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BLAS is a fundamental building block of advanced linear algebra libraries and many modern

scientific computing applications. GPU is known for its strong arithmetic computing capability, and

highly suited for BLAS operations. However, porting code to GPUs often requires significant effort

especially for large complex codes or legacy codes, even for BLAS heavy applications. While various

tools exist to automatically offload BLAS to GPU, they are often impractical due to the high costs

associated with mandatory data transfers. The advent of unified memory architectures in recent GPU

designs, such as the NVIDIA Grace-Hopper, allows cache-coherent memory access across all types of

memory for both CPU and GPU, potentially eliminating the bottlenecks faced in conventional

architectures. This breakthrough paves the way for innovative application developments and porting

strategies. In this paper, building on my preliminary work[1] demonstrating the possibility of

performant automatic *gemm offload, I extend the framework to all level-3 BLAS operations, and

present SCILIB-Accel[2], a novel tool for automatic BLAS offload . SCILIB-Accel leverages the cache-

coherent NVLink C2C interconnect in Grace-Hopper and introduces a Device First-Use data

movement policy. This policy, inspired by the OpenMP First-Touch approach in multi-socket CPU

programming, minimizes CPU-GPU data transfers for typical scientific computing codes.

Additionally, utilizing the dynamic binary instrumentation technique, the tool intercepts BLAS

symbols directly from a CPU binary, requiring no code modifications or recompilation. SCILIB-Accel

has been evaluated using multiple quantum physics codes on up to a few hundred GPU nodes,

yielding promising speedups. Notably, for the LSMS method in the MuST suite, a 3x speedup was
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achieved on Grace-Hopper compared to Grace-Grace. SCILIB-Accel is the first tool to deliver

practical, high-performance automatic BLAS offload for scientific applications.

1. Introduction

The Basic Linear Algebra Subprograms (BLAS) serves as a building block for many scientific

computing applications and forms the foundation for advanced linear algebra libraries such as

LAPACK and ScaLAPACK. These libraries are extensively used in mathematical software like

Mathematica and MATLAB, as well as in data science packages such as NumPy, and in computational

chemistry and physics applications. Notably, BLAS is heavily utilized in quantum chemistry and

quantum physics codes, as linear algebra is the natural language of quantum mechanics.

Modern general-purpose Graphics Processing Units (GPUs) are known for their exceptional

arithmetic compute power. Their raw FP32 and FP64 compute capabilities significantly outpace those

of CPUs, making GPUs an ideal platform for running BLAS-intensive applications. While all major GPU

manufacturers provide highly optimized BLAS libraries, such as cuBLAS for NVIDIA GPUs and rocBLAS

for AMD GPUs, these GPU libraries have slightly different interfaces and are not drop-in replacements

for CPU BLAS libraries. More critically, using these GPU BLAS libraries, like any other GPU porting

task, requires developers to manually manage data movement for optimal performance.

Consequently, porting large codes, legacy codes and codes with complex workflow to GPU isn’t trivial,

sometimes daunting and requires significant investment of manpower. Furthermore, supercomputers

are becoming increasingly GPU-centric due to the rapid advancement of GPUs and the surge of AI

applications, this trend generates a pressing needs to port more scientific codes to GPU, but many

researchers lack the expertise for GPU porting and face challenges securing funding for pure code-

porting efforts. Given BLAS’ central role and its extensive GPU support, there have been numerous

attempts to automate GPU usage, as outlined in Section 2.2. However, limitations inherent to

conventional GPU architectures often necessitate frequent data transfers between main memory and

GPU memory, resulting in overheads that are unacceptable for practical use.

In recent years, GPU manufacturers have introduced highly innovative architectures featuring unified

memory connected via cache-coherent interconnects, such as AMD’s MI250X and MI300X GPUs with

Infinity Fabric and NVIDIA’s Grace-Hopper with NVLink-C2C. Additionally, designs like AMD’s

MI300A Accelerated Processing Unit (APU) integrate CPUs and GPUs with a single type of memory.
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These innovations eliminate the constraints of conventional architectures and inspire new

programming approaches that may make automatic offloading feasible.

In my previous work[1][2], I presented a proof-of-concept framework for doing symbol interception

and replacement with Dynamic Binary Instrumentation (DBI), and preliminary tests of automatically

offloading the *gemm (general matrix multiplication) routines, proving that performat automatic

BLAS offload is achievable. In this paper, I further extend the implementation to all level-3 BLAS calls,

and focus on discussing a novel data management strategy named Device First-use policy. Inspired by

the OpenMP First-Touch memory management approach in multi-socket CPU or NUMA

programming, the Device First-Use policy is designed for CPU-GPU systems where data is moved to

GPU memory (or general device memory) upon its first use by a GPU kernel. This approach is both

simple and effective, minimizing data transfers in practical BLAS use cases. Tests across several

BLAS-intensive scientific applications on up to hundreds of GPU nodes demonstrate significant

speedups. Although all tests are done on the NVIDIA Grace-Hopper system, the methodology is

generic for any CPU-GPU system with cache coherency.

