1) = Z(M1, Cr, r ≥ 2) =∫
exp(iS[ϕ] + iM1.ϕ)E(exp(i(J −M1).ϕ)Dϕ

with
E(exp(i(J −M1).ϕ) = 1 +

∑
r≥2

(ir/r!)E[((J −M1).ϕ)
r]

= 1 +
∑
r≥2

(ir/r!)

∫
Cr(x1, ..., xr)(ϕ(x1)⊗ ...⊗ ϕ(xr))d

4x1...d
4xr

where

Cr(x1, ..., xr) = E[(J(x1)−M1(x1))⊗ ...⊗ (J(xr)−M1(xr))], t ≥ 2

are the central moments of the random field J . The computation of the quantum
effective action for a field ϕ having action S[ϕ] should be based on Z(M1, Cr, r ≥
2) by fixing Cr, r ≥ 2 and taking the Legendre transform of Z w.r.t M1. Equiv-
alently, in terms of the cumulants of J ,

E[exp(iJ.ϕ)] = exp(
∑
r≥1

(ir/r!)

∫
Dr(x1, ..., xr)

T (ϕ(x1)⊗ ...⊗ ϕ(xr))d
4x1...d

4xr)

and we could write

Z(Dr, r ≥ 1) = E[
∫

exp(iS[ϕ] + iJ.ϕ)Dϕ]

=

∫
exp(iS[ϕ] + F [ϕ,D])Dϕ
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where
D = ((Dr))r≥1

are the cumulants of the random field J and

F [ϕ,D] = logE[exp(iJ.ϕ)] =
∑
r≥1

(ir/r!)

∫
Dr(x1, ..., xr)

T (ϕ(x1)⊗...⊗ϕ(xr))d
4x1...d

4xr

is the cumulant generating functional of J . Note that D1(x) = M1(x) is the
mean of J(x). We could now calculate the quantum effective action for the field
ϕ for fixed values of Dr, r ≥ 2 by applying the Legendre transform w.r.t D1

alone. The quantum effective action is defined by

Γ(ϕ0, Dr, r ≥ 2) = extD1
(−i.W (Dr, r ≥ 1)−D1.ϕ0)

where

D1.ϕ0 =

∫
D1(x)

Tϕ0(x)d
4x,W (Dr, r ≥ 1) = ln(Z(Dr, r ≥ 1))

The extremum above is attained when

iδW (D)/δD1(x) + ϕ0(x) = 0−−− (1)

It is clear that the optimal value of D1, namely D10 is expressible as a function
of ϕ0, Dr, r ≥ 2. We now derive as usual the quantum equations of motion for
the quantum effective action and prove a result that defines the amount of gauge
symmetry that is broken when the classical action without the current has a
gauge symmetry, in terms of the cumulants Dr, r ≥ 2. This model then gives
us a method to introduce approximate symmetry breaking due to the presence
of randomness in the current field and hence to calculate the masses acquired
by particles that represent the field ϕ in terms of the cumulants Dr, r ≥ 2. We
first derive the quantum equations of motion:

δΓ(ϕ0, Dr, r ≥ 2)/δϕ0(x) =

−i

∫
(δW/∆D1(y)))(δD1(y)/δϕ0(x))d

4y

−D1(x)−
∫
(δD1(y)/δϕ0(x)).ϕ0(y)d

4y

= −D1(x)

in view of the defining relation for D1 that extremises iW + D1.ϕ0 as in (1).
Suppose now that the classical action S[ϕ] as well as the path measure Dϕ are
invariant under the infinitesimal gauge transformation

ϕ → ϕ+ ϵ.∆(ϕ) = ϕ′
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Then we get by replacing the path integration variable ϕ by ϕ′ that

E
∫

exp(iS[ϕ] + i.J.(ϕ+ ϵ∆(ϕ)))Dϕ = E
∫

exp(iS[ϕ] + i.J.ϕ)Dϕ

= Z

Since ϵ → 0, this gives us

E
∫

exp(iS[ϕ] + iJ.ϕ)(J.∆(ϕ))Dϕ = 0

If J were a non-random field, then this equation could be expressed as

J. < ∆(ϕ) >J= 0

ie, ∫
J(x). < ∆(ϕ)(x) >J d4x = 0

which in view of the quantum equations of motion derived above for the special
case of nonrandom J , would give∫

(δΓ(ϕ0))/δϕ0(x)). < ∆(ϕ)(x) >J0 d4x = 0

where J0 is that current for which < ϕ >J)
= ϕ0. This means that the quantum

effective action is invariant under the infinitesimal gauge transformation

ϕ0 → ϕ0 + ϵ. < ∆(ϕ) >J0

Only when ∆(ϕ) is a linear functional of ϕ does it follow from this equation that
the quantum effective action is invariant under the same gauge transformation
∆(ϕ0) for which the classical action is invariant since then

< ∆(ϕ) >J0
= ∆(< ϕ >J0

) = ∆(ϕ0)

Note that
δW (J)/δJ(x) = i < ϕ(x) >J

In the random case, even the nonlinear gauge symmetry of the quantum effective
action is broken. To estimate by how much this is broken, we write

F [ϕ,D] =
∑
r≥1

(ir/r!)

