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Identifying the intrinsic coordinates or modes of the dynamical systems is essential to understand,

analyze, and characterize the underlying dynamical behaviors of complex systems. For nonlinear

dynamical systems, this presents a critical challenge as the linear modal transformation, which is

universal for linear systems, does not apply to nonlinear dynamical systems. As natural extensions

to linear normal modes, the nonlinear normal modes (NNMs) framework provides a comprehensive

representation of nonlinear dynamics. Theoretically, NNMs may either be computed numerically or

analytically from the closed-form models or equations of dynamical systems, or experimentally

identi�ed from controllable input-output tests, both of which, however, are typically unknown or

unavailable practically. In this study, we present a physics-integrated Normalizing Flows deep

learning-based data-driven approach which identi�es the NNMs and the nonlinear modal

transformation function of NNMs using measured response data only. Speci�cally, we leverage the

unique features of the Normalizing Flows model: 1) the independent latent spaces, naturally spanned

by the Normalizing Flows, are exploited to facilitate nonlinear modal decomposition; 2) the

invertible transformation through the Normalizing Flows, enabling e�cient and accurate nonlinear

transformation between original and modal coordinates transformation. Therefore, our framework

leverages the independency feature and invertibility of Normalizing Flows to create a model that

captures the dynamics of unknown nonlinear dynamical systems. This enables the identi�cation of

nonlinear normal modes through data-driven methods, while also preserving the physical

interpretability and generalizability of resulting invariant manifolds and long-term future-state

predictions for a wide range of physical systems. For method validation, we conduct numerical

experiments on multi-degree-of-freedom (MDOF) Du�ng systems and velocity �elds of �ow
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passing a cylinder in the laminar regime. We present the performance of the presented method in

identifying the nonlinear manifolds of a dynamical system under di�erent energy levels, and

compare the presented method with the Proper Orthogonal Decomposition (POD) method. It is

observed that the identi�ed NNMs achieve higher representation accuracy than the POD method

using the same dimension of intrinsic coordinates or modes. We also discuss the limitation of the

presented framework on high-dimensional dynamical systems, where a dimension reduction

scheme is applied in the �ow �eld case study.

Corresponding author: Abdolvahhab Rostamijavanani, arostami@mtu.edu

1. Introduction

Complexity in a system is commonly characterized by nonlinear dynamical behaviors, whose

characterization remains a perennial challenge in a wide range of �elds including engineering

�elds[1]  such as modal analysis and system identi�cation. For modal identi�cation and

characterization, in contrast to linear systems that can be modelled using linear modal

transformations as superpositions of linear normal or eigen modes[2], which provide an exact

description of their underlying linear dynamical characteristics and facilitate linear reduced-order

modeling[3][4][5][6][7][8][9][10][11], nonlinear dynamical systems can not be represented precisely by

such a general linear framework. As an example, linear modal analysis methods such as proper

orthogonal decomposition (POD), independent component analysis (ICA)[12][13], and dynamic mode

decomposition (DMD)[14][15][16]  are not applicable for highly nonlinear dynamical systems because

signi�cant error occurs when using these linear methods. Even though ICA shows reasonable

performance for linear structural dynamics, it fails when there is high damping in systems[12][13].

Koopman Mode Decomposition (Koopman operator)[17][18] describes nonlinear dynamical systems by

linearly projecting observables onto Koopman eigenfunctions[19]. However, obtaining an observable

function that can transform nonlinear dynamics into a new state space, where the underlying

nonlinear dynamics can be approximated linearly, is a di�cult task as it requires in�nite dimensions.

Thus, discovering a nonlinear generalization of modal transformation is a crucial problem in

nonlinear structural dynamics and �uid dynamics.
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Nonlinear normal modes (NNMs), as a nonlinear modal analysis technique �rst introduced by

Rosenberg[20]  and extensively studied by many researchers[21][22][23][24][25], are natural extensions

of linear normal modes  (LNMs). Like LNMs, NNMs are also intended to capture the intrinsic

invariance properties of nonlinear dynamics.Fundamental work by Shaw and Pierre[26]  provided an

extension of the concept of LNMs for nonlinear systems by mapping the physical coordinates to the

nonlinear modal coordinates through a nonlinear transformation. These studies provide insights into

a general and interpretable modal transformation for nonlinear systems. The majority of research on

identifying de�ned nonlinear modal transformations has sought to numerically compute the closed-

form model of the system[27][28][29]. Nevertheless, the closed-form equations are mostly unknown or

unavailable for real-world systems, only observations and measurements available. Also, using Taylor

series expansions to identify modal coordinates is merely an approximation of nonlinear normal

modes analysis[24]. Hence, data-driven methods are well-suited for addressing the aforementioned

limitations.