The remainder of this paper is organized as follows: Section 2 reviews the NVIDIA Grace-Hopper

unified memory architectures and related BLAS offloading work. Section 3 details the implementation

of SCILIB-Accel. In Section 4, I apply the tool to two BLAS-intensive scientific computing codes on up

to 200 Grace-Hopper nodes and discuss the results along with performance issues of the NVIDIA

Grace-Hopper system. Finally, Section 5 concludes the paper.

2. Background and Related Work

2.1. Coherent memory in NVIDIA Grace-Hopper

In conventional architectures, GPU and host memory exist in separate memory space, preventing

direct access between CPU and GPU memory. To partially address this limitation, CUDA 6 introduced

managed memory, allowing a single memory address space that is accessible from any GPU or CPU.

This system operates through implicit page migration triggered by page faults managed by the CUDA

runtime. The NVIDIA Grace-Hopper superchip takes a step further by featuring closely integrated CPU

and GPU units along with LPDDR5x and HBM3e memory subsystems, connected by the high-

bandwidth and cache-coherent NVLink Chip-2-Chip (C2C) interconnect[3]. While Grace-Hopper

maintains compatibility with traditional GPU memory management where GPU memory is exclusively
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managed by the GPU’s memory management unit, it more importantly implements a single system-

managed page table where both CPU and GPU can cache-coherently access all memory subsystems

without page movement. In this unified memory architecture, the two types of memories appear as

two NUMA domains, similar to memories in a two-socket CPU system.

Although the two memory subsystems can be cache coherently accessed by both CPU and GPU, the

bandwidth varies significantly across different access patterns, as shown in Table 1. When the CPU

accesses its local LPDDR5X memory, it achieves a descent bandwidth of over 400 GB/s. The GPU

accessing its local HBM3 memory delivers even more impressive performance, reaching 3.6 TB/s. The

NVLink-C2C interconnect provides 450 GB/s of bandwidth in each direction, which adequately

supports the full bandwidth of LPDDR5X, allowing GPU access to remote LPDDR5X memory at 400+

GB/s. However, CPU access to HBM3 memory is substantially slower, achieving only approximately

140 GB/s. These bandwidth disparities indicate that data locality remains crucial for Grace-Hopper

systems. Developers must carefully optimize data movement patterns to maximize performance,

similar to conventional GPU architectures, rather than relying solely on coherent unified memory

access for production workloads.

  LPDDR5 HBM3

CPU

Copy 446.46 145.56

Mul 438.58 145.50

Add 435.28 141.94

Triad 418.22 141.94

GPU

Copy 406.69 3364.55

Scale 406.65 3364.55

Add 610.34 3668.78

Triad 610.43 3679.50

Table 1. STREAM Bandwidth (GB/s) on GH200 (120GB LPDDR5X model)
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2.2. Previous automatic BLAS offload attempts

Numerous attempts have been made to automatically accelerate CPU BLAS calls since the early

adoption of GPUs in HPC. Cray LIBSCI_ACC[4][5], available for over a decade, was deployed on the

Titan supercomputer for NVIDIA Tesla K20 GPU, supporting selected BLAS, LAPACK, and ScaLAPACK

routines for offload when the library module is loaded. Similarly, IBM ESSL[6]  is capable of

automatically offload selected BLAS, LAPACK, and FFTW calls but requires the accelerated version of

math library, libesslsmpcuda, linked. NVIDIA’s NVBLAS[7]  serves as a drop-in replacement for CPU

BLAS calls, allowing users to configure host BLAS libraries and selected routines for offload. By 

 NVBLAS, dynamically linked CPU BLAS is replaced without relinking. Unfortunately,

the NVBLAS tool is heavily over-engineered, it uses the cuBLASXT as the backend instead of cuBLAS

and has an acceptable overhead[1].

These tools make offload decisions at runtime based on workload sizes and they handle data

movement automatically. Overall, these libraries are tailored for conventional GPU architectures,

where frequent data movement is unavoidable, therefore they suffer poor performance for small and

medium sized matrix math in real workloads.

3. Performant Automatic BLAS Offload

A basic workflow of automatic BLAS offload tool is illustrated in Figure 1 where an dgemm call in the

caller code is intercepted and redirected to a BLAS wrapper that manages data movement and makes

the GPU BLAS call. Conceptually this workflow contains two tasks: 1) intercept BLAS symbols and

replace them with a BLAS wrapper where GPU BLAS is called, 2) manage data movement between CPU

and GPU resident memories. In the following content, I will discuss how these tasks are implemented

in SCILIB-Accel, most critially how the data movement can be optimized using a novel data movement

strategy inspired by the OpenMP First-Touch data placement policy.

