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Stability and Synchronization of
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Imagine a group of oscillators, each endowed with their own rhythm or frequency, be it the ticking of

a biological clock, the swing of a pendulum, or the glowing of �re�ies. While these individual

oscillators may seem independent of one another at �rst glance, the true magic lies in their ability to

in�uence and synchronize with one another, like a group of �re�ies glowing in unison.

The Kuramoto model was motivated by this phenomenon of collective synchronization, when a

group of a large number of oscillators spontaneously lock to a common frequency, despite vast

di�erences in their individual frequencies (A.T. Winfree 1967,[1]). Inspired by Kuramoto’s

groundbreaking work in the 1970s, this model captures the essence of how interconnected systems,

ranging from biological networks to power grids, can achieve a state of synchronization.

This work aims to study the stability and synchronization of Kuramoto oscillators, starting o� with

an introduction to Kuramoto Oscillators and it’s broader applications. We then at a graph theoretic

formulation for the same and establish various criterion for the stability, synchronization of

Kuramoto Oscillators. Finally, we broadly analyze and experiment with various physical systems that

tend to behave like Kuramoto oscillators followed by further simulations.

(Note: this work was done while at IIT Madras)

Corresponding author: Abhiram Gorle, abhiramg@stanford.edu

1. Introduction

The Kuramoto model was proposed to study huge populations of coupled limit-cycle oscillators whose

natural frequencies are known a priori. Tha background work for Kuramoto model was done by

Winfree (1967), where he proposed that ’each oscillator was coupled to the collective rhythm

generated by the whole population’, analogous to a mean-�eld approximation in Physics (where we
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model certain random variables in terms of the mean of their variation). So, Winfree’s proposed model

for a system of   oscillators was as follows: 

where,    is the coupling strength and    is a measure of the communication capacity between

di�erent channels and   is the in�uence of other channels on the   channel.

But this model was not widely accepted by the scienti�c community because it lacked certain

symmetries like that of translational invariance when both phases are slightly perturbed, the model

does not remain invariant. The classical Kuramoto model proposed in 1975 is as follows:

where   are the phases and   are the limit cycle frequencies of the oscillators. Kuramoto studied a

further simpli�cation of this model. He used a sine function to couple the oscillators, this simpli�ed

the analysis of the model as will be shown below: 

When we have a high  , even if the system is initially incoherent it will �rst gain partial coherence

and then become fully synchronized. But how high does of a coupling constant do we need? For a given

coupling constant, how can we quantify the degree of synchronization in our system.

1.1. Order parameter

An interesting measure of synchronization in a Kuramoto model is the order parameter. The order

parameter is the centroid of all oscillators represented as points on the unit circle in  . The

magnitude    of the order parameter is a synchronization measure (or a measure of phase

cohesiveness): 

if the oscillators are phase-synchronized, then   = 1;

if the oscillators are spaced equally on the unit circle, then   = 0; and
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for      [0, 1] the associated con�guration of oscillators have a level of phase cohesiveness; this

extent of cohesiveness is higher for a higher value of 

Expressing our original equation in terms of the order parameter, we get: 

If we assume our critical coupling constant for synchronization to occur to be  , then the above plot

gives us an idea of how order parameter evolves with time.

Figure 1. Evolution of 

2. Stability — A primer on Stability of Kuramoto Oscillators

2.1. Mathematical Setup

Before getting into the stability analysis, it is essential for us to �rst set up the problem. I will �rst give

a graph theoretic formulation of our model.

The incidence matrix   of an oriented graph   with   vertices and   edges is the   matrix such

that:   if the edge   is incoming to vertex   if edge   is outcoming from vertex  , and 0

otherwise. The symmetric    matrix de�ned as:    is called the Laplacian of    and is

independent of the choice of orientation  . It has several characteristics:

 is always positive semide�nite with a zero eigenvalue;

the algebraic multiplicity of its zero eigenvalue is equal to the number of connected components in

the graph;
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the  -dimensional eigenvector associated with the zero eigenvalue is the vector of ones,  .

the �rst non-zero eigenvalue   gives a measure of algebraic connectivity of the graph.

If we associate a positive number    to each edge and we form the diagonal matrix 

, then the matrix    is a weighted Laplacian which ful�lls the

above properties.

