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Abstract 

The fluid dynamics, gravitational field dynamics, and electromagnetic field 
dynamics can be expressed as a unified field equation in a local inertial 
frame by 𝐷!𝑝 = ∇ℒ , where 𝑝  is the momentum vector, and ℒ  is the 
Lagrangian’s density. In a time-freezing configuration (static state), the 
stored energy density and the mass density in the instantaneous 
configuration have the relation of 𝑝 = 𝜌𝑐" . It can be positive (potential 
energy) or negative (binding energy), depending on the zero potential 
energy definition point in the field. Its sign only affects the chirality. Given 
a slight motion in a local inertial frame, the momentum vector field and 
potential energy field are combined into a single physical field — a 4-
momentum vector field. In general, for a many-particle system, the 
interactions between particles obey the weak law of action and reaction. 
The action and interaction forces can be decomposed into two 
components: one is along the jointing line to consider the linear 
momentum, and another one is perpendicular to the jointing line to 
consider the rotational motion. It is suggested that the fluid dynamics 
equations should include an extra term, a Coriolis-like force term, to 
consider the spin (or rotational) effect (because of the vorticity field). 
Electromagnetic fields have no rest frame; they have an intrinsic 4-
momentum vector relative to a rest observer. With the 4-momentum vector 
the Maxwell equations can be deduced. In a “vacuum”, each of the electric 
field and magnetic field contribute half to the total energy. It implies that 
the linear and rotational kinetic energy equals each other. The Gauss law 
thinks of an electrical dipole as a “vacuum” space; this implies that photon 
gas is composed of a mixture of electrical dipoles. Their trajectories will be 
helical or spiral, as is shown by the circular polarized Electromagnetic 
waves. 
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1. Introduction 

 
 

Classical field theories provide a foundation for understanding and 
modeling physical phenomena in many areas of physics [1-5]. In classical 
field theories, fields are mathematical functions that assign a value or 
intensity (e.g., a scalar field, vector field, or tensor field) to every point in 
space. For studying the field dynamics, these values are also a function of 
time. These field values are continuous (maybe differentiable) and defined 
to spread throughout space and time. the dynamic behavior of these 
physical phenomena is predicted by field equations, which can be used to 
describe wave-like and particle-like physical phenomena such as sound 
(based on the dynamic behavior of the pressure field) and light (based on 
the electric and magnetic field), or other continuous phenomena such as 
fluid dynamics. It describes the motion and behavior of fluids using a 
vector field for velocity and a scalar field for pressure (energy density), and 
other fluid properties [6]. 

 

2. Stored potential energy density in the Configuration of a field 

 

Fields in physics can store energy. In general, we have a scalar field of 
potential energy density that can be specified everywhere in space as a 
function of position (for the dynamics or time evolution of the field, the 
potential energy density in the field will depend on time).  

In an instantaneous configuration (a snapshot of the field), that means we 
‘freeze’ the time, and no motion occurs. In the language of the relative 
theory, there is no relative motion with respect to the observer – it is called 
the co-moving frame. 

We consider the first law of thermodynamics for a closed system [7, p.409] 
in the co-moving frame. An infinitesimal change of the internal energy of 
the system is: 

 

𝑑𝐸 = 𝑑𝑄 + 𝑑𝑊, (1) 
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where 𝑑𝑊 is work done by the surroundings (external forces) on this 
system.  

 

𝑑𝑊 = 𝑑(𝑝𝑉). (2) 
 

 
In an elastic fluid, recalling the definition of the speed of sound, it 
depends on the bulk modulus and density [8]: 
 

 
The elastic bulk modulus B can be formally defined by the equation 
 

𝐵 = −
𝑑𝑝

5𝑑𝑉𝑉 6
. (4) 

 
 
Substituting Eq. (3) into Eq. (4), we have 
 
 

−
𝑑𝑝

5𝑑𝑉𝑉 6
= 𝜌𝑐". (5) 

 
 
Recalling the mass density definition and re-arranging it, we have 
 

𝑑𝑝 = −
𝑚𝑐"

𝑉"
𝑑𝑉. (6) 

 

Integral from a reference point to the present configuration	(𝑝, 𝑉): 

 

𝑝 − 𝑝#$% = 𝑚𝑐" 9
1
𝑉
−

1
𝑉#$%

;. (7) 

 

 

𝑐" =
𝐵
𝜌
. (3) 
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We can define an infinitely dilute state as the reference point: 

 

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑝𝑜𝑖𝑛𝑡:	 D
𝑝#$% → 0
𝑉#$% → ∞. (8) 

 

Equation (7) thus becomes (volume is compressed from v=∞ to present 
configuration of V):  

 

𝑝 =
𝑚𝑐"

𝑉
= 𝜌𝑐". (9) 

 

We get the equation of the configuration energy density, p, and the mass 
density,	𝜌. 