LD_P RELOAD
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Figure 1. Workflow of Automatic BLAS Offload. The BLAS in the CPU binary is intercepted

and replaced with a BLAS wrapper where GPU BLAS call is maded and data is moved

between CPU resident memory and GPU resident memory.

3.1. Symbol Interception

Symbol interception is achieved via a trampoline-based Dynamic Binary Instrumentation (DBI)

approach: a small piece of assembly code is inserted into the original function, enabling it to jump to a

trampoline function. This trampoline function preserves the overwritten bytes by the extra jump

instruction and executes customized code before returning to the original program.

For automatic BLAS offload, I intercept BLAS calls where the trampoline function (BLAS wrapper

function) maintains the same signature as the original function. This results in minimal overhead, as

the register data for function arguments remain undisturbed. This mechanism finds extensive use in

profilers, and here I use the PEAK[8]  lightweight profiler that was developed by me and my

collaborator as a DBI framework, ensuring portability across various architectures including but not

limited to x86 and ARM. Inside the DBI framework, the FRIDA-GUM[9]  binary instrumentation

backbend is chosen for simplicity and performance.

The SCILIB-Accel automatic offload library can be attached to the user application by preloading (

) the SCILIB-Accel shared library file. The SCILIB-Accel initialization function is

placed into the .init_array section of Linux ELF to search and replace BLAS symbols along with other

initialization tasks such as setting GPU memory pool, initializing cuBLAS, etc. Similarly, the SCILIB-

LD_P RELOAD
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Accel finalization function is inserted into the .fini_array section of the ELF to collect statistics and

handle clean up tasks.

Note that the DBI approach applies to both dynamically and statically linked BLAS, while other tools

like LIBSCI_ACC[4][5]  and NVBLAS[7], which works by resolving runtime library dependency, only

work for dynamically linked BLAS.

As DBI is widely used in profilers, the DBI symbol interception in SCILIB-Accel can cause conflicts

when doing profiling. To be profiler friendly, an implementation of SCILIB-Accel using dlsym() to

dynamically resolve shared library symbols to intercept BLAS calls is also provided. This approach

works by defining the wrapper function to be the same name as the function to be intercepted, and by

prepending the SCILIB-Accel library in  , the symbols in the wrappers get used and

the original function symbol can be obtained by looking up the next available symbol using dlsym().

This dlsym-based version has no issue being used with profilers, but can only intercept dynamically

linked BLAS.

3.2. Data Movement Strategies

Table 2. OpenMP First-Touch vs Device First-Use

Managing data movement is often the most critical part of GPU porting as data transfer speed has

been a limiting factor. It is even more so for developing an automatic offload tool, as the tool deals

with pure CPU code that is totally untuned for GPU. Here, I discuss three data movement strategies

that utilize different features of Grace-Hopper so that this helps us better understand the challenge

and opportunities for doing automatic offload on unified memory architecture.

LD_P RELOAD
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3.2.1. Strategy 1, Mem-Copy

This is the most intuitive strategy and used by other tools. The pseudocode is listed below. Upon

interception of a BLAS call and redirection to a BLAS wrapper, the input matrices are copied from host

memory to GPU memory, and then resultant matrix is copied back after cuBLAS execution. This

strategy works on all GPUs including the conventional PCIe-based cards without needing unified

memory capability, but at the cost of frequent data movement. Such strategy can be effective for codes

handling very large matrices where the compute time far exceeds the data transfer cost, but won’t be

useful for most codes that only runs small to medium sized matrices in practical use. This policy is

studied here mostly for helping us understand the limitation of the conventional automatic BLAS

offload approach in all other existing tools.

Listing 1. Pseudocode: Mem-Copy data movement policy

3.2.2. Strategy 2, counter-based migration

Since the CPU resident memory (LPDDR5X) and the GPU resident memory (HBM3) are physically

unified with cache-coherent NVLink C2C, CPU matrix pointers can be passed directly to cuBLAS calls.

One can also use numactl to force all memory to be resident on the HBM, but given the poor bandwidth

of CPU access HBM, a performance penalty is expect. A new feature in Grace-Hopper designed to
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better serve the unified memory is the access counter on Hopper GPU, namely the CUDA runtime will

automatically move memory pages from LPDDR5X to HBM3 based on remote memory accesses

detected by the counter. This counter-based migration mechanism can serve automatic offload when

CPU resident matrices are passed to a GPU kernel. A pseudocode example is shown below.

