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Abstract

Machine learning has achieved remarkable success with deep learning technologies. However, these methods are

often inefficient in terms of resources; they require large datasets, many parameters and consume much computational

power. In this paper, I define a general strategy for machine learning, named strong machine learning, which aims to

create resource-effective machine learning models. Under strong machine learning fall all the approaches that learn

inductive biases during an initial phase and later apply those inductive biases to make models more effective learners.

Several strong machine learning methods already exist and some are very popular exactly due to their effectiveness.

However, strong machine learning is in its infancy and a lot more can be done. In order to further advance AI, we need

to direct our effort toward developing even better, more powerful strong machine learning methods.
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Introduction

Machine learning has made remarkable progress in the last decades. Machine learning algorithms can learn from data

and perform various tasks that otherwise require human intelligence or creativity. These factors have enabled a number of

creative applications in various domains. For example, machine learning algorithms can generate realistic images of

faces, landscapes, or artworks (e.g., Goodfellow et al., 2014). They can also produce coherent and fluent texts for

different purposes, such as summarization, translation, or storytelling (Brown et al., 2020). Moreover, they can power

autonomous driving systems that can navigate complex and dynamic environments (Grigorescu et al., 2020).

Furthermore, the algorithms based on machine learning can play board games such as chess or Go at a superhuman
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level, even surpassing the best human players (Silver et al., 2016). These are just some of the examples of the amazing

applications that machine learning has made possible.

However, machine learning algorithms also depend on data and computational power to train and run effectively. They

need large and diverse data sets that can provide them with enough examples and feedback to learn from. Unfortunately,

these techniques are approaching the limits of what is possible with the current machine learning technology (Thompson

et al., 2020; Kaplan et al., 2020; Meir et al. 2020). Improving these applications in terms of accuracy and intelligence is

increasingly challenging due to the exploding demands on data and model sizes. Machine learning models are

excessively data-hungry the biggest models having close to or even more than a trillion parameters. Both data and model

sizes have potentially reached the maximal acceptable levels.

Moreover, the current machine learning approaches may be suboptimal and thus, resource-wasteful. For each skill that a

machine learning model learns, there is possibly a much smaller model that can achieve the same or better performance.

However, our current technology for learning cannot find such smaller models. This is especially a problem if data are

insufficient. An extreme example is the algorithms for multiplying two numbers: There are highly optimal multiplication

algorithms created by humans. And there are also deep learning models that learned how to multiply solely from

examples of correct multiplications. Critically, deep learning cannot ever discover the optimal algorithms. Deep learning is

limited to highly suboptimal, resource-hungry models. In contrast, a human mind can effectively extract a multiplication

rule from a small number of examples and apply it.

One of the reasons why we need to improve machine learning technologies is that human (and animal) brains still have an

edge over machines in many domains of intelligence. Granted, machines can perform very well in some domains that

require specific skills or rules, such as chess or calculations. However, humans are still superior in other domains that

require more flexibility and creativity, such as language, art, or social interaction. Humans can also learn from just a few

examples and transfer their knowledge to new situations that they have never encountered before. Machines, on the other

hand, often need a lot of data and feedback to learn and struggle to generalize beyond their training data (Kaplan et al.,

2020). Therefore, there is a lot of potential for making machine learning technologies more human-like and more

adaptable.

In this paper, I conceptualize an approach to machine learning, which can be referred to as strong machine learning. This

approach aims to overcome the limitations of the current machine learning approaches, which depend on large amounts

of data and parameters to achieve intelligence. Instead of following this path, we can explore technologies that enable

machines to learn more effectively. Strong machine learning enables machines to use less data and resources, and to

leverage their prior knowledge and experience to learn new skills and tasks. Strong machine learning makes machines

more adaptable and creative, and more similar to human or animal learners.

Several methods for strong machine learning already exist. In the present paper, I am trying to unify them under the same

concept. What may seem as unrelated methods may have something important in common: all these methods may be

forms of strong machine learning. The goal is to put these efforts under a common vision, such that further efforts in the

same direction are facilitated. Also, these efforts should be guided by identifying elementary requirements for an activity to
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be categorized as strong machine learning.

The concept of strong machine learning is inspired by John Searle’s notion of strong artificial intelligence (strong AI).