Now, our dynamics equation becomes: 

The order parameter is de�ned as follows: 

We also de�ne the generalized inverse, denoted by  , is equal to  , where    is the 

  diagonal matrix of the eigenvalues of the unweighted Laplacian. We therefore have the

following expression 

Noting that  , we have 

2.2. Synchronization of Identical Coupled Oscillators

Result 1: Consider the coupled oscillator model as de�ned earlier. If    for some distinct 

, then the oscillators cannot achieve phase synchronization.

Proof: We prove the lemma by contradiction. Assume that all oscillators are in phase synchrony 

  for    and  . Then equating the dynamics,  , implies that 

.

Without loss of generality, let’s now take the above dynamics equation with all angular frequencies of

the system set to zero. (rotation of axes would help us achieve this) 

Result 2: If we take the unperturbed Kuramoto model de�ned over an arbitrary connected graph with

incidence matrix    for any value of the coupling  , all trajectories will converge to the set of
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equilibrium solutions. In particular the synchronized state is locally asymptotically stable. Moreover,

the rate of approach to the synchronized state is no worse than  , where    is the

�rst non-zero eigenvalue or the algebraic connectivity of the graph.

Proof 1: Consider the function  , where   is as de�ned above. Taking the

derivative along trajectories wrt time and using the fact that   leads to 

Therefore, the positive function   is a non-increasing function along the trajectories of the

system. By using LaSalle’s invariance principle we conclude that    is a Lyapunov function for the

system, and that all trajectories converge to the set where   is zero, i.e., the �xed point solutions.

Proof 2: We could use a di�erent Lyapunov function similar to the approach above, infact a small

angle approximation of the above Lyapunov function and consider the quadratic Lyapunov function

candidate  , where    is the Laplacian matrix of a

complete graph. Note that  , therefore, taking derivatives wrt time we get: 

We can also show that locally, the convergence is exponential with the rate determined by the smallest

non-zero eigenvalue of the weighted Laplacian: 

using   which proves the above result.

2.3. Existence and uniqueness of stable �xed points

The �xed point equation can be written as 

Using Brouwer’s �xed point theorem (that states a continuous function that maps a non-empty

compact, convex set    into itself has at least one �xed-point), we can develop conditions which

guarantee the existence (but not uniqueness) of the �xed point. If a �xed-point exists in any compact

subset of  , it is stable, since this will ensure that   is between   and  . We therefore

have to ensure that 
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We are hence imposing bounds with respect to the 2-norm. So, we have: 

Hence, a su�cient condition for synchronization of all oscillators can be determined in terms of a

lower bound for   : where we used the fact that  , and   is the algebraic

connectivity of the (weighted) graph. A lower bound on the minimum value of    occurs for the

minimum value of the weight which is  . As a result, 

2.4. Bounds for existence of a unique �xed point:

Consider the Kuramoto model for non-identical coupled oscillators with di�erent natural frequencies 

. For  , there exist at least one �xed-point for    or  .

Moreover, for     there is only one stable �xed-point (modulo a vector in the span of 

 ), and the order parameter is strictly increasing.

3. Synchronization — A primer on Synchronization of Kuramoto

Oscillatoras

3.1. Notions of Synchronization

(Clari�cation:    denotes perpendicular to  ) There are various notions of synchronization,

described as follows:

1. Frequency synchrony: A solution    is frequency synchronized if     

 and     and  .

2. Phase synchrony: A solution   is phase synchronized if       and     and 

. Before moving to the next notion of synchronization, let us look at a few mathematical

preliminaries.
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The    subset    is the set of    such that there exists an arc of

length   in   containing all angles  . The set   is the interior of  .

The cohesive subset   is

3. Phase cohesiveness: A solution   is phase cohesive with respect to   if one of the

following conditions holds     :

; or

, for the graph  .

4. Asymptotic Synchronization: This happens in cases where one of the above criterion is

asymptotically achieved. For example, a solution    achieves phase synchronization

if  .