 

If there is no other energy exchange, such as heat exchange, between the 
system and its environment, or it can be ignored, 	𝑑𝑄 = 0,  we can 
rearrange the equation  (9) and substitute into eq. (1), we have following 
expression: 

 

𝐸 = 	𝑝𝑉 = 𝑚𝑐". (10) 
 

 

It looks like the mass-energy equivalence. When they are stationary, that 
is how much net work it takes (work done by external force through a 
compression process) from the reference point to the present 
configuration. It is also the amount of net work that we will get back, if we 
disassemble the present configuration to the reference point through an 
expansion process. 

 

It contains a square of wave speed. That means the stored energy density 
in the present configuration (p and V) represents the “wave energy content” 
in the co-moving frame. When the constraints (imaginary) of this 
configuration are removed, the disturbance of the field will propagate by a 
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wave through the whole field. Energy will be transported by the wave from 
one position to another in a wave speed of c.   

 

This stored energy density in the field is called potential energy. In general, 
it is positive, but potential energy may also be negative, dependent on the 
zero energy position, the point where the potential energy is assigned to 
be zero (no any interaction between the researched particle and other 
particles in the field). We can also call the negative configuration energy 
as “binding energy”. It refers to the amount of a negative energy needed 
to disassemble the present configuration into its individual components, 
where there is no force interaction between individual components.  

 
In a static state (time is “freezing”), this is a conservative energy density; 
the force density in the field can be expressed as a negative gradient of 
the potential energy density. 

 

ℱI⃗ = −∇𝑝 = −𝑐"∇𝜌, (11) 
 

and 

 

J−∇ × ℱ
I⃗ = ∇ × (∇𝑝) = 0,

−∇ ∙ ℱI⃗ = ∇"𝑝 = 𝑐"∇"𝜌.
 (12) 

 

 

The above equations hold only for a static state — no motion in the field, 
if there is a relative motion between particles, there exists an extra velocity 
(momentum) vector field.  Eq. (11) and (12) do not hold anymore. Thus, 
modifications are needed to reflect the motion effect. 
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3. Dynamic equation of a field using 4 potential 

 

For simplicity, we consider here an isolated field — there exists only one 
field in the space, thus there are no interaction terms between different 
fields. 

 

Let it slightly move, the configuration will change. The potential energy 
product a force to drive the particle to move (exactly to say, the negative 
gradient of the potential energy is a force). In this case, besides the scalar 
field of the potential energy, we specify another momentum vector field in 
space as a function of position and time.   

 

For a system containing a group of particles, in the general case, the 
internal interaction forces in the field between two particles are equal and 
opposite, but do not necessarily act along the line joining each other [9,10, 
11]. 

 

As shown in Fig. 1 (a). We can decompose the internal interaction forces 
vector as a component of ℱI⃗ ∥, along the jointing line (the central force), and 
a component of  ℱI⃗', perpendicular to the jointing line (the tangent force). 
In a stationary state, gravitational and electric forces (negative gradient of 
the potential energy) are central forces (no relative motion occurs). The 
tangent forces between the particles may be due to their relative motions 
and it will affect the angular momentum of the system. That is the angular 
momentum of a system about the center of mass. In the local manifold, 
the velocity is an element of tangent space, while the angular velocity is in 
the normal direction of the tangent space, as shown in Fig. 1(b). 
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(a) 
 

 
(b) 

 
Fig.1(a). The weak law of action and reaction between particles; Fig.1(b), 
the velocity field is in the tangent space in the local manifold, the vorticity 

field is the normal direction of the tangent space. 
 

Accordingly, in the space we have now a scalar field and a vector field 
(or rather to say, a momentum field). It can be assembled as a single 
physical entity, a 4-momentum flux density per unit volume: 

 

𝐴( = 5
𝑝
𝑐
; 	𝜌𝑣6. (13) 
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Its physical unit is P)∙+
,!Q . 

In the local manifold, we have the following force density per unit volume: 

 

ℱI⃗ = ℱI⃗ ∥ + ℱI⃗'. (14) 
 

The central force component points in the same direction as the 
displacement between the interactions of particles. As mentioned before, 
because of the extra momentum field, eq. (11) does not hold anymore, it 
can be modified as:  

 

ℱI⃗ ∥ = −∇𝑝 −
𝜕𝜌𝑣IIII⃗
𝜕𝑡

. (15) 

 

The central force components do not affect the total angular momentum 
of the system. The curl of velocity (momentum) will produce a vorticity field, 
thus, the tangent component of the interaction force density is expressed 
as: 

 

ℱI⃗' = 𝑣⃗ × (∇ × 𝜌𝑣IIII⃗ ). (16) 
 

We can define a rotational vector field density, similar to the vorticity field: 

 

𝜔II⃗ = ∇ × 𝜌𝑣IIII⃗ . (17) 
 

With these definitions, then we can get the field dynamic equation for 
every point in field space: 

 