∫
Dr(x1, ..., xr)

T (ϕ(x1)⊗ ...⊗ ϕ(xr))d
4x1...d

4xr

= iD1.ϕ+ F2[ϕ,D
′]

where

F2[ϕ,D
′] =

∑
r≥2

(ir/r!)

∫
Dr(x1, ..., xr)

T (ϕ(x1)⊗ ...⊗ ϕ(xr))d
4x1...d

4xr

13



=
∑
r≥2

(ir/r!)(Dr.ϕ
⊗r)

where we have defined
D′ = (Dr : r ≥ 2)

Then, by a change of path integration variable and using invariance of the
classical action and the path measure under the gauge transformation ϵ.∆(ϕ)(x),
we get ∫

exp(iS[ϕ] + F [ϕ+ ϵ.∆(ϕ),D])Dϕ =∫
exp(iS[ϕ] + F [ϕ,D])Dϕ

or equivalently,∫
exp(iS[ϕ] + F [ϕ,D])(F [ϕ+ ϵ.∆(ϕ)]− F [ϕ,D])Dϕ

+O(ϵ2) = 0

Dividing by ϵ and taking the limit ϵ → 0, we get∫
< (δF [ϕ,D]/δϕ(x))∆(ϕ)(x) >D d4x = 0

where for any functional f [ϕ] of the field ϕ, we have defined

< f [ϕ] >D= Z(D)−1

∫
exp(iS[ϕ] + iF [ϕ,D])f [ϕ]Dϕ

On the other hand, we observe that by the quantum equations of motion derived
above in the random current field case,

δF [ϕ,D]/δϕ(x) = iD1(x) + δF2[ϕ,D
′]/δϕ(x)

= −iδΓ(ϕ0,D
′)/δϕ0(x) + δF2[ϕ,D

′]/δϕ(x)

so we get

−i

∫
(δΓ(ϕ0,D

′)/δϕ0(x)) < ∆(ϕ)(x) >D1
d

+

∫
< (δF2[ϕ,D

′]/δϕ(x))∆(ϕ)(x) >D1
d4x = 0

where D1 has been computed in terms of ϕ0,D
′ as above, ie, in such a way that

the classical-quantum average of ϕ equals ϕ0. Equivalently, we can write∫
(δΓ(ϕ0,D

′)/δϕ0(x)) < ∆(ϕ)(x) >D1
d4x

= −i

∫
< (δF2[ϕ,D

′]/δϕ(x))∆(ϕ)(x) >D1 d4x

14



The lhs of this equation gives us the change in the quantum effective action
under the quantum gauge transformation ϕ0 → ϕ0 + ϵ. < ∆(ϕ)(x) >D1 and
therefore the rhs gives us the amount by which randomness in the current field
causes the gauge invariance of the quantum effective action to be broken. The
rhs can thus be used as a correction to the quantum effective action that leads
to massless particles acquiring masses or massive particles to have their masses
changed.

[2] Consider the Einstein-Hilbert action for the gravitational field. As seen
earlier, it has the form

S0[ϕ] =

∫
L0d

4x,

where
L0 = (1/2)ϕT

,0Ars(ϕ)ϕ,0 − (1/2)ϕT
,sBrs(ϕ)ϕ,r

+ϕT
,0Cr(ϕ)ϕ,r

summation being over the spatial indices r, s = 1, 2, 3. Here, we are assuming
a synchronous frame so that g00 = 1, g0r = 0 which implies that the metric
has just six independent components which we denote by ϕ. The interaction of
the metric field with a random electromagnetic field can be represented by the
interaction Lagrangian

L1(ϕ) = (−1/4)
√
−gFµνFµν

= (−1/4)
√
−ggµαgνβFµνFαβ

= FTD(ϕ)F

where D(ϕ(x)) is a function of only the metric field ϕ(x) and not its partial
derivatives while F = ((Fµν)) is the random electromagnetic field. The total
Lagrangian of the gravitational field ϕ interacting with a fixed external random
electromagnetic field F is thus

L(ϕ, ϕ,0, ϕ,r|F ) = L0 + L1

Our aim is to calculate the quantum effective action for the gravitational field
by assuming that the electromagnetic field F as mean zero and hence

E(F (x)⊗ F (x)) = V ec(Cov(F (x))

In view of this problem, it is instructive to deal with the problem of defining
the quantum effective action of a field when it interacts with a classical random
current field with all the cumulants of the current field being specified.
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Spontaneous symmetry breaking and approximate symmetry breaking in
quantum gravity.