3.2. Results based on above notions

Res. 1 (Synchronization frequency). Consider the coupled oscillator model as de�ned originally with

frequencies    de�ned over a connected weighted undirected graph. If a solution achieves
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Proof: This fact is obtained by summing all equations 

for  .
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the equilibrium set   (the rotation set for an equilibrium point obtained during rotation by a

certain angle) is locally exponentially stable;

3. ((frequency synchronization:) if a solution    is phase cohesive in the sense that 

, for all  , then there exists a phase cohesive equilibrium 

 and   achieves exponential frequency synchronization converging to  .

Proof: Given  , we de�ne the undirected graph    with the same nodes and edges as 

 and with edge weights  . Next, we compute 

Therefore, the Jacobian is equal to minus the Laplacian matrix of the graph  . And, if 

 for all  , then   for all  , so that   has strictly

non-negative weights so �rst part of 2. can be proved.

For the next part, we use the property that   is negative semide�nite with the nullspace   arising

from the rotational symmetry. All other eigenvectors are orthogonal to    and have negative

eigenvalues. Let’s take a coordinate transformation matrix    with orthonormal rows

orthogonal to  , 

and we note that   has negative eigenvalues. So in our original coordinate system, the zero

eigenspace   is exponentially stable, and hence the set   is locally exponentially stable.
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us look at the following theorem from Bullo’s book on Networks and Systems[2].
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3.3. Onset of Synchronization: (for non-identical oscillators)

Here, we will �rst calculate the necessary critical gain   for the onset of synchronization. As we are

interested in studying the phase di�erence dynamics, we have 

If the oscillators are to at least asymptotically synchronize i.e.   as    ,

the R.H.S of the above equation must go to zero.

So, we derive a necessary (but not su�cient) condition for the onset of synchronization.

Synchronization can only occur if our original Kuramoto equation has at least one �xed point, and

hence we have: 
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Thus, the critical coupling gain desired for onset of synchronization is: 

If the natural frequencies belong to a compact (closed, bounded) set, this becomes: 

So,   is simply the critical gain below which synchronization cannot occur. Now, the value for critical

coupling given in[3] is: 

Comparing the denominators of the above bounds, we can say that    equals to    is not

possible in our case, because in[3]  the authors assumed that at  , 
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as 

where     [0,1). Now, we have 

Now, let us state a result.

Result 1. Consider the system dynamics as described by (3). Let all initial phase di�erences at   be

contained in the compact set    . Then there exists a

coupling gain   such that  .
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Result 2. Consider the system dynamics as described by (3). Let all initial phase di�erences at   be

contained in the compact set  . If the coupling gain    is chosen such that  , then all the

oscillators asymptotically synchronize i.e.   0 as 

Proof: Consider the positive function, 

where   Taking the derivative of   along the trajectories of (3) wrt time, we get: 

where  . On rearranging terms and simplifying we have that, 

Due to Result 1, we have that  . This gives us that    and hence 

. Hence all angular frequencies are bounded. Consider the set  .

The set   is characterized by all trajectories such that  . Let   be the largest invariant set

contained in  . Using Lasalle’s Invariance Principle, all trajectories starting in   converge to   as 

. Hence, the oscillators synchronize asymptotically.

3.5. Exponential Synchronization

Here, we will make use of the graph theoretic view of Kuramoto Oscillators from earlier. Building up

from the previous theorem, 

The derivative of this function along trajectories of (1) can be written as 

t = 0

D K K = Kinv

− →θ̇ i θ̇ j t → ∞ ∀i, j = 1, … ,N

S =
1
2
θ̇
T
θ̇

= [ …θ̇ θ̇1 θ̇N ]T V

Ṡ = + +. . . +θ̇1 θ̈1 θ̇2 θ̈2 θ̇n θ̈n

= (cos( − )( − )+. . . + cos( − )( − ))
θ̇1

β
θ1 θ2 θ̇2 θ̇1 θn θ1 θ̇n θ̇1

+ (cos( − )( − )+. . . + cos( − )( − ))
θ̇2

β
θ1 θ2 θ̇1 θ̇2 θn θ2 θ̇n θ̇2

⋮

+ (cos( − )( − )+. . . + cos( − )( − ))
θ̇n

β
θ2 θn θ̇2 θ̇n θ1 θn θ̇1 θ̇n

β = N

K

= − cos( − )( −Ṡ
K

N
∑
j=1

N

∑
i=1

N

θi θj θ̇ i θ̇ j)2

( − ) ∈ D, ∀i, jθi θj cos( − ) > 0∀i, jθi θj

≤ 0Ṡ E = { − , ∈ R∀i, j ∣ = 0}θi θj θ̇ i Ṡ

E = , ∀i, jθ̇ i θ̇ j M

E D M

t → ∞

S =
1
2
θ̇
T
θ̇

Ṡ = − Bdiag(cos(ϕ))K

N
θ̇
T

BT θ̇

= − (G)K

N
θ̇
T
LK θ̇
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The matrix   is the weighted Laplacian and is described as follows 