−∇𝑝 −
𝜕𝜌𝑣IIII⃗
𝜕𝑡

+ 𝑣⃗ × 𝜔II⃗ = 0. (18) 

 

With the help of the vector identity of 
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𝑣⃗ × (∇ × 𝜌𝑣IIII⃗ ) =
1
2
∇(𝑣⃗ ∙ 𝜌𝑣IIII⃗ ) − (𝑣⃗ ∙ ∇)(𝜌𝑣IIII⃗ ), (19) 

 

equation (18) can be rewritten as: 

 

−∇𝑝 −
𝜕𝜌𝑣IIII⃗
𝜕𝑡

+
1
2
∇(𝑣⃗ ∙ 𝜌𝑣IIII⃗ ) − (𝑣⃗ ∙ ∇)(𝜌𝑣IIII⃗ ) = 0. (20) 

 

Re-arranging the terms: 

 

𝜕𝜌𝑣IIII⃗
𝜕𝑡

+ (𝑣⃗ ∙ ∇)(𝜌𝑣IIII⃗ ) = −∇𝑝 +
1
2
∇(𝑣⃗ ∙ 𝜌𝑣IIII⃗ ). (21) 

 

 

As mentioned by Goldstein et. al., [3, p. 20.], the last term of the right 
hand side arises from the curvature of the local manifold. 

 

The left hade side of the equation is the total derivate of momentum with 
respect to time.  The right hand side is the Lagrangian’s density. 

 

𝑑𝜌𝑣IIII⃗
𝑑𝑡

= ∇(𝑇 − 𝑝). (22) 

 

 

It can be written more concisely: 

 

𝐷!𝑝 = ∇ℒ. (23) 
 

The above field equation of (23) is more general; actually, no assumptions 
and restrictions have been made for the derivation of this field equation.  If 
we check it in a deeper sense, it is similar to the general motion equation 
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in classical mechanics for a system with finite degree of freedom, based 
on the D’Alembert’s principle, [3, p.20].  

 

Its physical interpretation is clear, force can be defined either in the time 
domain or in the spatial domain: if the space is “freezing”, force equals the 
derivative of momentum with respect to time; if the time is “freezing”, it will 
equal the derivative of energy with respect to spatial coordinates. Both 
definitions should be equivalent to each other. In other words, the space 
and time is treated on an equal footing. 

 

If above equations are written out explicitly, it will be very lengthy. It is 
arranged as Appendix A in this work; here we give out the final vector 
form: 
 

𝜕𝜌𝑣IIII⃗
𝜕𝑡

+ (𝑣⃗ ∙ ∇)(𝜌𝑣IIII⃗ ) = −∇𝑝 +
1
2
𝑆̿𝑣 +

1
2
𝑣 × 𝜔II⃗ . (24) 

 

The last term represents a rotation motion; it implies the trajectory of the 
particle motion in general exhibits helical motion. 

    

If the potential energy density is explicitly given out, combining the relation 
of eq. (9), we can solve the dynamic behavior of this field. In the following, 
we consider two typical classical “free” fields, without considering the 
interaction between different fields. 

 

 

4. Gravitational field: attractive force 

 

In the above derivation of the field equation, we assume the potential 
energy is positive, as indicated by eq. (9), the zero point is at infinity. 
Through compression process, we form a positive equation of state of eq. 
(9). This compression process is similar to a procedure to push electrical 
charges with equal signs together. The external force must do work to form 
the present configuration, and the stored energy in the configuration is 
positive. 
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In a gravitational field, the stored configuration energy in the field is 
negative potential energy, namely the external force must do a negative 
net work to form the present configuration. In other words, from a finite 
volume of V, the present configuration is pulled away to the infinity of V=∞, 
where the zero point is defined; the external force must do a negative net 
work. This process is similar to the process pulling electrical charges with 
the opposite sign away, as shown in Fig. 2. 

 

 
 

Fig. 2 The configuration-stored energy can be positive or negative. 
 

 

The Einstein energy-momentum tensor for a perfect fluid is [12, p.140] 

 

𝑇-. = 5𝜌/ +
𝑝/
𝑐"
6𝑈-𝑈. − 𝑝/𝑔-.. (25) 

 

 

The time–time component is the relativistic energy density.  
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The fluid in the local inertial frame are at rest, the metric tensor degrades 
to the Minkowski metric tensor for a flat space.  

 

𝑔-. = 𝜂-. = (1,−1,−1,−1). (26) 
 

 

The fluid is at rest, the 4-velocity tensor becomes to 

 

𝑈- = lim
01⃗ →4

(𝑈-) = (𝑐, 0,0,0). (27) 
 

The time-time component of the Einstein energy-momentum tensor in the 
co-moving frame is just the static energy, this component of the equation 
(25) becomes 

 

𝑇44 = −𝑝/ = 𝜌/𝑐". (28) 
 

It has a direct physical interpretation. In the co-moving frame, it is just the 
stored configuration energy at rest. In case of a perfect fluid this 
component is expressed as 

 

𝜌/ = −
𝑝/
𝑐"
. (29) 

 

The physical meaning is clear. In the gravitational field, the particles attract 
each other, just like the interaction between electrical charges with 
opposite signs, interactions between particles have only attraction forces, 
(the zero point of potential energy is still defined at x=∞). 

