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This study discusses the connection between Fermat perfect natural vectors and some speci�c

Fermat polynomials, whose maximal root is a natural number forming part of the Fermat vector

radius. Apart from the nature and construction of Fermat’s polynomials, some examples of

application are given. If found as natural numbers, calculating the maximal roots of Fermat’s

polynomials constitutes an alternative algorithm to �nd out Fermat’s vectors.

1. Introduction

In recent years, work has been done due to the collaboration with Niño, Muñoz-Caro, and Reyes[1][2]

[3][4][5][6][7][8], with a later contribution from Castro[9]  on studying the extension of the Fermat

theorem to larger dimensions and orders. However, the adopted point of view has been mainly based

on empirical computational grounds and, thus, is prone to a lack of su�cient natural number

sampling extension.

This drawback has stimulated the search for and analysis of new ways to tackle the problem, for

example, the study of Fermat’s surfaces[7]. The present research can be classi�ed as one on this path.

Here, we discuss the connection of perfect natural vectors with Euclidean and Minkowskian spaces

di�erently from previously discussed[1][4][6]. After this, the next step drives us to consider the

construction of reverse perfect natural vectors and polynomials because some can be tightly bound

with the Fermat theorem.

The structure of the present study is as follows. First, natural vectors and higher-order Fermat vectors

are studied. Then, Fermat polynomials are presented. A discussion of several examples follows.

Finally, some additional considerations close the paper.
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2. Natural Vectors

2.1. Natural Perfect Vectors

A natural vector   belongs to some N-dimensional semispace 

, de�ned over the natural number set  .

Such a vector is named perfect if its elements are non-zero and canonically ordered:

When constructing a  -dimensional natural semispace with vectors now built as:

then the additional vector element can be called the radius,  , such that, for the augmented vector 

 to be perfect, it has to be constructed as follows:  .

Then, the perfect vector   can be called the Euclidean part of the perfect vector  .

2.2. Natural Vectors in Natural Minkowski Spaces

The natural semispace   can be transformed into a natural Minkowski space simply using the

unity vector:

as the Euclidian part of a Minkowski metric vector form:

Then, for every vector in the semispace  , one can calculate a Minkowski norm written as:

where the inward product in the equation (5) is de�ned as:

besides, the Minkowski norm uses the complete sum of the vector elements such that:

therefore, the Minkowski norm of a natural vector can be developed as follows:

⟨x| = ( , , , … , … , ) ∈ (∙)x1 x2 x3 xI xN VN

(∙)VN (∙)

0 < < < < … < < … < .x1 x2 x3 xI xN (1)

(N + 1)

⟨v| = (⟨x|, r) ∈ (∙),VN+1 (2)

r

⟨v| < rxN

⟨x| ⟨v|

(∙)VN+1

⟨1| = (1, 1, 1, … , 1, … , 1) ∈ (∙)VN (3)

⟨m| = (⟨1|, −1) ∈ (Z).VN+1 (4)

(∙)VN+1

∀⟨v| ∈ (∙) : M(⟨v|) = ⟨⟨v| ∗ ⟨m ∣⟩,VN+1 (5)

⟨v| ∗ ⟨m| = (⟨x| ∗ ⟨1|; −r) = (⟨x|; −r) ∈ (Z),VN+1 (6)

⟨⟨v ∣⟩ = ;∑
I=1

N+1

vI (7)
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Then, the norm   in the equation (8) de�nes the vector space   as a Banach space, which

can be properly called a natural Minkowski space.

Di�erent from the usual Euclidian norm, by de�nition, the Minkowski norm   might be zero or

negative. Therefore, its values belong to the integer set  . However, for this study, we are interested in

zero Minkowski norms.

The zero Minkowski norm vectors are the same as those used in Minkowskian relativistic space-time,

where they are named time vectors. Perfect natural vectors   with zero Minkowski norms, ful�lling

the following equality:

for work purposes, they will be called Fermat vectors.