Listitng 2. Pseudocode: counter-based data migration policy

3.2.3. Strategy 3, Device First-Use policy

One alternative way to look at the Grace-Hopper superchip is that is operates as a heterogeneous

dual-socket system, with one socket being a CPU and the other a GPU. Its NUMA configuration also

mirrors that of a dual-socket CPU system, where CPU-resident memory is assigned to NUMA 0 and

GPU-resident memory to NUMA 1. The data management challenge here in CPU-GPU superchip is a

reminiscence of the OpenMP First-Touch data placement policy used in CPU-CPU NUMA

programming. While malloc calls can theoretically be intercepted to allocate memory directly for GPU

access, these calls originate from the CPU binary, making it impractical to identify which memory

regions will later be used by the GPU. As a result, implementing a GPU-first-touch policy is not

feasible. To address this, I propose a GPU First-Use policy, where data is moved to the GPU the first

time it is accessed by a CUDA kernel. More generally, this concept can be extended to a Device First-

Use policy, applicable to any accelerator device with cache-coherent memory access. Table 2

summarizes the features of Device First-Use and highlights its similarities to OpenMP First-Touch.

Since the BLAS wrapper used to replace the CPU BLAS calls only knows the memory addresses of the

matrices, implementing Device First-Use policy requires moving data from the CPU resident memory

to device (GPU) resident memory without reallocation or disrupting to the virtual memory address

used by the CPU binary. This can be achieved by relocating the physical memory page and updating the

page table to remap the virtual memory to new physical memory locations. Figure 2 illustrates the
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working of virtual memory in modern operation systems and how a physical memory page can be

dynamically reassigned.

Remarkably, this complex process of physical page movement and remapping can be easily carried out

using the Linux move_page() system call. This system call allows specifying a group of pages to move

along along with their target NUMA destination (NUMA 1 for GPU on Grace-Hopper), simplifying the

implementation significantly. Pseudocode of this implementation is presented below.

Figure 2. Virtual Memory and Physical Page Migration. Diagram showing translation between

virtual and physical memory. The physical memory page could be moved without impacting

virtual memory page or the viewpoint of memory from the executing binary side.
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Listing 3. Pseudocode: Device First-Use policy

How does this policy improve data reusability for the GPU? To answer this, let’s examine how BLAS is

typically used in scientific applications. In most cases, scientific problems are not solved with a single

BLAS call. Instead, they involve a sequence of BLAS operations, such as    followed by 

, and so on. In these workflows, intermediate matrices (e.g., C) are frequently reused in

subsequent operations. Data reuse is also particularly common in block matrix multiplications, where

each block of a matrix is multiplied by multiple blocks from another matrix. Additionally, many

scientific codes adopts an iterative approach, such as the self-consistent field process to solve partial

differential equations in quantum chemistry or physics, where the same matrices and memory

pointers are re-used across all the iterations. All the data only need to be moved to the GPU once and

can be re-used by subsequent iterations. All these common use cases conceptually justify the

appropriateness of the Device First-Use policy.

3.3. Usage Instructions

The automatic BLAS offload wrappers are compiled and linked together as a shared library file (.so).

All users need to do is to load the SCILIB-Accel library by   the .so file as shown below,

and then run their CPU binary as normal.

DBI version for general use: 

DLSYM-based version when using with profilers: 

C = A × B

E = D × C

LD_P RELOAD

export LD_PRELOAD=/path/scilib-dbi.so

run your CPU binary
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Several optional environmental variables can be set to tweak offload behaviors, including:

1. data management strategies with Device First-Use as default

2. minimum matrix size that will allow a BLAS call to be offloaded, if matrices are small, then the

BLAS call will stay on CPU. The default threshold is   where   is the average matrix

size, the definition of    is routine dependent. For general matrix multiplication routines

C=AxB,    where dimensions of matrices A, B and C are  ,    and 

. The default threshold is a safe lower-bound based on preliminary dgemm testings on

Grace-Hopper and can certainly be further fine-tuned for different kernels or precisions.

3. debug output levels.

4. Performance Testings and Discussion

In this section, I perform application tests using production HPC codes. Since quantum

chemistry/physics are known to heavily rely on BLAS operations, as linear algebra is the natural

language of quantum mechanics, two codes, MuST and PARSEC, from this scientific domain are

chosen. These codes are part of the Characteristic Science Application (CSA)[10]  efforts funded the

National Scientific Foundation (NSF) as representative workloads for the Leadership Class Computing

Facility.

Different offload strategies are extensively tested to showcase the performance of Device First-Use

data movement policy, and understand limitations of data movement approaches. In all test cases, the

offload threshold is    (see Section 3.3 for details), which is proven to be appropriate for

these applications on Grace-Hopper.