 

Now, let it slightly move, there exists a relative motion with respect to the 
local observer, in Language of General Relativity, Let us assume that the 
space is “slightly curved”. Then we have 4-vector: 
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𝐴( = 5
𝑝/
𝑐
; 𝑝/𝑣IIIIIII⃗ 6. (30) 

 

In the local inertial frame, the relative effect is ignored, namely we assume 
v/c<<1. 

Substituting this 4-momentum vector, combined with equation of (29), into 
Eq. (24), we can get the dynamic behavior of the gravitational field, 
observed in the local inertial frame. The sole requirement is to assume the 
gravitational field wave speed is equal to the electromagnetic wave 
propagation speed of c, or the gravitational field has its own wave speed. 

 

Comparison of eq. (9) and (29), difference is only the negative or positive 
sign between the potential energy density and mass density. The positive 
and negative sign of the potential energy density only affect the rotation 
direction; it will be shown in section 6 of this work. 

 

 

5. Electromagnetic field — no rest frame 

 

Both sections 3 and 4 have a rest frame (co-moving frame). In the co-
moving frame, adding an extra momentum field up to the potential energy 
density, we can get the dynamic equation of the field, utilizing this 4-
momentum vector. 

 

While electromagnetic fields have no rest frame, (to say, relative to Lab 
frame). A moving charged particle will produce both an electric and a 
magnetic field. This is because a charged particle always produces an 
electric field, if the particle is also moving, it will produce a magnetic field 
in addition to its electric field. The produced magnetic field is perpendicular 
to the direction of the particle's motion. 

 

Electromagnetic fields (photon gases) carry energy and transport it from 
one region of space to another at a speed of light. The total energy stored 
per unit volume [13, p.398] in a region of Electromagnetic space is 
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𝑝$, =
1
2
^𝜀4𝐸" +

1
𝜇4
𝐵"a. (31) 

 

Analog to the pressure density relationship of eq (9), we can define the 
photon gas mass density using the total energy: 

 

𝜌$, =
𝑝$,
𝑐"
. (32) 

 

 

Electromagnetic fields have no rest frame; they have an intrinsic 4-
potential: 

 

𝐴( = 5
𝑝$,
𝑐
;	𝜌$,𝑣IIIIIIIIII⃗ 6. (33) 

 

With this definition, we have electric field density per unit volume: 

 

𝐸I⃗ = −∇𝑝$, −
𝜕(𝜌$,𝑣IIIIIIIIII⃗ )

𝜕𝑡
= −∇𝑝$, −

1
𝑐"
𝜕(𝑝$,𝑣⃗)

𝜕𝑡
, (34) 

 

 

and the magnetic field density per unit volume: 

 

𝐵I⃗ = ∇ × (𝜌$,𝑣IIIIIIIIII⃗ ) =
1
𝑐"
∇ × (𝑝$,𝑣). (35) 

 

Substituting these two definitions into eq. (18), We can get the dynamic 
equation for the electromagnetic field. The role of the 𝐵I⃗  field is similar to 
the vorticity field of eq. (17); it is responsible for the rotational motion of 
photon particles. Equations (34) and (35) borrow the electrical and 
magnetic field strength symbols,  𝐸I⃗  and 𝐵I⃗ , but they are interpreted here 
as field density per unit volume. 
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Equations (33)-(35) automatically fulfills the two homogeneous Maxwell 
equations: 

 

b∇ × 𝐸I⃗ = −
𝜕𝐵I⃗
𝜕𝑡

∇ ∙ 𝐵I⃗ = 0.
; 

 

(36) 

 

With some algebra manipulations, it is easy to show that we can also get 
the Gauss’s law and the Ampère/Maxwell law with source terms for the 
non-homogeneous Maxwell equations, see D. J. Griffith [13, p.437]. With 
a similar procedure we can also get the pressure wave equation for fluid 
dynamics, see Appendix B. 

 

Here we are interested on the “vacuum” state. 

 
5.1 In vacuum, “no source term” of the charge particles 
 
 In “vacuum”, the Gauss’s law reads: 
 

∇ ∙ 𝐸I⃗ = 0 (37) 
 
Substituting eq. (34) into the eq. (37), we have 
 
 

∇ ∙ c−∇𝑝$, −
𝜕(𝜌$,𝑣IIIIIIIIII⃗ )

𝜕𝑡
d = 0. (38) 

 
 
In a local inertial frame, we have the mass conservation law (it is exactly 
the mass conservation law for the compressible fluid): 
 
 

∇ ∙ (𝜌$,𝑣IIIIIIIIII⃗ ) = −
𝜕𝜌$,
𝜕𝑡

= −
1
𝑐"
𝜕𝑝$,
𝜕𝑡

. (39) 
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This condition is also similar to the Lorenz-invariant gauge condition for 
the Maxwell’s equation in the Electromagnetic fields. 
 