In this Minkowski context, such Fermat natural vectors ful�lling the equation (9), possess a radius

equal to the elements’ sum of the Euclidean part of the vector:

3. Fermat Vectors of Higher Orders

Until this section, one can consider that we have described �rst-order Fermat vectors. Additionally,

there are several ways to de�ne higher-order Fermat vectors.

3.1. Natural Set Power of p-th Order

Natural power sets are constructed as a start-up technique to reach higher-order Fermat vectors.

The p-th order natural power set is easily computed as:

3.2. Natural Vectors of p-th Order

Using the natural power set  , one can construct a subset      of the Minkowski natural

semispace  :

M(⟨v|) = ⟨⟨v| ∗ ⟨m ∣⟩ = ⟨⟨x ∣; −r⟩ = ⟨⟨x ∣⟩ − r = ( ) − r ∈ Z. (8)∑
I=1

N

xI

M(⟨v|) (Z)VN+1

M(⟨v|)

Z

⟨f|

∃⟨f| ∈ (∙) → M(⟨f|) = 0 ⇒ ( ) − r = 0,VN+1 ∑
I=1

N

fI (9)

( ) = r.∑
I=1

N

fI (10)

= {1, , , … , , …} .∙[p] 2p 3p I p (11)

∙[p] ( )SN+1 ∙[p]

(∙)VN+1
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Then, the p-th order Minkowski norms of these vector subsets can be described in a general manner

by:

3.3. Fermat Vectors of p-th Order

Next, a Fermat vector of p-th order    will be de�ned as a vector of the subset 

 possessing a zero Minkowski norm.

That is, p-th order Fermat vectors ful�ll in general:

4. Polynomial Expression of Fermat’s Vectors

4.1. Reverse Fermat Vectors

p-th order Fermat’s vectors ful�lling equation (14) possess an alternative description that can be

expressed as a polynomial of the radius  .

To obtain such a situation, one must be aware that the Fermat vectors of any order are considered

before some other property, perfect natural vectors, their elements ful�lling:

therefore, there exists a set of natural numbers that can be expressed in the form of an alternative

natural vector:  , satisfying:

The vector   can be considered perfect in reverse mode because of the ordering nature of the Fermat

perfect vector elements and the radius:

∀I = 1, N : ∈ ∙ ∧ ∈ ∙ →s
p
I

[p] rp [p]

∀⟨ = ( , , , … , , … , ) ∈ ( ) ⊂ (∙)s
[p] ∣∣ s

p
1 s

p
2 s

p
3 s

p
I s

p
N rp SN+1 ∙[p] VN+1

(12)

.

∀p ∈ ∙ : M (⟨ ) = ⟨⟨ ∗ ⟨m ∣⟩s
[p] ∣∣ s

[p] ∣∣

= ⟨⟨ ∣; − ⟩ = ⟨⟨ ⟩ − = ( ) −x
[p] rp

x|[p]
rp ∑

I=1

N

x
p
I rp

(13)

⟨f
[p] ∣∣

( )SN+1 ∙[p]

∀p ∈ ∙ : ⟨ ∈ (∙ ) → M (⟨ ) = 0 ⇒ ( ) = .f
[p] ∣∣ SN+1

[p]
f

[p] ∣∣ ∑
I=1

N

f
p
I rp (14)

r

0 < < < < … < < … <f
p
1 f

p
2 f

p
3 f

p
I f

p
N rp (15)

{ ∣ I = 1, N} = ⟨a| ∈ (∙)aI VN

∀I = 1, N : = ⇐ r − = .(r − )aI
p

f
p
I aI fI (16)

⟨a|

r > > > > … > > … > > 0.a1 a2 a3 aI aN (17)
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Because of this reversal of the canonical ordering mode in the vector  , such a vector, when

connected with a Fermat vector, can be named a reverse Fermat vector.

4.2. Polynomial representation of Fermat Vectors

Also, one can use the binomial Newton development for each power in the equation (16), then it can be

written:

and one can express the Minkowski zero norm condition for Fermat’s vectors using equations (16) and

(18):

where the polynomial coe�cients on the right side of the equation (19) can be written as:

hence, reverse Fermat’s vectors might ful�ll the equation:

Therefore, knowing the set of vector elements  , the radius de�ned for the Fermat

vectors will be a natural root of the polynomial (21).