It is important to emphasize that all performance comparisons presented here are based on an equal

number of nodes: Grace-Grace nodes (two CPUs with 144 cores) and Grace-Hopper nodes (one CPU

and one GPU). This approach ensures both simplicity and fairness in the analysis. Power and cost are

also key factors in performance studies. The power consumption of a Grace-Hopper node is

approximately twice that of a Grace-Grace node under full load. Additionally, for each node-hour, the

Service Unit (SU) charged to users for Grace-Hopper nodes is three times higher than that for Grace-

Grace nodes. This charge rate reflects the costs associated with acquiring, maintaining, and

supporting these different types of nodes.

export LD_PRELOAD=/path/scilib-dl.so

run your CPU binary

> 500Navg Navg

Navg

= (MNKNavg )1/3 M × K K × N

M × N

> 500Navg
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4.1. Test Environment

All tests were conducted on the Vista[11]  supercomputer at the Texas Advanced Computing Center

(TACC). The system comprises 560 Grace-Hopper (GH200) nodes and 180 Grace-Grace nodes,

configured as follows:

Grace-Hopper Nodes: Each node is equipped with one 72-core Grace CPU (120 GB LPDDR5X on-

board memory) and one H100 GPU (96 GB HBM3 memory). The Grace-Hopper superchip is power-

capped at 900W.

Grace-Grace Nodes: Each node features two 72-core Grace CPUs with a combined Thermal Design

Power (TDP) of 500W. Each Grace chip has 120GB LPDDR5X memory integrated as well.

Notably, the 120 GB Grace CPU model has approximately 30% higher memory bandwidth compared to

the 480 GB Grace model tested previously[1].

The nodes are connected with Infiniband interconnects in non-blocking fat-tree topology:

Grace-Hopper nodes utilize full HDR (400 Gbps) configuration.

Grace-Grace nodes are connected via split HDR (200 Gbps).

The software environment and configuration include:

GPU Driver: Version 560.35.03

CUDA: Version 12.6

Infiniband Firmware: Version 28.41.1000

NVHPC Compiler Suite: Version 24.9 (latest at the time of testing)

MPI: HPCX (based on OpenMPI 4.1.7a1) provided with the NVHPC compiler suite

OS: Rocky Linux 9.3

Linux Kernel: Version 5.14.0-362.24.1.el9_3.aarch64+64k

For application testing, all CPU binaries were linked to the NVIDIA Performance Library (NVPL), which

provides optimized BLAS, LAPACK, and ScaLAPACK routines. The SCILIB-Accel auto-offload tool

utilized cuBLAS for GPU-accelerated operations. Both NVPL and cuBLAS were from the NVHPC 24.9

compiler suite.
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4.2. Application Test 1: MuST

Figure 3. MuST: Strong Scaling Test for CPU Run and Automatic GPU Offload Run. Energy

calculation of the 5600-atom CoCrFeMnNi alloy system is tested on on various number of

Grace-Grace nodes (2 Grace CPUs per node) and Grace-Hopper nodes (1 CPU and 1 GPU per

node). Speedup of automatic BLAS offload on GPU nodes is up to 3x comparing to the same

number of CPU nodes, breaking even with the cost ratio of node-hour charged for the

Vista[11] system at TACC.

MuST (Multiple Scattering Theory)[12][13]  is a package designed to perform electronic structure

calculations, it solves the Kohn-Sham equation by solving the Green’s function. The LSMS calculation

method is designed for large systems with linear scalability to the system size. This method is won the

2009 Gordon Bell prize[14]. The code has a heavy dependency on BLAS operations, mostly zgemm and

ztrsm, which often exceed 80% of the runtime on CPU. A major portion of the BLAS calls are from the

LAPACK routines zgetrs and zgetrf. Most matrices are squared or near-square shaped. MuST natively

supports GPU offload through a CUDA implementation and offloads the matrix inverse onto a GPU by

calling cuSOLVER.
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The test workload calculates the energy of a CoCrFeMnNi supercell alloy using the LSMS method. Total

number of atoms in the supercell is 5600 and the concentration of each element is identical. The

number of energy grid is 32. The calculation is limited to 3 self-consistent field (SCF) steps in order to

reduce benchmark cost.

MuST is thoroughly tested at large scale on CPU, and on GPU through both the automatic offload and

the native CUDA port. Table 3 summarizes the performance comparison of different run strategies on

50 Grace-Grace CPU nodes or 50 Grace-Hopper nodes. As mentioned before, the code strongly relies

on BLAS operations. In this particular test workload, the two major BLAS routines zgemm and ztrsm

consumes about 2080s out of the total 2318s runtime. Using the native CUDA port from the developers,

about 1.4x speedup is achieved comparing to the CPU-only execution. Surprisingly, all auto offload

strategies are faster than the native CUDA code, illustrating the complexity and challenge of CUDA

programming, the developers will need spend substantial more amount porting efforts to polish their

CUDA code. With the most basic data management method that copies (cudaMemcpy) matrices

to/from GPU for every cuBLAS call, the total runtime is reduced to 1098s, but 292s are spent in just

moving the data around. This reaffirms that optimizing data movement is still critical on Grace-