 
Manipulating the eq. (38) a bit and using the definition of eq. (32) and the 
mass conservation condition of (39), we get a wave equation for 
electromagnetic wave energy: 
 
 

∇"𝑝$, −
1
𝑐"
𝜕"𝑝$,
𝜕𝑡"

= 0. (40) 

 
 
Similarly, substituting the definition (34) and (35) into the Ampère/Maxwell 
law, we have: 
 
 

e∇ ∙ (𝜌$,𝑣IIIIIIIIII⃗ ) +
1
𝑐"
𝜕𝑝$,
𝜕𝑡

f − ∇"(𝜌$,𝑣IIIIIIIIII⃗ ) +
1
𝑐"
𝜕"(𝜌$,𝑣IIIIIIIIII⃗ )
𝜕𝑡"

= 0. (41) 

 
 
In the process, we have used the following vector calculus identity: 
 
 

∇ × g∇ × (𝜌$,𝑣IIIIIIIIII⃗ )h = ∇[∇ ∙ (𝜌$,𝑣IIIIIIIIII⃗ )] − ∇"(𝜌$,𝑣IIIIIIIIII⃗ ). (42) 
 
 
and the relation: 
 

1
𝑐"
= 𝜇4𝜀4. (43) 

 
 
Again, using the energy-mass equivalence relation of (32) and the mass 
conservation law of equation (39), we get another wave equation for the 
photon particle momentum, and it propagates in a wave shape at the 
speed of light in vacuum.   
 
 
 

∇"(𝜌$,𝑣IIIIIIIIII⃗ ) −
1
𝑐"
𝜕"(𝜌$,𝑣IIIIIIIIII⃗ )
𝜕𝑡"

= 0. (44) 
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Both equation (40) and (44) show that the energy and the momentum of 
the photon gas propagates in electromagnetic field in a speed of light in 
vacuum. Physically it is clear, because of the existence of a magnetic field 
(produced by other moving charged particles), the particle will perform a 
rotational motion in addition to its linear motion. 
 

 

Observing the total electromagnetic energy density of equation (31), we 
saw that the 𝑝$	(𝐽 𝑚5⁄ ) stored in a static electric field E is 

 

𝑝$ =
1
2
𝜀4𝐸I⃗ ". (45) 

 

 

The energy density 𝑝,	(𝐽 𝑚5⁄ ) stored in a magnetic field 𝐵I⃗  is given by 

 

𝑝, =
1
2
𝐵I⃗ "

𝜇4
. (46) 

 

 

In equation (31), E and B represent the electric and magnetic field density 
of the wave at any instant in a small region of space. we can either write 
eq. (31) in terms of E field only using the relation of B=E/C and the wave 
speed relation of (43), or we can write the energy density in terms of the 
B field only, thus [7, p. 623], 

 

𝑝$, = 2𝑝$ = 2𝑝,. (47) 
 

Noticed that the energy density associated with the B field equals that 
due to the static E field, and each contributes half to the total energy. 

 

Comparison of eq. (32) and (47), we have 
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𝑝$, = 2𝑝$ = 2𝑝, = 𝜌$,𝑐". (48) 
 

Photons exist as moving particles (at least for the observer in the Lab 
frame). The Planck-Einstein relation says that the total energy of a photon 
depends on its frequency. It is directly proportional to the frequency [14, 
15]. 

 

𝐸!6! = ℏ𝜔. (49) 
 

 

where ℏ is the reduced Planck constant, and 𝜔 is the angular frequency 
of a photon wave. 

 

𝑝$ = 𝑝, =
1
2
ℏ𝜔. (50) 

 

 

Accordingly, we have the following relation: 

 

𝑝$ = 𝑝, =
1
2
𝜌$,𝑐". (51) 

 

 

It is well known that photon gas particle travels in vacuum in the speed of 
light, the right-hand side represents the linear kinetic energy of photon gas, 
and it amounts to half of the total photon gas energy. The magnetic part 
represents the rotational motion of particles, it can be deduced that the 
rotating kinetic energy equals the linear kinetic energy. Thus, it means the 
particle motion trajectory of the photon particle is a helical motion 
(rotational plus linear); both the linear and rotational kinetic energy 
contribute to half of the total energy.  