Clearly, if all phase di�erences  , then the weighted Laplacian matrix    is positive-

semide�nite, and hence the previous result follows. In the next result we extend this result by

developing an exponential bound on the synchronization rate of the oscillators.

Result 3. Consider the dynamics of the system as described by (1). If the phase di�erences given by 

 at   and the coupling gain is selected such that  , then the oscillators synchronize

exponentially at a rate no worse that  . Proof: It follows from the synchronization frequency

result that: 

We can write from the result in[3] that 

where 1 is the    dimensional vector of ones associated with the zero eigenvalue of the weighted

Laplacian      satis�es  . Substituting (6) in the positive

de�nite function   as de�ned above, we have 

(the proof is obtained using the fact that   is invariant, and 

as 1 is an eigenvector associated with the zero eigenvalue of our weighted Laplacian matrix.) We can

easily see from above that   exponentially converges to origin, now as this   will fall to zero, we can

hence say from (6) that the oscillators start moving with mean frequency of the group.

As   is the smallest non-zero eigenvalue of the weighted Laplacian  , we have from

(7) that 

(G) = Bdiag(cos(ϕ)) ∈ N × NLK BT

(GLW )ii

(GLW )ij

= cos( − ) ∀i = 1, … ,N∑
k=1,k≠i

N

θk θi

= − cos( − ) ∀i, j = 1, … ,N i ≠ jθi θj

ϕ ∈ D (G)LK

ϕ ∈ D t = 0 K = Kinv

K sin(2ϵ)− −−−−−−
√

Ω = =
∑N

i=1 θ̇ i

N

∑N
i=1 ωi

N

= Ω1 + δθ̇ (6)

N

(G), δ ∈LW Rn δ = 0(as = NΩ)∑N
i=1 ∑N

i=1 θ̇ i

S

= − (G)δ
d( δ)δT

dt

K

N
δTLW (7)

Ω

(G) = 01
TLW

δ δ

( (G))λ2 LK ( (G))λ2 LK
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as the    and for an all-to-all connected topology 

. Thus the exponential convergence rate for synchronization is no worse that 

.

4. Applications and Simulations

4.1. Kuramoto in a Power Network

I will be considering an AC power network here from Dor�er’s paper.

Figure 2. The power network

The transmission network is described by an admittance matrix    that is symmetric and

sparse with line impedances    for each branch  . The network admittance matrix is

sparse matrix with nonzero o�-diagonal entries   for each branch  ; the diagonal

elements   assure zero row-sums.

The static model is described by the following two concepts. Firstly, according to Kirchho�’s current

law, the current injection at node   is balanced by the current �ows from adjacent nodes: 

d( δ)δT

dt
≤ − ( (G))δK

N
δTλ2 LW

≤ − (Bdiag(cos(ϕ)) )δK

N
δTλ2 BT

≤ − sin(2ϵ) (B )δK

N
δT λ2 BT

≤ −K sin(2ϵ) δδT

min{cos(ϕ)} : ∀ϕ ∈ D = cos( − 2ϵ) = sin(2ϵ)π

2

(B ) = Nλ2 BT

K sin(2ϵ)− −−−−−−
√

Y ∈ Cn×n

=Zij Zji {i, j} ∈ E

= −1/Yij Zij {i, j} ∈ E

= −Yii ∑j=1,j≠i Yij

i

= ( − ) = .Ii ∑
j=1

n 1
Zij

Vi Vj ∑
j=1

n

YijVj
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Here,   and   are the phasor representations of the nodal current injections and nodal voltages, so

that, for example,    corresponds to the signal    cos  . The complex power

injection   then satis�es the power balance equation 

Next, for a lossless network: 

where   denotes the maximum power transfer over the transmission line  , and 

  is the active power injection into the network at node   which is positive for generators

and negative for loads.