Hopper even with the fast NVLink-C2C interconnect. The counter-based migration approach works

okay, as the total runtime is better than doing frequent cudaMemcpy. Note that the page migration

time is included in the BLAS call time as the counter-based does the data movement automatically

behind the scene with GPU kernel. The novel Device First-Use policy is substantially better than other

approaches, since the total runtime is reduced to 824s, about 2.8x faster than the CPU run, and the

total data movement time is reduced to just 4.8s. More analysis shows that under Device First-Use

policy, each matrix that gets migrated to the GPU resident memory gets reused 780 times by

subsequent BLAS calls. Such high level of data reusage is the key factor of the good performance that is

achieved here. Also note that the BLAS (zgemm and ztrsm) time in Device First-Use is much longer

than the corresponding time in Mem-Copy policy. This is due to a performance issue of CUDA kernel

accessing GPU memory allocated by system malloc, more details are discussed in Section 4.4.3. If this

performance issue can be resolved by NVIDIA, the performance of automatic offload can be further

improved.
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Hardware Setup
Total runtime

(s)

zgemm+ztrsm

(s)

Data movement

(s)

CPU: Grace-Grace CPU binary linked to NVPL 2318.4 2079.2 0

GPU: Grace-

Hopper

native CUDA port 1685 N/A N/A

auto offload: Mem-Copy 1098 439.8 291.7

auto offload: counter-based

migration
858 616.0 included in BLAS

auto offload: Device First-Use 824 580.0 4.8†

Table 3. MuST: Performance on GPU vs CPU using 50 Nodes

† Matrices migrated to GPU resident memory are reused 780 times.

 

Large scale strong scaling tests were also performed for this code. Table 4 shows the runtime of CPU

run, GPU run with native CUDA code, and automatic offload using Device First-Use policy. Scaling

range goes from 25 nodes to 200 nodes. Throughout the tests, the automatic offload approach is

consistently 2x faster than the native CUDA code, and up to 3x faster than the CPU run, breaking even

with the extra node-hour charge rate for GPU, so users running on GPU not only get faster time-to-

solution but also more efficiency in terms of energy consumption and cost. The strong scaling data is

visualized in Figure 3, both the CPU run and automatic offload GPU run have excellent scability,

reaching very close to linear scaling at this wide test range.
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Node

Count

Total runtime (s)

Best GPU/CPU

speedup
CPU (Grace-

Grace)

GPU: Native CUDA

port

GPU, auto offload: Device First-

Use

25 4598.1 3223.3 1550.9 3.0x

50 2318.4 1685.2 823.8 2.8x

75 1842.6 1244.7 623.1 3.0x

100 1192.2 903.9 446.8 2.7x

150 947.0 673.6 357.5 2.6x

200 N/A † 493.9 253.3 N/A †

Table 4. MuST: Strong Scaling Performance on CPU vs GPU

† Not enough CPU nodes available.

4.3. Application Test 2: PARSEC

PARSEC (Pseudopotential Algorithm for Real-Space Electronic Calculations)[15][16]  is a package

designed to perform Density Functional Theory (DFT) calculations of solids and molecules. It solves

the Kohn–Sham equations directly in real space, avoiding the use of explicit basis sets. Our benchmark

case calculates energy of a Silicon nanocrystal  , boundary sphere radius is set to 50 bohr,

grid spacing is 0.9 bohr, the calculation is limited to two self-consistent field steps to reduce the

benchmark cost, but the performance characteristics of a fully converged calculation are identical.

Historically, PARSEC has been a CPU-only code, relying heavily on ScaLAPACK. In typical use cases,

dgemm calls from ScaLAPACK can account for over 50% of the runtime. With the help of SCILIB-Accel

automatic offload, PARSEC runs on GPU for the first time with good performance. Tests were

conducted to evaluate all offload strategies alongside a CPU-only baseline. All tests were performed on

a single node: Grace-Grace for CPU runs and Grace-Hopper for GPU runs. The results are summarized

in Table 5.

Si1947H604
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Hardware Setup
Total runtime

(s)

dgemm

(s)

Data movement

(s)

CPU: Grace-Grace CPU binary linked to NVPL 415.1 270.1 0

GPU: Grace-

Hopper

auto offload: Mem-Copy 425.7 12.4 220.7

auto offload: counter-based

migration
470.0 234.0 included in BLAS

auto offload: Device First-Use 220.3 29.1 1.3†

Table 5. PARSEC: Performance on GPU vs CPU on single node

† Matrices migrated to GPU resident memory are reused 570 times.