 



19 
 

In “vacuum”, Maxwell’s equation for electrostatic field states that the 
divergence of the electrical field equals zero, as expressed by eq. (37). 
However, if we are not careful, to choose a Gaussian integral surface that 
is not small enough, so that exits an electrical dipole in this small region, 
the Gaussian integral region will contain an electrical dipole, eq. (37) still 
hold for this case. Consequently, we are of the opinion that the space is a 
“vacuum”. Under this circumstance, the electrical dipole can be entangled 
together to propagate in “vacuum” space in the form of an electromagnetic 
wave. Based on the above arguments, we can deduce that a photon is a 
helically entangled electrical dipole in free space; both the linear and 
rotational kinetic energy contribute half to the total energy. 

 

6. Chirality and potential energy sign (attractive or repulsive force) 

 

6.1 The classical fluid dynamic equation (repulsive force) 

 

Eq. (24) contains a rotational term of 	7
"
𝑣⃗ × 𝜔II⃗ . Physically it represents 

half of the tangent force to account for the rotational motion: 

 
1
2
𝑣 × 𝜔II⃗ =

1
2
ℱI⃗'.	 (52) 

 

 

Substituting the mass density and potential energy density equivalence 
of eq. (9) into eq. (53), we get 

 

ℱI⃗' = 𝑣 × (∇ × 𝜌𝑣IIII⃗ ) = 𝛽 × o∇ × g𝑝𝛽hp,	 (53) 
 

where 𝛽 is the ratio of particle velocity to the wave speed: 

 

𝛽 =
𝑣
𝑐
.	 (54) 
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6.2 Gravitational field (attractive force) 

 

For perfect fluid of gravitational field, substituting the mass density and 
potential energy density relation of the eq. (29), into the Eq. (53), we 
have 

 

ℱI⃗' = 𝑣 × (∇ × 𝜌/𝑣IIIIIII⃗ ) = −𝛽 × o∇ × g𝑝/𝛽⃗hp.	 (55) 
 

In another word, the vorticity field, in general, can be expressed as: 

 

𝜔II⃗ = ∇ × (𝜌𝑣IIII⃗ ) =
1
𝑐"
∇ × 𝑝𝑣IIII⃗ =

1
𝑐
∇ × g𝑝𝛽IIIII⃗ h.	 (56) 

 

Comparison of eq. (53) and (55), It can be seen that the potential energy 
sign will determine the rotational motion directions. 

 

6.3 Electromagnetic field — observed in an inertial frame 

 

As mentioned before, the photon gases have no rest mass, they travel 
along the left and right light cone surface in Minkowski space at the speed 
of light in the vacuum, relative to a rest observer, e.g. relative to Lab frame. 
The world line is just the light cone surface, as shown in Fig.3. 
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Fig. 3 the photon travels along the left and right light cone at a speed of light in 
vacuum, observed in Lab frame. 

 

 

On the light cone, we have the following relation (the relation between 
photon momentum and photon total energy, “off mass-shell”): 

 

𝑝$," = 𝑝"𝑐".	 (57) 
 

where, 𝑝⃗ is the linear momentum of photon gas, relative to a rest observer. 
Taking square root for both side, 

 

𝑝$, = ±𝑝𝑐; 				𝑜𝑟					𝑝⃗ = ±
𝑝$,
𝑐

= ±
1
𝑐
ℏ𝜔 (58) 

 

Namely, the photon gas energy can be either positive or negative, 
depending on the momentum direction relative to the observer. 

 

ℱI⃗' = 𝑣 × 𝐵I⃗ = ±𝛽 × o∇ × g𝑝$,𝛽hp.	 (59) 
 

Comparison eq. (53), (55) and (59). It can be concluded that the potential 
energy density sign (or rather to say, the interactions between particles 
are either through attractive forces or through repulsive forces), will affect 
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the particle rotation direction in the local manifold, or to say, depends on 
the perspective views of the observer. The electromagnetic waves have 
no rest frame; they can be either positive or negative, and the positive or 
negative sign depends on the traveling direction between the photon 
gasses and the observer.  

 

7. Conclusion 

 

The configuration stored energy density and mass density have the 
relation of 𝑝 = 𝜌𝑐". This energy density and momentum vector forms a 4-
vector potential. The scalar energy field and momentum vector field are 
entangled with each other through the mass density. Based on the weak 
law of action and reaction, a unified dynamic equation of the classical field 
in the local manifold is derived. This field equation reads	𝐷!𝑝 = ∇ℒ. For the 
derivation of this field equation, no further assumptions and restrictions 
have been applied.  The configuration-stored energy density can be 
positive or negative, depending on the zero energy definition position in 
the field. Its sign will affect the rotational direction (vorticity field) of the 
particle motions. The gradient of the kinetic energy density contains all the 
possible deformations of the infinitesimal element. It can be decomposed 
into two parts: a symmetric part, which is mainly responsible for the 
expansion (contraction) and shear deformation; and an antisymmetric part, 
which is responsible for a pure rotational motion. The classical Navier-
Stokes equation models the symmetric part as viscosity stress based on 
the Stokes hypothesis, while the antisymmetric part is ignored. This 
antisymmetric part will result in a Coriolis-like force. A moving charged 
particle produces an electric field and a magnetic field. The magnetic field 
will force other charged particles to make a rotational motion. The rotating 
kinetic energy equals the linear kinetic energy, both contribute to half of 
the total energy of the electromagnetic field.  It can be deduced that the 
electromagnetic wave is a helically entangled electrical dipole. The moving 
trajectory of the photon particle will be helical or spiral and the circular 
polarized lights confirm this phenomenon. 
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Appendix A. The fluid dynamics equations 

 

The right hand side of the equation (22) contains a gradient of the kinetic 
energy; it arises from the curvature of the local manifold. 