Data-driven modeling of nonlinear systems has been facilitated by leveraging machine learning and

deep learning techniques. Deep learning’s fundamental architecture, known as deep neural networks

(DNNs), o�ers remarkable modeling capacity and learning �exibility to capture the intrinsic features

of complex systems in a hierarchical manner. The universal approximation theorem[30][31], states that

a DNN with an adequate number of neural units and nonlinear activations can represent intricate

functions, such as nonlinear modal transformation functions and temporal evolution functions of

dynamics. DNNs also allow for the adaptive design of network architecture for various tasks, including

the identi�cation of NNMs and dynamics. There are several deep neural networks that have been

introduced by researchers to model well-known representations of dynamical systems, which include

Koopman operators and NNMs methods[32][33][34][35][36]. For training the models, the corresponding

architectures require multiple cost functions. Notably, a deep neural network (DNN) framework with

axillary networks for Koopman operators was developed to model continuous spectra of nonlinear

dynamical systems[35]. By embedding new correlation loss functions,nonlinear normal modes and

their transformations were identi�ed using deep autoencoders[37]. Typically, adjusting several loss

functions is necessary and considerably challenging to achieve a nonlinear transformation between

the original coordinates and modal coordinates, as well as the ability to move back and forth between

these coordinates and the independence of modal coordinates. Normalizing Flows, an emerging

generative model, o�er a new e�cient and e�ective deep learning alternative to address these
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aforementioned challenges; it is explored in this study for data-driven identi�cation of nonlinear

normal modes.

Normalizing Flows (NF) (Fig. 1) is an advanced generative model[38][39][40][41]  that may be used for

nonlinear modal analysis (e.g. NNMs) by virtue of its unique speci�cations. The salient feature of

NNMs, invariance, may be characterized by Normalizing Flows’ independence feature of the modal

coordinates and the associated nonlinear modal transformation.[42][43]  (Fig.  2). Such a capability is

attributed to theory of Normalizing Flows, whose model tries to estimate the real probability

distribution of a variable by transforming a random distribution like Gaussian distribution (Fig. 1 and

Fig.  3) into independent distribution. Therefore, it is feasible to perform modal decomposition

naturally with Normalizing Flows models. The other unique feature of Normalizing Flows is that the

transformation is invertible[44]. The explicit invertibility within the layers of Normalizing Flows allows

us to easily transition between original coordinates and modal coordinates using this feature.

Figure 1. Normalizing Flows concept: Transforming a simple probability distribution function   to the

original one   which is more complex by using bijectors.
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Figure 2. Normalizing Flows concept: Reducing the dependency between two original coordinates of a 2-

DOF Du�ng system by passing through Normalizing Flows layers.   denotes the decomposed modal

coordinates while   corresponds to the original coordinates.

Figure 3. Probability distribution transformation of a dimension of a Du�ng system with Normalizing

Flows model. Simple PDF in the latent can transfer to more complicated in the original space (learning the

original PDF by transforming a simple PDF with bijectors)

In this study, exploiting Normalizing Flows models, we present a data-driven deep neural network

approach to address the challenges in nonlinear modal identi�cation. Speci�cally, the lack of closed-

Z0

X
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form solutions in the modal analysis domain is addressed by data-driven approaches, and

unavoidable errors that can occur in coordinates transformation is recti�ed by leveraging the

invertibility feature of the Normalizing Flows. Additionally, the independent latent spaces, naturally

spanned by the Normalizing Flows, are exploited to facilitate nonlinear modal decomposition.

Moreover, we incorporate a dynamics block into the Normalizing Flows model in order to

simultaneously capture the underlying modal dynamics of the studied systems and facilitate long-

term future-state prediction. Therefore, our presented NF-based DNN is capable of not only

performing nonlinear modal decomposition, but also predicting the behavior of dynamical systems

for a speci�c range of time.

2. Methodology: Normalizing Flows concept

As a generative model, Normalizing Flows produces tractable distributions, which make density

estimation e�cient and precise. Other generative models such as generative adversarial networks

(GANs) and variational auto-encoders (VAEs) do not explicitly learn the probability function of

training data. GANs produce similar data to fool the discriminator in a min-max game and reach a

saturation point when the discriminator cannot distinguish the fake samples[45]. With VAEs, the

network learns how to identify variational inference in latent space and to produce data using a

decoder[46]. However, neither GANs nor VAEs are capable of learning the real probability density

functions (PDFs) of real data.

Normalizing Flows model is a rigorous generative method that learns the real PDF of a dataset by

using some invertible and di�erentiable functions. Normalizing Flows involves creating a random

variable    with a complicated distribution    by applying a function f that is both invertible and

di�erentiable to a random variable    with a simple distribution. As an example, a standard normal

distribution   can be inverted to a target PDF using the following formula: 

. The transferred distribution   can be calculated by using change of variables:

It is, however, not trivial to �nd a single function (bijector) that transfers the distribution in the

desired manner. When the target distribution    is very complex, a simple f (such as a scale or shift

function) is not su�cient. The following example illustrates how to create a more complicated PDF by

composing bijectors with one another and creating a more complicated chain of bijectors:

X P

Z

Z ∼ N(0, 1) X = f(Z) ∼ P ,

Z = (X)f−1 P

logP(X) = logP(Z) − log| (Z)|
∂f

∂Z
(1)

P
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A Normalizing Flows refers to the transformation of a base distribution (e.g., standard normal

distribution) into the more complex target distribution through a series of bijectors after each other:

Additionally, one can calculate the transformed  (target) distribution by summing the contributions

from each bijector:

To achieve the target distribution, one can give each    some simple functions, such as a scale and

shift, followed by a simple nonlinearity, such as a sigmoid or ReLU function. It should be noted that

each   has some parameters (such as scale and shift values), which can be learned from some training

data using maximum likelihood estimation.