 

In these tests, the Mem-Copy data policy resulted in runtimes slower than dual-CPU execution. The

cudaMemcpy operations consumed 220 seconds, accounting for more than 50% of the total runtime

— a significantly higher proportion than the one observed in the MuST test case. This is due to the fact

that most matrices used in PARSEC are long skinny matrices rather than squared shape ones. For

example, a common dgemm input in PARSEC is transA=’T’, transB=’N’, M=32, N=2400, K=93536, this

extreme skinny shapes make the total byte size of the matrices much bigger than if square matrices

are used in a calculation with equivalent computational workload. This outcome again demonstrates

that the conventional data movement strategy for automatic offload is impractical even on Grace-

Hoper where NVLink-C2C transfer rate is 450 GB/s per direction, not to mention the PCIe based cards

where PCIe Gen5 x16 can only do 64 GB/s. The counter-based data migration strategy performs even

worse due to incompetent migration algorithm, see complete discussions of NVIDIA’s migration

issues later in Section 4.4.1.

Finally, the Device First-Use policy is able to efficiently manage the data movement, enabling

significant performance gains. The total runtime is nearly 2x faster than the CPU run, with the dgemm

component achieving nearly 10x speedup compared to the CPU run. The data transfer overhead is

minimal, totaling just 1.3 seconds. The speedup is able to offset the extra cost from power hungry GPU.
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Again, data reuse is counted and for every matrix that is migrated to the GPU resident memory, it is

reused on average 570 times by subsequent dgemm calls.

4.4. Performance Issues with Grace-Hopper Relevant to Auto Offload

In this part of the paper, I discuss a few performance issues observed in the above application test,

these issues reflect the immaturity of the software or hardware design in the current Grace-Hopper

system, and could be fixed in the future to further improve performance and usability of automatic

offload.

4.4.1. Counter-based page migration

The Hopper GPU has an access counter that monitors remote memory access, and migrates memory

pages from CPU resident memory to GPU resident memory. Due to the lack of access counter on the

Grace CPU, data on GPU will not be migrated back to CPU. The details of the migration criteria are

unknown.

Since the data migrated to GPU will not be migrated back, automatic offload with counter-based

migration should work very similar to manually implemented Device First-Use policy, but we have

already seen the slow performance of the counter-based migration in application tests. Here I present

a few simple dgemm test cases with different matrix sizes, and provide a deeper understanding of the

issues with the counter-based migration. In the following test, matrices A(M,K), B(K,N) and C(M,N)

are allocated by malloc and initialized on CPU resident memory, then multiplication    is

performed at least 5 times by passing these matrices to cublasDgemm, so that the access-counter

should allow the matrices to be migrated to GPU resident memory. The NUMA locations of the

matrices are reported after each cublasDgemm call, and runtime for each call is reported. From the

NUMA location, we can infer whether the data is on the CPU resident memory (NUMA 0) or GPU

resident memory (NUMA 1). Four sets of inputs with different matrix sizes and shapes are tested, all of

which use FP64 precision.

When M=N=K=1000 are used, the sizes of A, B and C are all 8.0MB. All of them are successfully

migrated to the GPU resident memory upon the first cublasDgemm call.

When the matrix dimensions become M=N=K=5000, the sizes of all the matrices are 200.0MB, and the

migration becomes unstable and inconsistent from run-to-run. The tests were run many times. In

most cases, only matrices A and B are migrated to GPU in the first cublasDgemm call, while C stays on

C = A × B
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the CPU no matter how many more cublasDgemm call iterations are added. Occasionally, matrices A

and B stays on the CPU side in the first cycle, and only get migrated to GPU after the second call. In all

runs, matrix C is never migrated to GPU.

If the square matrix dimension is increased to M=N=K=20000, matrix size becomes 3200.0MB each,

only matrix A is migrated to GPU, while B and C are always on the CPU memory no matter how many

more cublasDgemm cycles are added.

The case gets strange for non-square matrix dimensions. When M=32, N=2400 and K=93536, a matrix

size commonly used in the PARSEC workload, the matrix size becomes 24.0MB for A, 1795.9MB for B,

and 0.6MB for C. Throughout my test, only matrix A gets migrated to GPU, while B and C are always on

the CPU. This is very counter-intuitive as one would expect the bigger matrix B should at least be

moved, as it generates the largest volume of remote memory accesses, but NVIDIA’s counter-based

migration algorithm fails to move it.

From these tests, we can see that NVIDIA’s algorithm tends to migrate smaller data to GPU. The

reason could be that the algorithm only makes the decision based on a single CUDA kernel call, i.e.

moving the big data is costly comparing to that single CUDA kernel runtime, so it decides not to

migrate disregarding the fact that the big data gets accessed by the GPU many more times later on.

The current counter-based migration is thus unpredictable and inconsistent, and NVIDIA should

provide a simple way to disable it by users instead of requiring to unload a kernel model by root.

4.4.2. Impact of page sizes on counter-based migration

The Grace-Hopper platform, similar to all other ARM-based platforms, supports two base page sizes

4KB and 64KB. Most of the NVIDIA’s internal tests are done on 64KB page size which is also the

recommended page size. At TACC, both page sizes are setup for testings, and performance issues with

the 64KB page size are revealed by comparing the test results.