Searle distinguished between strong AI and weak AI. He defined strong AI as machine intelligence that works in ways

similar to that human or animal intelligence. He claimed that only strong AI would have the same ability to extract the

meaning and to understand of the world as humans and animals do. He also challenged the idea that weak AI, which is

machine intelligence that can only simulate human or animal intelligence, could ever achieve strong AI. To this end, he

introduced the famous Chinese room thought experiment (Searle, 1980). One goal of strong machine learning is to

develop technologies that are more similar in intelligence to humans, and eventually reach strong AI, as Searle envisioned

it.

Weak vs. strong machine learning

The difference between weak and strong machine learning lies in how they achieve higher levels of intelligence. Suppose

we have an existing model with a certain performance, and we want to improve it. We can measure the improvement by

the number of categories classified or by the overall accuracy of the model. How do we achieve this improvement? If we

add more raw resources, such as more data or more parameters in the model, then we are using a weak machine

learning approach. On the other hand, if we use the knowledge from the previous learning and transfer it to be more

effective in the new learning, then we are using a strong machine learning approach. Therefore, strong machine learning

is simply defined in terms of the resources used: if the primary resource is not a raw ingredient (data, parameters) but a

more refined ingredient, which is previously acquired knowledge, then we are applying strong machine learning.

Starting a machine learning task, not from scratch, but with prior knowledge can be beneficial (Bozinovski & Fulgosi, 1976;

George Karimpanal & Bouffanais, 2019; Brown et al., 2020; Yuan et al, 2021). Learning can be faster and may require

less data. Also, less computational power may be needed. Moreover, models that start with prior knowledge may need

fewer parameters to learn a new task than models that start from the beginning. Weak machine learning relies on raw

resources and that strong machine learning relies on existing knowledge. The existing knowledge results in either smaller

models, or less data needed, or both. These key differences between weak and strong machine learning are listed in

Table 1.

Animals and humans are born with capabilities for strong learning. We inherit powerful learning abilities from our

ancestors, the necessary knowledge being passed on by genes. This past knowledge allows us to quickly learn various

domains such as motor skills, object manipulation, hunting, escaping predators, and so on. Humans are also effective in

learning to use language, mathematics, and so on. Clearly, our learning is a lot more effective than that of machines. For

example, the amount of language an adult human is exposed to in a lifetime is only a small fraction of the amount of

language needed to train a state-of-the-art machine learning model (the ratio is more than one to a million). We can say

that this genetic knowledge gives strength to our learning. The goal of strong machine learning is to equip machines with

similar capabilities.
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One of the sources of the strong learning capabilities of our genes is the evolution by natural selection, which has

gradually modified our genes over millions of years. Evolution by natural selection is an example of weak learning, as it

requires a lot of random trials through mutations, which are not guided by any prior knowledge or feedback. Many

generations of individuals and many mutation experiments were needed to evolve new species and eventually, to give

rise to human intelligence. This slow and inefficient form of learning can be described as weak, and was required in order

to developed our strong learning capabilities.

This brings us to the point that weak and strong machine learning have to be combined. Strong machine learning cannot

appear out of thin air. Strong machine learning requires knowledge and for this knowledge, weak machine learning is

needed. That is, the creation of strong machine learning must begin with some form of weak machine learning. The

knowledge that strong machine learning relies on has to be somehow acquired. This knowledge is acquired through raw

resources: data, parameters, intensive computation. Only after a successful acquisition of initial machine learning

knowledge, one we start relying on the existing knowledge and hence, start applying the principles of strong machine

learning.

Feature Weak Strong

Demand on training data sets large small

Demand on parameters high low

Inductive biases scarce abundant

Previous knowledge scarce abundant

Generality of learning
capabilities 

high low

Domain of application broad narrow

Table 1. Properties of weak vs. strong machine

learning.

 

The challenge for engineers or scientists is to devise techniques for strengthening machine learning, for evolving weak

machine learning into strong ones. These techniques will require two sets of methods: methods for acquiring knowledge

by weak machine learning, and methods for applying this knowledge later in a strong manner. Thus the engineers first

need to devise methods for training i.e., the learning curriculum, the training steps, and so on. Once learning is performed

successfully, then they can begin with strong machine learning. Strong machine learning is a discipline that devises

methods for teaching machine learning systems to become smarter learners.