2.1. Models with Normalizing Flows

The properties of each Normalizing Flows model are the same: they are invertible and di�erentiable.

By stacking a sequence of bijectors with easy Jacobian determinant computations and easy

invertibility, the RealNVP model (Real-valued Non-Volume Preserving)[43]  can be modelled. Non-

linear Independent Component Estimation (NICE)[42] is an alternative to RealNVP that was introduced

earlier. Autoregressive models are a type of Normalizing Flows in which the Jacobean matrices can be

computed quickly since each    (equation. (2)) depends on  . Hence,    whenever 

 and a lower triangular Jacobean matrix is achieved and the determinant of this matrix is a simple

product of the diagonal elements. Also, the joint density    can be modelled as the product of

conditionals  . Throughout this paper, a masked autoregressive �ow model is used.

3. Problem formulation

3.1. Multi-degree-of-freedom (MDOF) systems

Consider the free response of an  -degree-of-freedom ( -DOF) nonlinear system with the general

equation of motion:

f = ∘ ∘ …fk fk−1 f1 (2)

= ( )Zk fk Zk−1 (3)

logP(X) = logP(Z) − log| ( )|∑
i=1

i=k ∂fi
∂Zi−1

Zi−1 (4)

fi

fi

fi , … ,Z1 Zi = 0
∂fi

∂Zj

j > i

P(X)

P( | )∏i Xi X1:i−1

N N

M + C + Kx + g( , ,x) = 0ẍ ẋ ẍ ẋ (5)
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where  ,  , and    are mass, damping, and sti�ness matrices, respectively.    is displacement

vector ( ) and   is a nonlinear term. Transforming to the discrete-time state space:

where    denotes state space vectors which are measured by sensors or are computed

numerically, and   is the dynamics function which maps current states to states forward in time.

NNMs represents the nonlinear dynamics through nonlinear transformations of its intrinsic modal

coordinates. As natural extensions of LNMs, NNMs can represent nonlinear dynamical systems with

the same number (dimension) of modal coordinates as the original coordinates:

where for second-order ODEs, each NNM modal coordinate,  , consists of displacement ( ) and

velocity ( ) �elds  (Fig. 4), and G is the nonlinear transformation function which represents modal

state transition. Note that the intrinsic modal coordinates are denoted as   which are identi�ed as

the NNMs when integrating their physics constraints with the presented deep learning-based data-

driven system identi�cation framework.

M C K x

x ∈ Rn g

X = {x, }ẋ

= F( )X t+1 X t
(6)

X ∈ R2n

F

= G( )Z t+1
0 Z t

0 (7)

Z0 p

q

Z0
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Figure 4. Architecture of the presented physics-constrained Normalizing Flows deep neural network (NF-

DNN). (a) The overall framework consists of a NF model that transfers states   of a system into

intrinsic coordinates   using   and then transforms them back to original

coordinates by simply inverting the forward process  . The subscript   represents the latent

space where the base distribution is assumed to be a Gaussian distribution. There are several additional

physics-based constraints that can be applied to the intrinsic coordinates   to enforce them to be

translated to desired modal coordinates. (b) A dynamics block ( ) is implemented, which advances

intrinsic coordinates forward in time and enforces the equivalence between transferring the next original

coordinates and advancing current intrinsic coordinates forward. This ensures the dynamics of the system

= (x, )Xt ẋ

= (p, q)Z t
0 = ( )Z t

0 N
−1

Xt

= N ( )Xt Z t
0 0

Z t
0

G
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remain in the identi�ed intrinsic coordinates. (c) By combining Normalizing Flows model and dynamics

block, intrinsic coordinates are determined for enabling future-state prediction. Unlike autoencoders

where decoders are not exactly the inverse function of encoders, NF is able to perform forward and inverse

process without any approximation errors since the process is a direct mathematical inversion. (d) The

presented NF model is a Masked Autoregressive Flow model that consists of main layers and Permute

layers.

The aim of using normalizing �ows in this context is to convert the original coordinates ( ) of MDOF

systems into modal (NNM) coordinates ( ) and vice versa ( ), leveraging the

independent property of NF. This involves using the inverse capability of NF, which transfers a simple

distribution, representing modal coordinates, to a more intricate distribution in the original

coordinate space (multi-component system response or vibration). By integrating physics constraints

related to NNMs, we can establish the modal coordinates as a representation of NNMs.