Here I again run simple dgemm tests to understand the performance and issues. Notice that the

aforementioned counter-based page migration mechanism does not work with the 4KB page size, so

one can measure the performance of GPU kernel running on LPDDR5X, while this cannot be done

when page size is 64KB as matrices are partially migrated to GPU as explained in Section 4.4.1.

The test results are summarized in Table 6. It can be seen that CPU accessing HBM3 memory is

substantially slower under 64KB page than 4KB page for both problem sizes. There is a substantial

qeios.com doi.org/10.32388/PBN15B.2 20

https://www.qeios.com/
https://doi.org/10.32388/PBN15B.2


difference even for CPU accessing LPDDR5 for the second workload, runtime with 64KB page is

15.8ms, much slower than the 10.9ms under 4KB page.

Page Size Memory Type

CPU (72C) GPU

(dgemm) (cublasDgemm)

Workload: M=2000, N=2000, K=2000; 96MB total

4KB

LPDDR5X 5.1 ms 9.0 ms

HBM3 5.3 ms 0.37 ms

64KB

LPDDR5X 5.1 ms N/A

HBM3 10.0 ms 0.39 ms

Workload: M=32, N=2400, K=93536; 1820MB total

4KB

LPDDR5X 10.9 ms 18.1 ms

HBM3 15.5 ms 0.95 ms

64KB
LPDDR5X 15.8 ms N/A

HBM3 23.2 ms 0.94 ms

Table 6. DGEMM Runtime with Unified Memory

 Part of the data gets migrated to HBM3 and can’t do full LPDDR5X run.

4.4.3. Sensitivity of page alignment for GPU accessing system allocated HBM

As seen above in application tests, the BLAS runtime under Device First-Use policy is noticeably

slower than the BLAS running on the cudaMalloc memory created in the Mem-Copy policy. Further

investigation shows that the CUDA kernel is slow when running on system malloc allocated HBM,

unless the matrices are aligned to the page. Table 7 shows the difference with page size being 64 KB.

All matrices are allocated by malloc, and pinned to HBM by using numactl -m 1 ./exe. When the

matrices are aligned to page size, cublasDgemm speed can be up to nearly 50% faster than if data is

†

†

†
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not aligned. The impact is more significant in memory bandwidth bound kernels. The aligned

performance is identical to that of the same CUDA kernel executing on cudaMalloc memory.

Application tests reveal that BLAS runtime performance under the Device First-Use policy is

noticeably slower compared to BLAS operating on cudaMalloc memory used in the Mem-Copy policy.

Further investigation indicates that CUDA kernel performance is suboptimal when operating on

system-allocated HBM3 via malloc unless the matrices are aligned to the page. Table 7 highlights the

performance differences. The tests use 64KB page size. All matrices are allocated using malloc and

pinned to HBM3 with the command numactl -m 1 ./exe. When matrices are page-aligned, the

performance of cublasDgemm improves by nearly 50% compared to cases where the data is not

aligned. This improvement is particularly pronounced for memory bandwidth-bound kernels. In the

page-aligned case, the performance on HBM3 allocated by malloc matches that of the same CUDA

kernel executing on cudaMalloc memory. The reason of such behavior is unknown, and it partially

defeats the advantage of unified memory architecture.

problem size unaligned aligned

M=2000, N=2000, K=2000 0.39 ms 0.29 ms

M=32, N=2400, K=93536 0.94 ms 0.64 ms

Table 7. Impact of Memory Alignment on cublasDgemm Performance

 Tests were performed on 64KB page size, all memory allocations are by malloc.

5. Conclusion and Future Work

In this paper, a previous proof-of-concept BLAS auto-offload prototype tool is further optimized and

extended to all level-3 BLAS operations. To overcome the data transfer bottleneck between CPU and

GPU, an OpenMP first-touch type of data management strategy, namely GPU first-use policy, is

proposed and discussed in details. The new policy minimizes the data transfer between CPU and GPU

in practical BLAS-heavy scientific computing codes, such as the quantum chemistry and quantum

physics applications. Performance testings for several such codes show production level GPU

performance. As all the performance evaluations were carried out on the NVIDIA Grace-Hopper

†

†
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architecture, limitations and advantages of the memory subsystem in Grace-Hopper are outlined. The

proposed GPU first-use data management policy is applicable not limited to the architecture tested

here, but can be universally applied for any CPU-GPU architecture that allows cache-coherent access

of the GPU memory from CPU. This tool enables domain scientists to rapidly adopt modern GPUs in

complex or legacy, BLAS-heavy codes to speedup scientific discoveries, and can also be used to quickly

assess the potential benefits of GPU acceleration before a formal effort of porting. Work is in progress

is to support auto BLAS offload on AMD GPUs. Additionally, FFTW auto-offload is under exploration.
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