Inductive biases: The key to strong machine learning

Strong machine learning builds on several theoretical concepts in machine learning and cybernetics. One of these is the

concept of inductive biases. Inductive bias is a term used in machine learning to describe the set of assumptions that a
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learning algorithm makes to predict the outputs of new inputs. Critically, the data alone is not enough to learn the best

output for every possible input. The learning algorithm needs to have some prior knowledge or ‘beliefs’ about the nature of

the problem and the solution. These prior knowledge or beliefs are commonly referred to as the inductive bias of the

algorithm (Michell, 1980).

Inductive bias influences the tendency of a machine learning model to learn certain types of relationships between

variables. For example, a model made of linear equations is good at learning linear relationships between variables, but

not sinusoidal ones. In contrast, a model made of sinusoidal equations has a strong tendency to learn sinusoidal patterns

in time series and has difficulties with linear relationships. One can say that these two types of models are each ‘biased’

towards learning certain types of patterns.

A well-chosen model for a certain task implies selecting a model with the right inductive biases for that task. Convolutional

neural networks are better at learning to detect objects in images than vanilla deep learning models. This is because

convolutional models have the appropriate inductive biases – namely, the convolutional layers. Similarly, transformer

models have advantageous inductive biases for learning to complete sequential data.

Models with incorrectly chosen inductive biases have difficulties. They can often also learn the tasks that they are not

suited for but they require more parameters and more data for training. For example, linear equations can approximate

sinusoids to an arbitrary precision; one just needs many linear equations and thus many parameters need to be

estimated. Similarly, a Fourier Transform – a model for approximating time series with sinusoids – can describe any

arbitrary signal, not only sinusoidal signals. Even rectangular signals can be described by sinusoidal shapes; the problem

is that the number of parameters in the model needs to be large. Often, the number of parameters used is the same as

the size of the original data. Similarly, a simple (vanilla) deep learning model can learn to detect objects from images

without applying convolution. However, such a model will necessarily require many more examples and parameters and

thus, computational time compared to a model that employs convolution. If inductive biases are chosen well, the resulting

models not only learn faster but can also be much smaller.

The current best models for computer vision or for language can also be considered as not being the most optimal

models. They are just more optimal than simple neural networks but they are not the ultimate models that may ever exist.

A lot more efficient models, with much better inductive biases, may be possible. We just do not know them. As in the

above example of multiplication, millions of times more effective models for vision and language may exist.

The fact is that human DNA requires less than one gigabyte to be stored. And this DNA drives the human brain to deal

with both vision and language unprecedently well. This indicates that there are potentially inductive biases that are a lot

more effective than anything machine learning has to offer today.

The question is then how strong machine learning can be employed to discover these more effective inductive biases.

Traditionally, inductive biases (linear, sinusoidal, convolution, attention in transformer models, etc.) are added to models

by human engineers and scientists. These inductive biases are based on human insight. Strong machine learning can be

understood as an approach in which machines are made able to learn inductive biases by themselves, without a direct
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human design of those inductive biases. Humans only define the conditions to learn inductive biases; machines extract

the actual inductive biases from data. Thus, machine learning becomes strong once it has its own inductive biases learned

earlier. A machine learning process learns inductive biases and stores them in a form for later use and effective learning.

A brief overview of several existing strong machine learning techniques

There are several existing methods in machine learning that can be qualified as strong machine learning. These methods

begin with weak machine learning and then transfer the acquired knowledge to achieve strong machine learning. In other

words, these techniques first learn and then apply inductive biases. The present list is not exhaustive; there are likely

many other methods not mentioned here.

1) Transfer learning (a.k.a., pre-training)

Transfer learning is by far the most popular and most commonly used technique that can be characterized as having the

properties of strong machine learning. This is also likely the most simple form of strong machine learning. Transfer

learning is based on pre-training a deep learning network on a related task (Bozinovski & Fulgosi, 1976; George

Karimpanal & Bouffanais, 2019). A network is pre-trained from scratch on a large dataset and then the parameters of the

trained network are used as a starting point for the next training task. The state of the parameters serves as an inductive

bias for subsequent learning. The later task usually can be achieved with a lot smaller training dataset. In other words, it

would not be possible to successfully train a network from scratch on the later task with small amounts of data if it was not

first pre-trained on a related task with a large amount of data. Thus, the learning has been transferred from one task to

another, resulting in a reduced need for resources in later learning stages.