If a natural root of the polynomial doesn’t exist, then the vector   does not correspond to a reverse

Fermat vector.

Therefore, what can be called a Fermat polynomial can be written as:

Note that because Fermat polynomials are generated with the elements of the equation (16), there is a

possibly in�nite number of polynomials ful�lling the Fermat condition. This is because a Fermat

vector remains as such when multiplied by any natural scalar factor; see, for example, reference[4].

⟨a|

∀I = 1, N : = (−1 ( ) ,(r − )aI
p ∑

k=0

p

)k p

p − k
rp−kak

I (18)

,

= = (−1 ( )rp ∑
I=1

N

(r − )aI
p ∑

I=1

N

∑
k=0

p

)k p

p − k
rp−kak

I

= (−1 ( )( ) = = N +∑
k=0

p

)k p

p − k
∑
I=1

N

ak
I

rp−k ∑
k=0

p

Ak rp−k rp ∑
k=1

p

Ak rp−k

(19)

= N ∧ ∀k = 1, p : = (−1 ( ) = (−1 ( )⟨⟨ ∣⟩ ,A0 Ak )k p

p − k
∑
I=1

N

ak
I )k p

p − k
a

[k] (20)

0 = (N − 1) +rp ∑
K=1

p

Ak rp−k (21)

⟨a| = { ∣ I = 1, N}aI

⟨a|

(r) = (N − 1) + .FN,p rp ∑
k=1

p

Ak rp−k (22)
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Then, the attached Fermat polynomials possess an in�nite number of roots obtained by multiplying

the original root by any natural number.

Also, one can consider the following sentences:

Every reverse-perfect vector   can be associated with a polynomial of type (22) and be

subject to an equation like (21).

Many polynomials, even those with the equation’s (22) form, possess only real or imaginary roots

and thus cannot be truly associated with Fermat’s vectors.

Only Fermat’s polynomials have a maximal natural root. Thus, one can use the name Fermat

polynomial for polynomials with the structure of the equation (22) but having a maximal natural

root.

Fermat’s polynomials correspond one-to-one with Fermat’s vectors.

Seeking maximal natural roots of the equation (21) constitutes the backbone of an algorithm to

search for general Fermat vectors in  -dimensional Minkowski spaces.

5. The Last Fermat’s Theorem as Second-order (2+1) Dimensional

Case

Here, we discuss some aspects of Fermat’s polynomial theory, which was previously developed in this

study, providing some cases as application examples.

5.1. Last Fermat’s Theorem

The last Fermat theorem is related to a Minkowski space of dimension (2+1) and second-order vectors.

In this case, the Fermat polynomials will have a simple structure like:

which reduces to the equation:

so the roots can be easily written as:

The square root minus sign can be discarded because the radius has to have a maximal value.

⟨a| ∈ (∙)VN

(N + 1)

= + = 2 − 2 ( + ) r + ( + ) ,r2 (r − )a1
2 (r − )a2

2
r2 a1 a2 a2

1 a2
2 (23)

− 2 r + = 0 ⇐ = ( + ) ; = ( + ) ,r2 A1 A2 A1 a1 a2 A2 a2
1 a2

2 (24)

= ± = ( + ) ± .r± A1 −A2
1 A2

− −−−−−−
√ a1 a2 2a1a2

− −−−−
√ (25)
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Also, the square root value has to be a natural number if the equation (25) corresponds to a Fermat

polynomial.

Consequently, if this is the case, the product within the square root must be written as:

this guarantees that the square root argument in the equation (25) will be a squared natural number

yielding a natural number, and thus, one can write:

This last relationship can also be associated with a Pythagorean triple and a Fermat second-order

(2+1)-dimensional vector constructed as:

5.2. Reformulating Fermat’s Theorem

Then, the last Fermat theorem can be reformulated, admitting that natural roots cannot be found for

Fermat polynomials of orders higher than the second.