3.2. Flow �elds

By combining POD with normalizing �ows, the reduced set of modal coordinates obtained from POD is

used as input to Normalizing Flows. Then, the probability distribution of the modal coordinates

obtained from POD is modelled and their independence is enhanced by the Normalizing Flows. This

will enable a more accurate representation of the non-Gaussian and complex distributions that are

commonly encountered in �uid dynamics problems. In other words, we seek a nonlinear (’deep’)

version of POD modal coordinates when dealing with �ow �elds. To decompose POD modal

coordinates (Fig. 12 and Fig. 13) we discover a function that transforms the original coordinates to a

new space where the obtained modal coordinates are independent:

where   denotes the POD modal coordinates of the �ow �eld and   is the decoupled version of POD

modal coordinates obtained via Normalizing Flows  ( ). It should be noted that, the focus in case

studies involving �ow �elds is on nonlinear mode decomposition rather than prediction and

dynamics.

X

= (X)Z0 N
−1

X = N ( )Z0

= N ( )M
′ Z0 (8)

M
′ Z0

N
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4. Normalizing Flows-based deep learning framework to identify

NNMs operator

4.1. Objective

There are challenges associated with obtaining accurate coordinates for NNMs. Using Taylor series

expansions to identify modal coordinates is limited to an approximation of nonlinear normal modes

analysis[24]. Also, most of real-world dynamical systems do not have closed-form solutions and we

have only some sensors measurements. Therefore, we develop a data-driven Normalizing Flows

framework as shown in Fig. 4 and the objective of our framework is to identify NNMs operators in

order to overcome the challenges mentioned above related to lack of closed-form solutions of

dynamical systems and identifying nonlinear modal coordinates of NNMs. Moreover, we aim to obtain

a nonlinear version of POD modal coordinates to represent the most essential characteristics of �ow

�elds on an independent basis.

4.2. Normalizing Flows framework

4.2.1. 2-DOF Du�ng oscillator

In this session we present an example of a 2-DOF Du�ng oscillator as one of case studies. Since this

dynamical system is a second-order ordinary di�erential equation (second ODE), each pair of latent

subspace corresponds to the displacement and velocity of one degree of freedom in the Normalizing

Flows-based deep neural network (NF-DNN) presented for NNMs. The number of latent dimensions is

the same as the original dimension. Therefore, each pair of latent coordinates represents a single

nonlinear normal modal coordinate.

The presented NNMs-physics-constrained Normalizing Flows (NNMs-NF-DNN) integrates the

physics of NNMs into the deep learning. The overall loss function is as following:

where   is the overall loss function for NNMs-NF-DNN framework and each of the weights of the

loss function is presented in Table 1.  ,  ,  ,  , and   are loss functions corresponding

to reconstruction in original coordinates, independence between modal coordinates,

= + + + +LNNM αN LN αcorrLcorr αevolLevol αprdLprd αvelLvel (9)

LNNM

LN Lcorr Levol Lprd Lvel
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evolution  (dynamics) in latent space, prediction in original coordinates, and state-space format in

latent space respectively which have been expressed in detail as below:

1. Normalizing Flows loss function: negative log-likelihood (NLL). Normalizing Flows probability

density estimation is the �rst loss function. Generally, the mean squared loss function is a log-

likelihood loss function. Therefore, NLL is su�cient for reconstruction:

where X is the original state spaces and   denotes the training dataset.

2. Although Normalizing Flows alone is able to decompose a coupled vibration, we still need

auxiliary loss functions in order to enhance the decomposition of modal coordinates. In order to

make NNM modal coordinates independent, modal-uncorrelated loss functions are presented as

follows ( ):

where   and   are identity matrix and correlation matrix, respectively;   is the displacement

matrix:   and   is the velocity matrix:  . Each   or   is a vector

of length  .    is    (time derivative,    is also given to the network as an input information)

and   is the number of degrees of freedom of the system. It should be noted that,   denotes

the mean squared error between two matrices or vectors: for example between the reconstructed

trajectory and original trajectory and   is the number of training samples and   refers to the

sample index number.

3. Dynamics block to identify the evolution function: Evolution in latent subspace (nonlinear

dynamics). In dynamics block (grey color in Fig. 4), the networks use the initial time response of

each example of training to predicate the evolution of system states recursively. It can be

implemented by minimizing the residual of the expression below:

where    is the dynamics block which can be modelled as a nonlinear embedded dynamics with

nonlinear activation functions (Relu function). We minimize the loss of   time-step prediction:

where the state space has to pass   times through the nonlinear dynamics block ( ).

= − log P(X)LN
1
D
∑X∈D (10)

D

Lcorr

||Corr(p), |
1

ns
∑
i=1

i=ns

In×n |(i)
MSE

||Corr(q), |
1

ns
∑
i=1

i=ns

In×n |(i)
MSE

||Corr( ), Corr(p)|
1

ns
∑
i=1

i=ns

ṗ |(i)
MSE

(11)

I Corr p

p = [ , , … , ]p1 p2 pn q q = [ , , … , ]q1 q2 qn pi qi

T ṗ
Δp

Δt
Δt

s ||, ||MSE

ns (i)

= || ( ),G( ( ))|Levol
1
ns
∑

i=ns
i=1 N

−1
X t+1

N
−1

X t |(i)
MSE (12)

G

m

|| ( ),G(G(G(. . . ( ( ))))|1
ns
∑

i=ns
i=1 N

−1
X t+m

N
−1

X t |(i)
MSE (13)

m G
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4. Prediction by incorporating NF and dynamics block: Prediction in original coordinates. After

evolution in latent coordinates, NF should transform it back to the original coordinates by

minimizing:

or generally for    time-step prediction, we minimize 

5. Velocity loss. As mentioned before, each pair of latent dimensions should be displacement and

velocity �elds of a modal coordinate  ( ). To enforce NNMs-NF-DNN to learn under this

constraint, a corresponding loss function is integrated:

1 1000 1000 1 1

Table 1. Weights of loss functions.