 

If the kinetic energy is written explicitly in local manifold using Cartesian 
coordinate, it reads:  

 

𝑇 =
1
2
(𝜌𝑣IIII⃗ ∙ 𝑣⃗) =

1
2
(𝜌𝑢𝑢 + 𝜌𝑣𝑣 + 𝜌𝑤𝑤).	 (A1) 

 

Thus the gradient of the kinetic energy is: 

 

∇𝑇 = 𝐽8011111⃗
9 𝑣.	 (A2) 

 

 

where 𝐽8011111⃗
9  is the transpose of the Jacobian Matrix of momentum. 

 

𝐽:⃗
9 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜌𝑢
𝜕𝑥

𝜕𝜌𝑣
𝜕𝑥

𝜕𝜌𝑤
𝜕𝑥

𝜕𝜌𝑢
𝜕𝑦

𝜕𝜌𝑣
𝜕𝑦

𝜕𝜌𝑤
𝜕𝑦

𝜕𝜌𝑢
𝜕𝑧

𝜕𝜌𝑣
𝜕𝑧

𝜕𝜌𝑤
𝜕𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

.	 (A3) 

 

 

Any square matrix can be decomposed into its symmetric and 
antisymmetric parts. This decomposition is often referred to as the 
"symmetric part" and "skew-symmetric part". 
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𝐽8011111⃗
9 =

1
2
g𝐽:⃗
9 + 𝐽:⃗h +

1
2
g𝐽:⃗
9 − 𝐽:⃗h =

1
2
𝑆̿ +

1
2
𝐴̿.	 (A4) 

 

 

 

Symmetric part: 

 

The Symmetric part of the gradient of the kinetic energy, thus, is: 

 

1
2
𝑆̿𝑣⃗ = }

𝑠;; 𝑠;< 𝑠;=
𝑠;< 𝑠 𝑠<=
𝑠;= 𝑠<= 𝑠==

� c
𝑢
𝑣
𝑤
d.	 (A5) 

 

where 

 

𝑆̿ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝜌𝑢
𝜕𝑥

1
2
^
𝜕𝜌𝑣
𝜕𝑥

+
𝜕𝜌𝑢
𝜕𝑦

a
1
2
^
𝜕𝜌𝑤
𝜕𝑥

+
𝜕𝜌𝑢
𝜕𝑧

a

1
2
^
𝜕𝜌𝑢
𝜕𝑦

+
𝜕𝜌𝑣
𝜕𝑥

a
𝜕𝜌𝑣
𝜕𝑦

1
2
^
𝜕𝜌𝑤
𝜕𝑦

+
𝜕𝜌𝑣
𝜕𝑧

a

1
2
^
𝜕𝜌𝑢
𝜕𝑧

+
𝜕𝜌𝑤
𝜕𝑥

a
1
2
^
𝜕𝜌𝑣
𝜕𝑧

+
𝜕𝜌𝑤
𝜕𝑦

a
𝜕𝜌𝑤
𝜕𝑧 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

.	 (A6) 

 

It can be interpreted as the classical strain-rate tensor, if the density in 
the local manifold is regards as a constant value.  

 

Recalling the definition of the stress tensor in the Navier-Stokes equation 
by Stokes hypothesis, we have the flowing relation: 

 

1
2
𝑆̿𝑣⃗ = 2𝜇𝑆>? . (A7) 

 

Anti-Symmetric part: 
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Another part is the anti-symmetric term: 

 

1
2
𝐴̿𝑣⃗ =

1
2
�
0 𝜔= −𝜔<

−𝜔= 0 𝜔;
𝜔< −𝜔; 0

� c
𝑢
𝑣
𝑤
d.	 (A8) 

 

 

Where, the rotational tensor is expressed as: 

 

𝐴̿ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 0 ^

𝜕𝜌𝑣
𝜕𝑥

−
𝜕𝜌𝑢
𝜕𝑦

a −^
𝜕𝜌𝑢
𝜕𝑧

−
𝜕𝜌𝑤
𝜕𝑥

a

−^
𝜕𝜌𝑣
𝜕𝑥

−
𝜕𝜌𝑢
𝜕𝑦

a 0 ^
𝜕𝜌𝑤
𝜕𝑦

−
𝜕𝜌𝑣
𝜕𝑧

a

^
𝜕𝜌𝑢
𝜕𝑧

−
𝜕𝜌𝑤
𝜕𝑥

a −^
𝜕𝜌𝑤
𝜕𝑦

−
𝜕𝜌𝑣
𝜕𝑧

a 0
⎦
⎥
⎥
⎥
⎥
⎥
⎤

.	 (A9) 