For instance, the third-order Fermat polynomials:

with the set of coe�cients obtained from any 2-dimensional reverse perfect natural vector 

:

cannot have a maximal natural root, according to Fermat’s theorem.

5.3. The Root Structure of Third-order Fermat Polynomials

The root structure of third-order polynomials has generally been deeply studied from the old times.

They are connected to Diophantine equations, already described in the 3rd century AD, and Fermat’s

theorem.

A recent account of Diophantine equations can be found on the website[10]. Also, references[11][12] can

provide more information on the subject. Durand published an exhaustive review of polynomial root

computing[13].

∃α ∈ ∙ : = 2 → α = ⇒ 2 = 4 ,a1a2 α2 a1a2

2

− −−−
√ a1a2 α2 (26)

= ( + ) + 2α ∈ ∙.r+ a1 a2 (27)

⟨f| = ( ; ( − ) ; ( − )) .r+ r+ a1 r+ a2 (28)

(r) = − 3 + 3 r −F3,3 r3 A1r2 A2 A3 (29)

⟨a| = ( , ) ∈ (∙)a1 a2 V2

{ = ( + ) ; = ( + ) ; = ( + )}A1 a1 a2 A2 a2
1 a2

2 A3 a3
1 a3

2 (30)
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The coe�cients    in the polynomial (29), as constructed in the equation (30), constitute

cases where one should expect one real root and two complex conjugate ones. The real root might be

expressed as:

where the function    corresponds to a complicated expression involving the natural

parameters    and their powers; also, square and cubic roots appear in the function via direct

and inverse summands. A constant factor:  , is also included in direct and inverse formats. Such a

cubic root element might be the �rst signal indicating the di�culty of obtaining a natural root from

the two natural variable components   polynomial (29).

Wolfram Alpha AI system[14]  has provided the formula of the real root o�ered in a raw form. After

simplifying and rearranging terms, one can write it as:

using:

Fourth- and higher-order polynomials can also be candidates for not having a natural root. However,

the discussion of higher-order polynomials is left for further study and development.

5.4. Fermat’s Second-Order Polynomials in Higher-dimensional Minkowski Semispaces

Also, higher-dimensional natural semispaces and the associated Minkowski extensions provide even

more complicated Fermat polynomials, where the chance of obtaining a natural root might vanish.

Another interesting fact is that second-order Fermat vectors correspond to those contained in natural

vector semispaces of arbitrary dimensions, a well-known occurrence that was recently studied[4]. A

computational search up to dimension 200 has found many second-order Fermat vectors without

problems.

The polynomials associated with this situation are related to Fermat’s reverse natural vectors 

. The related second-order polynomials can be easily written similarly to the equation

(24):

{ , , }A1 A2 A3

r = + + ϕ ( ; ) = + ϕ ( ; ) ,a1 a2 a1 a2 A1 a1 a2 (31)

ϕ ( ; )a1 a2

{ , }a1 a2

2–√3

{ , }a1 a2

r = + + 2 + Sa1 a2 a1a2
2–√3

S

1

2–√3
(32)

S = .[3 ( + ) + ]a1a2 a1 a2 9 + 4( − )a1 a2
2

a1a2

− −−−−−−−−−−−−−−−
√

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√3 (33)

⟨a| ∈ (∙)VN

(N − 1) − 2 r + = 0 ⇐ = ⟨⟨a ∣⟩; = ⟨⟨ ∣⟩ , ,r2 A1 A2 A1 A2 a
[2] (34)
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where:

and therefore, the possible maximal natural root can be easily rewritten, extending the equation (25),

after simplifying a factor 2:

where the discriminant   can be written in terms of the reverse Fermat vector elements as:

wherever   is a logical Kronecker’s delta1.

To admit that a Fermat vector with a maximal natural root has been obtained, the discriminant must

be a squared natural number, that is:  .

Computationally, there seems to be no limit to the dimension of the reversed Fermat’s vector to obtain

second-order Fermat’s polynomials. Based on empirical grounds only, such a statement must be

considered a conjecture.