4.2.2. Flow passing a cylinder

A limitation of Normalizing Flows is one-to-one mapping  (Fig.  6) which makes high-dimensional

systems such as �ow �elds di�cult to model by this algorithm. To address this challenge, we �rst

apply POD to the original �ow �elds to have a reduced spatial representation for decreasing

computational cost. Since POD modal coordinates are linearly independant, there remain nonlinear

dependency. As depicted in Fig. 12 and Fig. 13 , two POD modal coordinates of a velocity �eld of �ow

are linearly independent while the nonlinear dependency is obvious as they are bonded in a circle. To

overcome this dependency, we input these POD coordinates to Normalizing Flows model and separate

them naturally by leveraging the inherent independency of latent coordinates of Normalizing Flows.

Because the focus of studying the �ow �eld is nonlinear mode decomposition, the loss functions are

limited to decomposition and reconstruction losses as described for the 2-DOF Du�ng system. The

only di�erence in decomposition loss function is that since the governing equation is Navier-Stokes

equations (a PDE) the latent coordinates are not pairs as Du�ng systems (state-space equations).

= || , N (G( ( )))|Lprd
1
ns
∑

i=ns
i=1 X t+1

N
−1

X t |(i)
MSE (14)

m

|| , N (G(G(G. . . ( ( ))))))|1
ns
∑

i=ns
i=1 X t+m

N
−1

X t |(i)
MSE

p, q

= || , |Lvel
1
ns
∑

i=ns
i=1

Δpi

Δt
qi |(i)

MSE (15)

αN αevol αprd αcorr αvel
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Therefore, to make POD modal coordinates independent, the modal-uncorrelated loss functions are

presented as:

where  ,  ,  , and    are identity matrix, correlation matrix, POD modal coordinates, and the

number of modal coordinates, respectively. As stated before,   is the number of training samples.

4.2.3. Network architecture and training

In the presented NNMs-NF-DNN for Du�ng systems, there are two main models: 1 - Normalizing

Flows 2 - Dynamics block. Each model performs the following tasks:

Normalizing Flows: This model converts the original coordinates into modal coordinates (forward &

inverse modal transformation). The output of this model is the latent modal coordinates, and these

coordinates will then be passed through the dynamics block. Therefore, the loss functions associated

with this model are  ,  ,  ,  .

Dynamics block: This model represents the dynamics of systems by mapping intrinsic modal

coordinates to some speci�ed time steps in advance. This can be achieved by training two loss

functions in the overall presented framework:   and  . Dynamics block model is a multi-layer

perception model, with 4 dense layers each containing 256 neurons. It should be noted that, for �ow

case studies (Fig. 5), we only have NF model and we apply POD �rst on the original �ow �elds as pre-

processing dimension reduction phase; after mode decomposition we perform the POD inversion to

get back to the original �ow �elds.

||Corr( ), |
1

ns
∑
i=1

i=ns

Z0 In×n |(i)
MSE

(16)

I Corr Z0 n

ns

Lrec Lprd Lcorr Lvel

Levol Lprd
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Figure 5. Overall process of mode decomposition for �ow �elds  : First a reduced order of �ow is

achieved by POD transformation and then these modal coordinates   pass through NF layers to be more

independent using the natural feature of NF - independence in latent space  . At the end the latent spaces

are transferred back to the original �ow �elds   using the inverse function of POD algorithm.

Figure 6. General representation of one-to-one mapping feature of Normalizing Flows models. The size of

data retain the same in the latent (right plot:  ) and any layer between original and latent (middle plot: 

) as original space (left plot:  ). An instance of Normalizing �ow can demonstrate how data with

circular dependencies can be converted to an independent state represented by  .

The autoregressive models of Normalizing Flows are powerful models for estimating probability

densities. The Normalizing Flows model used in this work consists of several dense layers, each with

speci�ed number of neurons which are reported in Table  2. Nonlinear activation functions are used

because nonlinear modal transformations are sought. In Tensor�ow, there are di�erent nonlinear

activation functions such as Relu, Sigmoid, and Tanh. Our networks utilize the Relu function, which

has a faster training run time[47]. Each autoregressive layer is followed by a permutation layer since

M

M′

Z0

M

Z0

Zs X

Z0
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Normalizing Flows layers only operate on a portion of the data, whereas the remaining does not

change when passing through these layers. Therefore, we permute the data spaces so that all data are

subjected to nonlinear transformations through the network (Fig.4).