Now, let’s describe a dynamical model for this network. Our assumption here is that every node is

described by a �rst-order integrator with the following intuition: node   speeds up (i.e.,   increases)

when the power balance at node    is positive, and slows down (i.e.,    decreases) when the power

balance at node   is negative. This intuition leads to a Kuramoto-like equation as follows: 

A small simulation (plot) can be found here. Code here.

4.2. Coupled Oscillator Network:

We start by studying a system of   dynamic particles constrained to rotate around a unit-radius circle

and no collisions occur. (Figure 3)

Ii Vi

= | |Vi Vi e
iθi | |Vi ( t + )ω0 θi

= ⋅Si Vi Ī i

= ⋅ = | || |Si Vi ∑
j=1

n

Ȳ ijV̄ j ∑
j=1

n

Ȳ ij Vi Vj e
i( − )θi θj

= , i ∈ {1, … ,n}Pi 
active power injection

∑
j=1

n

⋅ sin( − )aij θi θj
  

active power flow from i to j

= | || || |aij Vi Vj Yij {i, j}

= Re( )Pi Si i

i θi

i θi

i

= − sin( − )θ̇ i Pi ∑
j=1

n

aij θi θj

n
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Figure 3. Springs on a ring

We assume that pairs of interacting particles   and   are coupled through elastic springs with sti�ness 

; we set   if the particles are not interconnected. The elastic energy stored by the spring

between particles at angles   and   is 

so that the elastic torque on particle   is 

From Newton’s second law, we have 

Assuming these springs are point masses, with high damping coe�cients  , we get 

i j

> 0kij = 0kij

θi θj

( , )Uij θi θj = = ( + )
kij

2
(distance)2 kij

2
(cos − cos )θi θj

2 (sin − sin )θi θj
2

= (1 − cos( ) cos( ) − sin( ) sin( )) = (1 − cos( − ))kij θi θj θi θj kij θi θj

i

( , ) = − ( , ) = − sin( − )Ti θi θj
∂

∂θi
Uij θi θj kij θi θj

+ = − sin( − ),mi θ̈ i di θ̇ i τi ∑
j=1

n

kij θi θj

d

= − sin( − ), i ∈ {1, … ,n}θ̇ i ωi ∑
j=1

n

aij θi θj
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with natural rotation frequencies   and with coupling strengths  .

4.3. Vehicle Coordination: Kuramoto-Vicsek Model

Another interesting example is the phenomenon of �ocking and vehicle coordination. Let’s assume

that all particles have unit speed. The particle kinematics are then given by 

for  . If no control is applied, then particle    travels in a straight line with orientation 

, and if   is a nonzero constant, then particle   traverses a circle with radius 

The interaction among the particles is modeled by a graph    determined by

communication and sensing patterns. Say the controllers use only relative phase information between

neighboring particles (as we are mimicking biological phenomenon like the synchronization of

�re�ies here). Now, let’s see how we can adopt potential gradient control strategies (i.e., a negative

gradient �ow) to coordinate the relative heading angles  . Let’s consider a quadratic elastic

spring potential to the circle   de�ned by 

We can drive the a�ne gradient control law as follows: 

to synchronize the heading angles of the particles for    (gradient descent), respectively, to

disperse the heading angles for   (gradient ascent). The controlled phase dynamics above mimic

animal �ocking behavior. Inspired by these biological phenomena, an area of research is to study

these systems in the context of tracking/�ocking in swarms of autonomous vehicles.

Simulations:

The animated result for �ocking behaviour is here. Codes can be found at link.