 

 

Changing the positive sign, accordingly: 

 

𝐴̿ = − �
0 −𝜔= 𝜔<
𝜔= 0 −𝜔;
−𝜔< 𝜔; 0

� = −𝜔II⃗ .	 (A10) 

 

then, the rotational part can be expressed as: 

 

1
2
𝐴̿𝑣⃗ = −

1
2
𝜔II⃗ × 𝑣⃗ =

1
2
𝑣⃗ × 𝜔II⃗ .	 (A11) 

 

finally, we get the field equation as expressed by eq. (24): 

 

𝜕𝜌𝑣IIII⃗
𝜕𝑡

+ (𝑣 ∙ ∇)(𝜌𝑣IIII⃗ ) = −∇𝑝 +
1
2
𝑆̿𝑣⃗ +

1
2
𝑣⃗ × 𝜔II⃗ .	 (A12) 
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The symmetric part, 57
"
𝑆̿𝑣⃗6,  performs shear; reflection and expansion 

(dilation) deformation of the infinitesimal element in the field; the 
antisymmetric part, 5𝟏

𝟐
𝒗II⃗ × 𝝎III⃗ 6, performs a pure rotation of the element. 

 

The second term in the left hand side of eq. (A12) is the directional 
derivative of momentum along the velocity vector v at a given point x, 

 
(𝑣⃗ ∙ ∇)(𝜌𝑣IIII⃗ ) = ∇01⃗ (𝜌𝑣IIII⃗ ).	 (A13) 

 

It represents the instantaneous rate of change of the momentum, moving 
through a point in space of x with a velocity specified by v. Geometrically, 
it represents momentum gradient projection onto the velocity vector field 
at a given point of x. 

 

 

 
 

Fig. A1. The antisymmetric term produce a lift force, which leads the boundary 
layer to become thicker along the flow direction. 

 

The antisymmetric term, 5𝟏
𝟐
𝒗II⃗ × 𝝎III⃗ 6,  will produce an extra force, which 

leads the shear boundary layer to become thicker along the flow direction, 
as shown in Fig. A1. Assuming it is one dimensional shear flow along the 
x-direction, 𝑣⃗ = (𝑢, 0,0).   The produced vorticity field is, thus, 𝜔II⃗ =
(0,0, − 𝜕(𝜌𝑢) 𝜕𝑦⁄ ). This extra force term is then: 
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𝐹⃗ =
1
2
𝑣⃗ × 𝜔II⃗ = �

0

𝑢
𝜕(𝜌𝑢)
𝜕𝑦
0

� = �
𝐹;
𝐹<
𝐹=
�.	 (A14) 

 

It can be seen that interaction between the velocity and vorticity in the 
shear boundary layer will produce an extra lift force, 𝐹< = 𝑢 B(8D)

B<
, which 

depends on the magnitude of the velocity and the gradient of the 
momentum in the boundary layer.  

 

Appendix B. From the field equation to a pressure wave equation 

 

Rearranging the equation (18): 

 

−∇𝑝 −
𝜕𝜌𝑣IIII⃗
𝜕𝑡

= −𝑣⃗ × (∇ × 𝜌𝑣IIII⃗ ). (B1) 

 

 

Taking divergence of both side: 

 

−∇"𝑝 −
𝜕
𝜕𝑡
(∇ ∙ 𝜌𝑣⃗) = −∇ ∙ [𝑣⃗ × (∇ × 𝜌𝑣IIII⃗ )]. (B2) 

 

Mass conservation law in the local coordinate frame states: 

 

𝜕𝜌
𝜕𝑡
+ (∇ ∙ 𝜌𝑣⃗) = 0		 → 		 (∇ ∙ 𝜌𝑣) = −

𝜕𝜌
𝜕𝑡
. (B3) 

 

Substituting equation B3 into eq. B2: 

 

−∇"𝑝 +
𝜕"𝜌
𝜕𝑡"

= −∇ ∙ [𝑣⃗ × (∇ × 𝜌𝑣IIII⃗ )]. (B4) 
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Recalling the potential energy density and mass density relation of the eq. 
(9): 

 

𝑝 = 𝜌𝑐" 	→ 	𝜌 =
𝑝
𝑐"
. (B5) 

 

Substituting eq. B5 into B4, thus we get the pressure wave equation for 
compressible fluid in the local inertial frame. 

 

∇"𝑝 −
1
𝑐"
𝜕"𝑝
𝜕𝑡"

= ∇ ∙ (𝑣 × 𝜔II⃗ ). (B6) 
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