Item
No. of NF

layers

No. of Dense layers in each NF

layer

No. of neurons in each Dense

layer

Du�ng system 6 3 256

Transverse velocity

�eld
8 3 512

Streamwise velocity

�eld
8 3 512

Table 2. Network architecture

The Adam optimizer with a slow learning rate of   is used for both models (dynamics model

and Normalizing Flows model). The Xavier initialization method[48] is used to initialize the weights of

each model. Hidden layers are in the format of    followed by a nonlinear activation function

where   and   are weights and biases respectively and   refers to input data. The Xavier initialization

method generates a random number that is distributed uniformly along a range of    and  ,

where    refers to the number of inputs to the node. We analyze the performance of DNN across a

variety of training sessions  (hyperparameters-tuning). It has been examined di�erent sets of

hyperparameters (weights of loss functions) and the results are based on the hyper-parameters

associated with minimum testing errors (Table 1).

5. Result and Discussion

5.1. 2-DOF Du�ng oscillator

Du�ng systems (see Fig. 7) are widely used in research on dynamic analysis[49][50]. As one of the case

studies, we study a 2-DOF Du�ng system with a governing equation as follows:

α = 1e − 5

Wa + b

W b a

− 1
η√

1
η√

η
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We �rst examine the performance of our presentd NNMs-NF-DNN with a 2-DOF nonlinear Du�ng

system. The state space is input to the network, and Normalizing Flows estimates the PDF of these

trajectories by converting a Gaussian distribution as the base distribution to the more complicated

distribution (Fig. 1). Since each dimension is sampled from a Gaussian distribution, therefore each

dimension is independent. The unique feature of the Normalizing Flows enable to decompose a

coupled vibration into independent components in a natural manner throughout the PDF estimation

process. However, since velocity is merely a time derivative of displacement, the latent dimension

ought to follow the same relationship. To restrict the network to have this feature, we use velocity loss

function, but since this loss a�ects the decomposition of modal coordinates, we use correlation loss

function to balance the network so that it has both decomposition and state-space presentation in

latent space as NNM coordinates.

Figure 7. Case studies: a: 2 DOF Du�ng system b: Stream-wise velocity over a cylinder c: Transverse

velocity over a cylinder.

Fig. 8 (a) illustrates the process of modal decomposition throughout the layers of Normalizing Flows.

The wavelet graphs show that in the original coordinates (light green scatter plot), there is a coupled

vibration with two modal frequencies. We have quanti�ed the dependency of displacement vectors

using the correlation coe�cient ( ). Moving through the Normalizing Flows layers, it is

observed that the dependency decreases as a good level of decomposition is achieved in the last layer

(red scatter plot).

.
+ 0.03 + (2 − ) + 0.5 = 0ẍ1 ẋ1 x1 x2 x3

1

+ 0.01 + (2 − ) = 0ẍ2 ẋ1 x2 x1

(17)

Corr = 0.541
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Figure 8. Mode decomposition with NF model: We input the original coordinates of a 2-DOF Du�ng

system (  and   of  ) and then obtain the decomposed modal coordinates at the last layer of NF ( ).

The dependency decreases over the NF layers as the outputs after layer   ( ) have less correlation

magnitudes compared to the original coordinates correlation value. The wavelet plot of each coordinate

indicates whether it exhibits single-mode oscillation or a combination of multiple modes. Note that the

nonlinearity is also observable when the frequency changes over time in the wavelet plots.

Fig. 9 illustrates the process of single-mode reconstruction using Normalizing Flows. The original

coordinates are �rst converted to modal coordinates as   and  . In this case, two independent modal

x1 x2 X Z0

s Zs

pi qi

qeios.com doi.org/10.32388/PIJCR7 18

https://www.qeios.com/
https://doi.org/10.32388/PIJCR7


coordinates exist for this 2-DOF Du�ng system. To illustrate each modal coordinate in the original

coordinate system, we only focus on the corresponding modal coordinate in the latent space while

freezing the other pair of modal coordinates. Subsequently, we utilize the direct inverse feature of NF

to attain the corresponding original modal coordinates from latent space. The in-phase and out-of-

phase modal coordinates are illustrated in Fig. 9 for a 2-DOF system with system parameters: 

,  ,  , and   (Fig. 7).

Figure 9. An illustration of mode decomposition from damped nonlinear system response using

Normalizing Flows DNN. First, the inverse of NF transforms the input system response 

 to modal space where each pair of modal displacement   and modal velocity   has a

distinct frequency. Second, each pair of modal response (  and  ) are transferred back to original

coordinates separately using NF model which ultimately outputs the corresponding modal coordinates in

the original space (in-phase and out-of-phase modal coordinates).

An illustration of the identi�ed NNMs for an undamped 2-DOF Du�ng system based on di�erent

levels of energy is presented in Fig. 10. The NNM manifolds of each energy level correspond to a

speci�c initial condition and their corresponding NNMs-NF-DNN identify their respective NNM

manifolds. A single-mode reconstruction is performed by using the corresponding pair of latent

= = 1m1 m2 k = 1 c = 0.001 g = 0.03

x = [ , , , ]x1 ẋ1 x2 ẋ2 pi qi

pi qi
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coordinates, which represent modal coordinates to identify in-phase and out-of-phase manifolds.