Transfer learning, also known as pre-training, is indispensable for today’s applications of machine learning. Pre-trained

models are widely available and frequently used for example, in computer vision (Yuan et al, 2021) and natural language

processing (Brown et al., 2020) among others. Transfer learning enables a model to achieve higher levels of intelligence

and adaptability by using multiple stages of learning. The transferred weights and biases play the role of inductive biases

operating during subsequent learning.

2) One-shot learning

Lake et al. (2015) reported a modeling approach in which they attempted to mimic human concepts. Their model could

learn a ‘concept’ of handwritten characters. This included not only the visual appearance of the characters but also the

strokes needed to write a character. Most characters require multiple strokes to be written and the strokes need to be

executed in a specific order and direction. The model first learned from a sample of writing systems the principles of

writing. This can be qualified as the initial training phase of weak machine learning. After that, the model acquired a

‘concept’ of writing and was able to learn new handwritten characters from completely new writing systems. The model

became now a lot more effective; it could learn from a single example. Hence, this approach can be referred to as one-

shot learning. This later stage can be qualified as strong machine learning. The model used its ‘concept’ of writing as the
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inductive bias to learn new characters. The authors argued that this learned capability to learn quickly is similar to how

humans acquire and use concepts. The work of Lake et al. inspired other researchers to explore more methods for one-

shot learning (Fei-Fei et al., 2006; Vinyals et al., 2016; REFs).

3) Zero-shot learning

In some cases, models can deal with new classes or new problems without any additional learning i.e., without updates of

their parameters. For example, a model may be trained on images of animals and on texts describing those images. We

can have a case in which a model was not trained on zebras and yet it can recognize zebras if told that they look like

striped horses. This is possible because the model learned the visual appearance of horses and also learned what it

means for an animal to be striped by learning for example about tigers. The initial training on horses and tigers can be

considered weak machine learning. The later application in which the model recognizes striped horses, can be considered

a strong application of knowledge acquired previously. Now new data are needed for training and yet the model can

perform novel tasks by providing a single sample of auxiliary information. The knowledge of the model serves as the

inductive bias to recognize zebras even without any updates of weights. Zero-short learning is popular in image

classification and natural language processing (e.g., Brown et al., 2020).

4) Guided Transfer Learning

Guided transfer learning is a technique that expands on the capability of transfer learning. While traditional transfer

learning carries over the parameters of the model, guided transfer learning carries over information on which of those

parameters should be allowed to change during subsequent training and which parameters should better stay unchanged.

Guided transfer learning also starts with a weak machine learning component in which a set of scout networks is trained

on easy tasks and with sufficient data. During this process, knowledge is collected about which of the parameters tend to

change and which tend to remain unchanged in subsequent learning. This knowledge about parameter changeability is

then transferred to later tasks and is thus used as inductive biases. Much like for transfer learning, the initial tasks with

scout learning and a later learning task need to be related for guided transfer learning to work well.

Guided transfer learning further reduces the need for data and computation beyond what transfer learning can reduce.

Wherever the limits of traditional transfer learning are, guided transfer learning pushes these limits further. Guided transfer

learning makes the inductive biases even stronger i.e., even more specialized for a given type of task than what can be

done by traditional transfer learning. Guided transfer learning has been shown to help with extremely small amounts of

data, with reducing catastrophic interference (forgetting old information by novel learning)(Nikolić et al., 2023), and with

tasks normally extremely difficult for deep learning such as finding solutions to problems based on a mixture of logical

operations (OR, AND, XOR)(Schmidhuber and Hochreiter, 1996; Mansour, 1994; Linial et al., 1993; Nikolić, 2023).

The tradeoff between generality and specificity

There is a tradeoff associated with every inductive bias. Inductive biases only help machine learning perform better within
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a certain domain. Critically, inductive biases make it harder to perform well in other, unrelated domains. For example, a

convolutional network will be effective in computer vision but will very much struggle with sequences of words in natural

languages. By making learning effective in one domain inductive biases make it more difficult to learn in other domains.