4.4. Order Parameter simulations:

In the example, I am considering a network of 100 oscillators with all-to-all connectivity. Here are the

plots of order parameters for coupling constants of 0.5, 1, 2 and 3: (code here)

= /dωi τi = /daij kij

= ,ṙ i eiθi

= (r, θ),θ̇ i ui

i ∈ {1, … ,n} i

(0)θi = ∈ Rui ωi i 1/ | |ωi

G = ({1, … ,n},E,A)

(t) − (t)θi θj

: × → RUij S1 S1

( , ) = (1 − cos( − )) ,Uij θi θj aij θi θj

= − K ( − ) = − K sin( − ), i ∈ {1, … ,n}.θ̇ i ω0
∂

∂θi
∑

{i,j}⊂E

Uij θi θj ω0 ∑
j=1

n

aij θi θj

K > 0

K < 0

qeios.com doi.org/10.32388/PFVLDF 17

https://drive.google.com/file/d/1Ros44xBbO9RnbIo4VM_cFpRiPN4tbKXs/view?usp=share_link
https://drive.google.com/drive/folders/1ciU4amRuTM-FbIOTiQp_7dBEEszjaCIW
https://colab.research.google.com/drive/1bScRfHjnOWStS8FB6BsZ4Ljc3Nq73vjJ?usp=share_link
https://www.qeios.com/
https://doi.org/10.32388/PFVLDF


Figure 4. Evolution of   with timer(t)
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Figure 5. Phase Coherence plot

So, we can see that at 0.5, the order parameter is quite low and also hits zero at some point. For

coupling constant of 1, the order parameter is still low but has some increasing behaviour after it hits

zero. For 2, there is partial synchronization and the order parameter increases in later time intervals.

For the case with   as 3, we have an order parameter that gets close to 1 after some time intervals so

we have full synchronization.

In this case, the time series plot illustrates the same where all the trajectories eventually seem to

converge.

K
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Figure 6. Evolution of trajectories

Now, looking plotting all the oscillators in the complex plane at di�erent times, we get:

Figure 7. How the oscillators come together with time

4.5. A Slider tool

Another interactive slider tool that I have simulated in MATLAB looks as shown: (inspiration from

Cleve Moler’s work[4])
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Figure 8. To plug and play

The code for the interactive slider can be found here.

4.6. Manim Animations

In this section, I �rst started out with simulating the dynamics for a given set of initial phases, and

adjacency matrix. Here, n = 5.

4.6.1. Case A: When A is zero

We can clearly see in �gure that there is no coupling. We expect the system angles to increase linearly

with time at an angular velocity  .wi

qeios.com doi.org/10.32388/PFVLDF 21

https://drive.google.com/file/d/1G_mHuI7GYkHlJBvvHyrN3gvxsfKoFlZb/view?usp=share_link
https://www.qeios.com/
https://doi.org/10.32388/PFVLDF


Figure 9. For   = 

4.6.2. Case B: for a Cycle Graph

In this case, there is a cyclic coupling structure. Our   values are constant, they are all 5. Now, let us

think about the steady state behaviour of the system. Consider an equally spaced cyclic state. Here, 

. If all the oscillators were equally space around the circle, then the corresponding

all the sine terms will cancel out, and only the   term will remain. So, the stable state angular velocity

is just  .

A O5x5

w

sin( − ) = 0∑j θi θj

w

w = 5∀i
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Initially, the system is decoupled. But, in the steady state, the system becomes coupled and all the

oscillators are equal spaced around the circle, and oscillate with angular velocity 5.

Figure 10. For a cycle graph

Case C: for a Line Graph

As the �rst three oscillators have the same frequency, they get coupled, while the fourth and �fth

oscillators also get coupled. This phenomenon of coupling can be observed graphically also.
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Figure 11. For a line graph

For cases B and C, we also tried animating the dynamics using Manim. All the codes, plots/videos can

be found in this folder.

4.7. Future directions of interest

Exploring Synchronization in more complex networks, and applications to smart grids

Bifurcation analysis for a system of oscillators

Criterion for phase/frequency synchronization for all Kuramoto oscillator networks (be it identical

or non-identical)

5. Supplementary

All the codes can be found in this master folder. Here’s the link to the video presentation.

Synchronizing Fire�ies: A very interesting simulation demonstrating the synchronization of �re�ies

that I came across was this.
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6. Conclusions

To conclude, we �rst start o� with an introduction to Kuramoto Oscillators and it’s broader

applications. Then, we look at a graph theoretic formulation for the same, followed by a detailed

discussion of various criterion for stability and synchronization of Kuramoto Oscillators. After that,

we broadly analyze and experiment with three unique physical systems that tend to behave like

Kuramoto oscillators along with further ablation studies.

This work was done as a part of EE6415 Non-Linear Controls project, Spring 2023.
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