Increasing the energy of the system results in higher nonlinearity, where the in-phase and out-of-

phase mode shapes undergo a change from �at (planar) to curved manifolds (Fig. 10), which is in

agreement with analytical results[51].

Figure 10. The NNMs’ invariant manifolds of a conservative 2-DOF Du�ng system identi�ed from

response data only using the physics-integrated NF-DNN framework. The in-phase (top manifold plot)

and out-of-phase (bottom manifold plot) manifolds are obtained by transferring back the each pair of

latent space separately to the original space.

Fig. 11 (a) illustrates the reconstruction ability of the presented approach where the reconstruction is

in excellent agreement with the true response. Since Normalizing Flows is an invertable network, a

decoder model like autoencoders is not required. This is a key feature of NF to allow for both encoder

and decoder in a single model. Therefore, fewer parameters are needed to train the model. The decoder

in autoencoder DNNs is only an estimation of an inverse encoder, so there are errors when decoding
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the latent space to the original space; whereas in Normalizing Flows, there are bijective layers which

guarantees the direct mathematical inverse of forward transformation. Fig. 11 (b) illustrates the

prediction ability of the NNMs-NF-DNN, showing excellent prediction accuracy. There are 500 time

steps for prediction in this range. The framework receives the initial state and predicts the future 499

time steps recursively. Since each step is the prediction based on the estimated previous time step, it

requires a precise prediction at each time step to avoid error accumulation over time.

Figure 11. Reconstruction and prediction performance of our presented NF-DNN for a 2-DOF damped

Du�ng system. a Reconstruction. b Prediction

5.2. Flow �elds passing over a cylinder

We study �ow �elds as another case study. Speci�cally, we consider a two-dimensional �ow �eld over

a cylinder, which is a typical example used in many existing works,[52][53], to validate the feasibility of

the presented method.

In this case study, �ow passes through the cylinder and creates some vortex shading in its wake,

which is known as a Karman vortex street. It is a steady-state �ow in which the Reynolds number

varies between    and  . The governing equation is the Navier-Stokes equation

(NS):

R = 100eD R = 200eD
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where    and    are velocity and pressure, respectively. Stream-wise and transverse velocity are

assigned as    and    correspondingly. No-slip boundary condition is applied. The channel has a grid

size of 96 by 192.

Traditionally, POD is a linear technique widely used to analyze �uid �ows in �uid dynamics[54]  .

Inputs to this algorithm include snapshots of �ow properties ( ) such as temperature, pressure,

velocity, etc. The output is a set of orthogonal modes representing the dominant spatial

characteristics of the �ow. The formulation is as follows:

where    is the temporal mean of �ow �eld,    and    are modes and expansion coe�cients,

respectively[55]. Flow �elds are reconstructed with superposition of a few dominant POD modes when

the �uid system is not highly nonlinear, but the resulting mode lacks dynamics information about

�uid �ow since POD is merely a spatial transformation that captures spatial patterns in the original

�ow �elds.

We test the nonlinear mode decomposition capabilities of the presented Normalizing Flows deep

neural network (NF-DNN) for the �ow �eld. As discussed, because NF is one-to-one mapping (Fig. 6),

direct application of Normalizing Flows to the high-dimensional �ow �eld would be computationally

expensive and time-consuming. Therefore, we utilize POD in pre-processing to reduce the spatial

dimensions while retaining the most important features of �ow. In the pre-processing phase, only 10

POD modal coordinates are retained.

Remarks: Even though the correlation coe�cient, which is a linear metric of dependency, is zero for

the �rst two POD modal coordinates, the mutual information value indicates that they are dependent

in a nonlinear manner. Brie�y, assuming   are two random variables with values over  , if

their joint distributions is   and the marginal distributions are   and  , mutual information may

be de�ned as:

where    is Kullback–Leibler divergence[56]. Unlike Pearson correlation coe�cients which only

detect linear relationships between variables, mutual information functions can detect nonlinear

∇ ⋅ U = 0

= −∇ ⋅ (UU) − ∇p + U
∂U

∂t

1

RD

∇2 (18)

U p

u v

M(ζ, t)

M(ζ, t) − (ζ) = (t) (ζ)M
¯ ¯¯̄¯̄ ∑

j

aj ϕj (19)

(ζ)M
¯ ¯¯̄¯̄ (ζ)ϕj aj

(A,B) A × B

PAB PA PB

MI(A;B) = ( || ⊗ )DKL P(A,B) PA PB (20)

DKL
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relationships between variables. Therefore, the focus here is to further make the POD modal

coordinates independent by leveraging the key feature of NF which provides exact independent

coordinates in the latent space.