6. Further Considerations

Previously, in this paper, the problem of �nding Fermat’s vectors has been transformed into the

computation of a maximal natural root of a polynomial, which can be constructed for each reverse

perfect natural vector. Therefore, looking for an algorithm to obtain the maximal root of Fermat’s

polynomials is worthwhile.

In this line of thought, a paper by Davenport and Mignotte[15] de�nes obtaining a bound of maximal

polynomial roots.

The procedure is related to an old one described in the 19th century by Dandelin, Lobachevski, and

Grae�e (DLG), developed in detail by Durand[13] and also in[16].

Knowing if a maximal natural root can be attached to a given reverse perfect vector is interesting

enough because this knowledge might connect a tested vector with its Fermat nature.

= ⟨⟨a ∣⟩ = = ⟨⟨ ∣⟩ = ,A1 ∑
I=1

N

aI A2 a
[2] ∑

I=1

N

( )aI
2 (35)

= (N − 1 ( + ) = (N − 1 ( + )r+ )−1 A1 − (N − 1)A2
1 A2

− −−−−−−−−−−−−
√ )−1 A1 Δ

−−
√ (36)

Δ

Δ = 2 δ(I > J) − (N − 2)∑
I=1

N

∑
J=1

N

aI aJ ∑
I=1

N

a2
I

= ((2 δ(I > J) ) − (N − 2) )∑
I=1

N

aI ∑
J=1

N

aJ aI

(37)

δ(I > J)

Δ ∈ ∙[2]
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Details of the DLG procedure can be obviated because it can be retrieved from references[13][16]. The

basic technique refers to constructing a new polynomial whose roots are powers of the original ones.

This is made by iterating the polynomial coe�cients at each increasing root power until a stable set of

root values is reached for a given precision.

6.1. DLG method

Just after the �rst iteration of the DLG method, one can obtain an approximate value of the maximal

root as:

which using:

transforms into a simple expression:

The third-order (2+1)-dimensional problem might serve to test the possibility of obtaining an upper

bound to the radius of a given reverse perfect vector, as then one can write the maximal root using:

considering that the expression on the right is positive for the pairs of natural numbers  .

6.2. Knuth Method

The paper of reference[15]  also mentions the Knuth criterion for obtaining the maximal root of a

polynomial. One can write, in our case, with Fermat’s polynomials:

which constitutes another possible evaluation of the maximal root, which is more involved as the

whole coe�cients must be known. For the case of third-order (2+1)-dimensional Fermat vectors, it

reduces to:

< = 9 − 6(N − 1 ,rmax

9 − 6(N − 1)A2
1 A2

(N − 1)2
((N − 1 ))−1A1

2
)−1A2 (38)

= ∧ = 3(N − 1B1 (3(N − 1 ))−1A1
2

B2 )−1A2 (39)

< − 2rmax B1 B2 (40)

rmax < 3[ − ( + )]
3

4
( + )a1 a2

2
a2

1 a2
2

= [4 − ]
3

4
a1a2 ( − )a1 a2

2

(41)

{ , }a1 a2

≤ 2 max{ ∣ k = 1, p + 1} ,rmax  | |Ak−1

− −−−−
√k (42)

≤ 2 max{1; | | ; ; } ,rmax A1 | |A2

− −−−
√ | |A3

− −−−
√3 (43)
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remembering that one can write taking into account the Newton formulation factors:

then, the equation (43) can be easily rewritten in the present case as:

7. Conclusion

Search for Fermat’s vectors is equivalent to setting up a Fermat polynomial with integer coe�cients

using a reverse perfect Fermat vector. Fermat’s polynomials have a natural number root that coincides

with the radius of the associated Fermat vector.

Succinctly: To test a reverse perfect natural vector   as a Fermat vector, search for a natural

maximal root of the corresponding Fermat’s polynomial (22); then, if this natural root exists,   say,

one can construct a Fermat vector of the form:

here the reversal operator R, as seen in reference[17], has been used, to indicate an order reversal of the

elements of the original vector.
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Footnotes

1 A logical Kronecker’s delta, in this case, yields one if I>J and zero if I<J.
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