5 Propagator computation of a nonlinear field
theory using differential equations for time or-
dered vacuum expectations

The equations of motion for the gravitational field in a synchronous frame are
expressible in the form

ϕk,00(x)−
∑
m,r,s

C1(k,m, r, s, ϕ(x))ϕm,rs(x)−
∑

C2(k,m, r, ϕ(x))ϕm,r0(x)

−Fk(ϕm(x), ϕm,0(x), ϕm,r(x)) = 0

with the CCR

[ϕk(t, r), ϕm,0(t, r
′)] = iGkm(ϕ(t, r))δ3(r − r′),

[ϕk(t, r), ϕm(t, r′)] = 0, [ϕk(t, r), ϕm,s(t, r
′)] = 0

Define the gravitational propagator

∆km(x, y) =< T (ϕk(x)ϕm(y)) >= θ(x0−y0) < ϕk(x)ϕm(y) > +θ(y0−x0) < ϕm(y)ϕk(x) >

Then, we get

∂0∆km(x, y) = δ(x0 − y0) < [ϕk(x), ϕm(y)] <

+ < T (ϕk,0(x)ϕm(y)) >=< T (ϕk,0(x)ϕm(y)) >

Thus,
∂2
0∆km(x, y) = δ(x0 − y0) < [ϕk,0(x), ϕm(y)] >

+ < T (ϕk,00(x))ϕm(y)) >

= −iδ4(x− y) < Gkm(ϕ(x)) > + < T (ϕk,00(x)ϕm(y)) >

Now we can express ϕk,00(x) appearing within the time ordered vacuum ex-
pected value on the rhs in terms of ϕm,r0(x) and ϕm(x), ϕm,r(x), ϕm,rs(x), ϕm,0(x).
The troublesome factor here is ϕm,r0(x) because it involves a time derivative
which causes it not to commute with the other factors. However, this factor oc-
curs linearly in the field equations and hence its contribution can be evaluated
easily as follows:

∂0∂r∆km(x, y) = ∂0 < T (ϕk,r(x)ϕm(y)) >= δ(x0 − y0) < [ϕk,r(x), ϕm(y)] >

+ < T (ϕk,r0(x)ϕm(y)) >=< T (ϕk,r0(x)ϕm(y)) >
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The other troublesome factor here is the one involving ϕm,0(x) which appears
nonlinearly in the term Fk(ϕm(x), ϕm,0(x), ϕm,r(x)). Taking all this into con-
sideration, we obtain the following pde for the graviton propagator as

∂2
0∆km(x, y) =

= −iδ4(x− y) < Gkm(ϕ(x)) > +∑
n,r,s

< T (C1(k, n, r, s, ϕ(x))ϕn,rs(x)ϕm(y)) > +
∑
n,r

< T (C2(k, n, r, ϕ(x))ϕm,r0(x)ϕm(y)) >

+ < T (Fk(ϕn(x), ϕn,0(x), ϕn,r(x))ϕm(y)) >

We can now make the following approximations: [a] Replace ϕ(x) by < ϕ(x) >
in C1, C2, (b) Consider only terms linear in ϕn, ϕn,0, ϕn,r in Fk. This approxima-
tion corresponds to neglecting higher that quadratic products in the propagator.
However, to determine corrections to graviton mass, we must compute cubic and
higher order correction terms also in the propagator. These contributions are in
practice evaluated using perturbation theory to express the solution for ϕ(x) to
the field equations in terms of the linearized solution which is expressed in terms
of Bosonic creation and annihilation operators satisfying the CCR. However in
the quadratic approximation to the propagagtor, we have

< T (C1(k, n, r, s, ϕ(x))ϕm,rs(x)ϕm(y)) >≈

C1(k, n, r, s,< ϕ(x) >)∂r∂s∆nm(x, y)

< T (C2(k, n, r, ϕ(x))ϕn,r0(x)ϕm(y)) >

≈ C2(k, n, r,< ϕ(x) >)∂r∂0∆nm(x, y)

and finally, linearizing Fk to express it as

Fk(ϕn(x), ϕn,0(x), ϕn,r(x))

≈ Fks(< ϕn(x) >, ∂r < ϕn(x) >)ϕs,0(x)

we get
< T (Fk(ϕn(x), ϕn,0(x), ϕn,r(x))ϕm(y)) >

≈ Fks(< ϕn(x) >, ∂r < ϕn(x) >)∂0∆sm(x, y)

Thus, we obtain finally the linearized approximate propagator equation as

∂2
0∆km(x, y)−

∑
nrs

C1(k, n, r, s,< ϕ(x) >)∂r∂s∆nm(x, y)

−
∑
nr

C2(k, n, r,< ϕ(x) >)∂r∂0∆nm(x, y)

−
∑
s

Fks(< ϕn(x) >, ∂r < ϕn(x) >)∂0∆sm(x, y)
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= −iδ4(x− y) < Gkm(ϕ(x)) >

This approximate graviton propagator equation can be used to evaluate approx-
imately the contribution of nonlinear self interaction of the graviton field to the
generation of graviton mass.
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