A latent space has been decomposed after the network has been trained using    POD modal

coordinates. We now use two latent coordinates and deactivate the remaining coordinates by setting

their values to zero and then reconstruct the original data using both NF and POD. Based on the same

number of independent modal coordinates, i.e.,  , the reconstruction ability of POD and Normalizing

Flows is compared in Fig. 12(b) and Fig. 13(b) for streamwise and transverse velocity, respectively. It is

evident that NF achieves much higher reconstruction accuracy than POD (evaluated by the   errors),

indicating that the decomposed NF coordinates contain much more nonlinear dynamics features

about the �ow �eld.

The reconstruction accuracy of POD and NNMs for both streamwise and transverse velocity is

quanti�ed in Table 3. Additionally, each of Fig. 12 and Fig. 13 shows the �rst and second spatial modes

of POD, modes obtained in the middle layer of NF, and modes related to the �nal layer which

represents the nonlinear version of POD modes obtained by Normalizing Flows, respectively. NF mode

shapes depict the nonlinear version of POD modes, which contains the features of the �rst 10 POD

modal coordinates and is captured and represented in only two Normalizing Flows modal coordinates.

Fig. 12(a) and Fig. 13(a) illustrate how mutual information between POD modal coordinates decreases

as passing through the NF layers from a circle (high dependency) to a random distribution (low

dependency).

Item POD NNMs

Streamwise velocity 7.1 e-3 2.9 e-6

Transverse velocity �eld 2.5 e-4 3.2 e-6

Table 3. MSE of reconstruction

10

2

L2

qeios.com doi.org/10.32388/PIJCR7 23

https://www.qeios.com/
https://doi.org/10.32388/PIJCR7


Figure 12. (a) Nonlinear mode decomposition with NF model for transverse �ow �eld: The POD modal

coordinates are input to the model (  and   which are equal to   and then the decomposedPOD1 POD2 X
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modal coordinates are obtained at the last layer of NF  . The dependency decreases over the NF layers

as the outputs after layer   have a smaller correlation magnitude compared to the original POD modal

coordinates. The �rst and second spatial modes for each space are also shown. The output spatial

modes (NF modes) are nonlinear versions of POD modes as the spatial patterns are twisted compared to

POD modes. (b) Reconstruction performance of original POD modes, NF modes, and a space between

original and �nal layer    with their reconstruction errors.

( )Z0

s( )Zs

( )Zs
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Figure 13. (a) Nonlinear mode decomposition with NF model for streamwise �ow �eld: The POD modal

coordinates are input to the model (  and   which are equal to   and then the decomposedPOD1 POD2 X
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modal coordinates are obtained at the last layer of NF  . The dependency decreases over the NF layers

as the outputs after layer   have a smaller correlation magnitude compared to the original POD modal

coordinates. The �rst and second spatial modes for each space are also shown. The output modes (NF

modes) are nonlinear versions of POD modes as the spatial patterns are twisted compared to POD modes.

(b) Reconstruction performance of original POD modes, NF modes, and a space between original and �nal

layer    with their reconstruction errors.

6. Conclusion

In this study, we employed the unique features of Normalizing Flows (NF) approach, which allows it to

learn the intricate underlying distribution of complex data from a simpler independent distribution.

We aimed to utilize this method as a nonlinear modal analysis technique for representing nonlinear

normal modes (NNMs). To achieve this, we conducted multiple case studies involving various

nonlinearities, including the Du�ng system and �uid �ows. As we advance through the NF layers, our

observations indicate a decrease in the dependency of the original coordinates. This enables us to

achieve fully decomposed modal coordinates in the latent space, e�ectively representing the NNMs

with the aid of other loss functions. To assess the e�ectiveness of our approach for �uid �ows, we

compared the results of a �ow over a cylinder to those obtained from Proper Orthogonal

Decomposition (POD) as a linear modal analysis technique. We found that the nonlinear version of

POD, acquired through the utilization of NF, contains more substantial information about a �ow �eld.

As a result, the reconstructions obtained through this approach exhibit greater accuracy compared to

those achieved through POD reconstruction. Additionally, we demonstrated the model’s capability for

trajectory predictions with the aid of embedded dynamics block, as exempli�ed with Du�ng systems.

It is essential to note that our framework may have some limitations. Firstly, the training of the NF

model is not entirely stable, requiring the use of a small learning rate to mitigate this limitation.

Consequently, a substantial number of epochs need to be considered, leading to a relatively time-

consuming training phase. Additionally, the one-to-one mapping characteristic of NF makes it

computationally demanding when applied to high-dimensional dynamical systems, such as �uid

�ows. Another signi�cant challenge is the limited range of nonlinearity or energy levels present in our

datasets. To overcome this limitation and accurately model higher nonlinear systems, it is essential to

include a more extensive and diverse range of nonlinearity and energy levels in future data collection.

Lastly, in our current study, we assumed the absence of internal resonance in the studied dynamical

( )Z0

s( )Zs

( )Zs
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systems . To address potential scenarios with internal resonance in future research, speci�c

modi�cations to the architecture of presented DNNs will be required to accommodate and properly

capture the e�ects of internal resonance. Also, The intersection of smart system design principles and

nonlinear dynamics modeling aligns with innovative strategies for sustainability, particularly in

adapting dynamic solutions for environmental and structural applications[57][58].
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