This leads to a tradeoff between the generality of what a machine learning algorithm can learn in principle on one hand

and the specificity for efficient learning that the inductive biases offer. More powerful inductive biases lead to more

specificity which means that such a model can be applied to a narrower set of problems. For example, we may not only

narrow down a model to computer vision but to even more specific vision problems. For example, a machine learning

algorithm may become an expert at learning to recognize animals only or to recognize hand-written characters only. Such

more specialized models become even better learners of these domains but, at the same time, have even more trouble

learning outside those domains, for example, to detect cars from images. The stronger the capability to learn within a

certain domain, the narrower the domain of learning. In other words, there is a clear tradeoff between the learning power

of strong machine learning which is characterized by high specificity, and the range of the problems to which a given

strong machine learning algorithm can be applied, which is characterized by reduced generality. The higher the specificity,

the lower the generality.

As an extreme example of specificity, we can consider a human-made model in a form of a single equation that describes

a certain property of the universe: E = m c2. This equation is a simple ‘model’ with a single parameter, c. In principle, the

model can be applied to different universes with different speeds of light. In each of these universes, one can ‘train’ the

model to predict energy (E) given the mass (m). The model just needs to learn one parameter which is the speed of light

in that universe, c. Thus, a single data point with E and m may be enough to learn the parameter c and thereby enable to

model to calculate energies correctly for a new universe. This model is an extreme example of domain specificity: The

model can learn one thing only – converting mass to energy – but it can learn these conversions most effectively, from a

single data point. This model cannot be applied to anything else, but only to this one problem. This ‘model’ was not

learned through strong machine learning, but was created by human insight (Albert Einstein’s insight, to be precise),

which is a strong learning capability of the human brain. Nevertheless, the famous Einstein’s equation illustrates how

extreme specialization comes with an extreme learning efficiency but necessarily also with an extreme lack of

generalization.

This tradeoff between generality and specificity is related to the no-free-lunch theorem in machine learning (Adam et al.,

2019). The no-free-lunch theorem states that there is no single best learning algorithm that can perform well on all

possible problems. Different algorithms have different strengths and weaknesses, and their performance depends on the

characteristics of the problem and the data. This implies that there always will be a tradeoff between generality and

specificity: An algorithm that is good at one domain is necessarily bad at some other domain. Strong machine learning is

subjected to the no-free-lunch theorem. Strong machine learning models have to sacrifice generality for specificity in order

to achieve high learning efficiency in terms of data and model sizes.

The relationship between strong machine learning and human intelligence
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A possible strategy to create AI with human-like intelligence is by further developing strong machine learning techniques.

These techniques should emulate the learning abilities of humans and animals. Living organisms are strong learners who

can quickly acquire new concepts, generalize from a single event, and adapt to novel situations with minimal data and

guidance. To achieve similar performance in machines, we likely need to enhance the existing machine learning models

making by providing them with strength. They should be able to learn human- and animal-type of tasks with less data and

fewer parameters.

For such developments, we can draw inspiration from how human brains are composed of specialized modules each

being optimized for a certain task. The cerebral cortex consists of about 46 areas each being specialized for a specific

function playing a role in vision, language, motor commands, and so on (Strotzer, 2009; Ardila et al, 2016; Kawachi 2017;).

Each of these areas is probably a strong learner that can learn from relatively small amounts of data. After we are born,

and as we learn, we add even more specializations to our brain modules. This means that we also lose some generality.

Adults cannot learn as flexibly as babies can. But adults can learn more effectively than babies within the specializations

that they developed since.

What makes a difference between human and animal intelligence is probably the inductive biases that we are already

born with. These inductive biases may be expressed in the total number of brain areas, the general connectivity of those

brain areas, and the learning rules by which we further learn after birth.

The strategy to approach human intelligence in AI should therefore, not only be to increase the number of modules but

also to apply strong machine learning techniques to train those modules to learn effectively for their specific domains.

Recently, I proposed that these modules should apply transient selections of pathways (Nikolić, 2023) as a part of

mechanisms for the effective implementation of cognitive operations, founded in the theory of practopoiesis (Nikolić,

2015). This creates an open field for the application of strong machine learning, as inductive biases can be stored not only

in connections between neurons but also in those mechanisms that transiently open and close pathways.

An important contrast can be made between the approach to intelligent machines based on strong machine learning and

another one based on Artificial General Intelligence (AGI) (Goertzel, 2014). Both approaches share the vision of reaching

human-level intelligence. However, they imply different ways to reach that goal. AGI emphasizes a search for one (or

more) ‘general’ algorithms that can apply to any domain or any problem, without much need for specialization (Hutter,

2004). The central idea of AGI is generality. In contrast, strong machine learning emphasizes specialization; it calls for

developing effective specialized algorithms that can learn specific domains well. Instead of attempting to find a general

algorithm, we may be better off searching for effective forms of strong machine learning. The only general ‘algorithm’ may

be a widely applicable method for learning inductive biases for the various specialized modules of strong machine

learning. Maybe this hypothetical general method for learning specializations is what AGI is looking for.

The next frontier is strong machine learning

AI development can clearly be boosted by advancing strong machine learning techniques. At the beginning of solving a
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new problem, deep learning always relies on weak machine learning (more data and parameters). As we have seen,

however, there are a few machine learning techniques that are being regularly applied to deep learning that can be

classified as strong.

As of today, AI still relies too much on weak machine learning: the addition of data and parameters to the models. Strong

machine learning is still in its infancy. The problem with weak machine learning is that one quickly exhausts the potential

of that approach. The models quickly grow to the maximum sizes that are feasible in terms of computational costs and

environmental concerns. Also, the models quickly exhaust all of the training data and the generation of new data becomes

prohibitively expensive.

As a consequence, in some cases, only big organizations with large resources are able to push weak machine learning

models further. Smaller organizations are unable to compete. For example, large language models can only be created by

big organizations that have the resources to build and maintain them. This gives them an unfair advantage over smaller

players and reduces the competition and creativity in the field of AI. The concept of strong machine learning, promises to

create more efficient and intelligent models that can learn from less data and with fewer parameters. This promises to

level the playing field and allow more people and organizations to participate and contribute to the advancement of AI.

Another reason for making models smaller is the need for intelligent machines at the edge. Robotics in general and

especially the field of autonomous driving are clear examples of this. Huge models that run on supercomputers perform

better in those robotic tasks than small models that can be actually fitted under the car hoods. Autonomous driving and

robotics in general are in need of smaller models that nevertheless exhibit high performance as the big ones. This can

potentially only be achieved through strong machine learning.

Equally so is the scarcity of data a reason for strong machine learning. Large language models could be created in part

due to the easy access to a vast amount of texts stored in an electronic form, covering almost everything that has ever

been written by mankind. This played well with another property of language: Language is highly efficient in storing

information – the language is highly compressed. Images, on the other hand, are much more wasteful with resources. For

example, a language-based story and a picture-based movie may be telling the same story but may differ by a factor of a

million in memory requirements. This high memory demeans for images has implications for the further development of AI

based on computer vision: The use of images in a weak machine learning manner reaches technical limits much faster

than language does. Building ‘large vision models’ that would generate movies with similar quality and flexibility as

language models generate texts would require resources that probably not even the largest organizations can afford. This

makes pressure to develop strong machine learning techniques for computer vision. Only strong machine learning may

overcome these limitations.

Conclusions

Strong machine learning is an approach to machine learning that focuses on learning inductive biases. Inductive biases

are assumptions that are built into the learning algorithm that help the algorithm learn more efficiently in a given domain.
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The idea is that by learning these inductive biases, machines can later learn more effectively, with less data and with

smaller models.

We need to further develop techniques for machines to learn their own inductive biases. Instead of focusing on building

large powerful models, we should focus on advancing the capabilities for strong machine learning. Several strong

machine learning techniques already exist. However, more work is needed in this direction. The field of strong machine

learning is in its infancy.

While developing ever better strong machine learning algorithms, we have to keep in mind the generality-specificity

tradeoff. Strong learners are specialized. A challenge that comes with strong machine learning is how to combine multiple

specialized learners into a fully functioning system that exhibits high levels of intelligence.

The ultimate ambition of strong machine learning is to help create machines that match human intelligence i.e., to help

develop strong AI. The idea is that by providing machines with the same inductive biases that humans have, we can

create machines that are capable of learning and reasoning in the same way that humans do.
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