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This study introduces a framework that employs Gaussian Processes (GPs) to develop high-�delity

equation of state (EOS) tables, essential for modeling material properties across varying temperatures and

pressures. GPs offer a robust predictive modeling approach and are especially adept at handling

uncertainties systematically. By integrating Error-in-Variables (EIV) into the GP model, we adeptly navigate

uncertainties in both input parameters (like temperature and density) and output variables (including

pressure and other thermodynamic properties). Our methodology is demonstrated using �rst-principles

density functional theory (DFT) data for gold, observing its properties over maximum density compression

(up to 100 g/cc) and extreme temperatures within the warm dense matter region (reaching 300 eV).

Furthermore, we assess the resilience of our uncertainty propagation within the resultant EOS tables under

various conditions, including data scarcity and the intrinsic noise of experiments and simulations.
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I. Introduction

High-�delity Equation of State (EOS) models are crucial for accurately characterizing material properties

under varying temperature and pressure conditions. Key attributes of an EOS include precision, consistency,

robustness, and the capacity to predict beyond the calibrated domain. However, the impact of data uncertainty

is often overlooked but is critical when selecting an EOS. These data are inherently uncertain, with variations

from measurement and simulation processes. Integrating these uncertainties into an EOS model poses a

compelling challenge. Existing EOS modeling methods such as QEOS/XEOS[1][2][3]  do not account for these

data uncertainties, which can result in a signi�cant underestimation of the total uncertainty in regions of

extrapolation and potential over�tting in areas of interpolation.

To capture the data uncertainties in the EOS table generation systematically, Ali et al.[4] present a methodology

for robustly propagating uncertainties from experimental data to multi-phase EOS (MEOS) models developed
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at Lawrence Livermore National Laboratory[5] and then to simulations of application systems, allowing for a

high con�dence level in predictions based on this methodology. The integration of Monte Carlo methods for

uncertainty propagation further enhances the reliability of the results, ensuring that the derived MEOS

models incorporate the inherent uncertainties from experimental measurements.

Creating an ensemble of EOS tables directly responds to these uncertainties, providing a spectrum of possible

outcomes representing the range of data variability. Despite the success of this method in constructing

uncertainty-aware EOS for copper, the primary challenge lies in the ef�ciency of this approach. Generating

hundreds to thousands of EOS tables is computationally intensive, requiring signi�cant resources and time.

This could limit the method’s practical application, especially when rapid results are needed or when

resources are constrained.

Gaussian Processes (GPs) offer a Bayesian kernel-based alternative for modeling and predicting uncertainties,

presenting a substantial shift from traditional Monte Carlo methods in the development of EOS. GPs

inherently provide predictive variance, furnishing error bars or con�dence intervals for each prediction[6].

This capability circumvents the necessity of generating an extensive ensemble of EOS tables, potentially

ranging from hundreds to thousands, to represent uncertainty, thereby streamlining the prediction process.

The strengths of GPs in this context include:

Predictive variance: GPs naturally measure uncertainty with each prediction, which can be interpreted as

predictive variance. This feature is precious when it’s crucial to quantify the con�dence in the model

predictions.

Avoidance of ensembles: Unlike Monte Carlo simulations, which require the generation of a large number

of samples to estimate uncertainty, GPs can estimate uncertainty without creating an ensemble of EOS

tables. This can signi�cantly reduce computational overhead.

Flexibility and adaptability: Due to their non-parametric nature, GPs are �exible in modeling complex

functions and can adapt their complexity to the data. This makes them suitable for capturing the subtle

different behaviors of materials under different conditions without imposing rigid functional forms such

as the baseline EOS models[5][7].

Incorporating prior information: GPs allow the inclusion of prior knowledge through the choice of kernel

functions, which can encode assumptions about the smoothness, periodicity, or other properties of the

underlying process, such as the thermodynamic consistency in the EOS construction[8].

Handling of sparse data: GPs are particularly useful when working with sparse datasets, common in

experimental settings where data collection is expensive. Because they can provide detailed uncertainty

information, GPs can be more data-ef�cient, requiring fewer data points to make robust predictions than
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other methods. The main advantage in the context of EOS development is that GPs can streamline the

process by providing a direct estimate of the uncertainty rather than having to interpret the spread of an

ensemble of predictions, each based on slightly different assumptions or input data variations.

In conventional GP models, the presumption is that input variables are noise-free, with uncertainty residing

solely in the output observations. However, in this study, we have adopted an Error-in-Variables (EIV) GPs

approach[9][10][11][12], which acknowledges and incorporates uncertainties in both inputs and outputs to model

the inherent uncertainty within the EOS. We will showcase this methodology by analyzing experimental and

simulation data for gold, examining the resilience of our uncertainty propagation in the resulting EOS against

data scarcity and experimental and simulation noise challenges.

Research into the EOS for gold (Au) has been pivotal in experimental and theoretical studies, given Au’s

signi�cant role in diverse scienti�c and industrial contexts. The Au EOS has undergone extensive

investigation through dynamic compression methods, such as shock wave[13][14][15]  and diamond anvil cell

(DAC) experiments for static compression[16][17][18][19][20][21][22]. These techniques offer physical insights into

Au’s compressibility, phase transitions, and thermal behavior under extreme conditions. At the same time,

signi�cant efforts have been made on the theoretical front using �rst-principles calculations, especially

within the density functional theory (DFT) framework[23][24][25][26][27][28][29]. These models have been

increasingly re�ned, enhancing our predictions of gold’s behavior under high pressures and temperatures.

The synergy of these experimental and theoretical efforts is essential for a comprehensive understanding of

the Au EOS, which holds implications for the �elds of geophysics and materials science. However, despite

these advancements, there remain notable discrepancies in the theoretical data, especially at high

pressures[23][24][25][26][27][28][29]  , underscoring the need for more precise theoretical predictions. Both

experimental and theoretical studies focusing on gold’s pressure-induced behavior, particularly regarding its

melting point and structural transformations, are of great interest. Previous investigations have revealed

inconsistent results concerning the sequence of gold’s pressure-induced structural transformations, showing

deviations from experimental �ndings. These inconsistencies between theoretical and experimental

outcomes pose challenges in advancing the Au EOS, mainly due to uncertainties stemming from these

discrepancies.

This paper is devoted to integrating GP methodologies into uncertainty propagation (UP), elucidates their

theoretical underpinnings, and discusses their bene�ts for developing EOS. Our focus in this paper is directed

towards the deployment of an uncertainty-aware EOS generation tool (UEOS) applied to Au, emphasizing the

propagation of uncertainty through the EIV-GPs. We outline the fundamental principles of constructing EOS

in materials with a speci�c application to Au. Subsequently, we examine the various sources of uncertainty in
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the data, encompassing measurement and simulation uncertainties. In conclusion, we propose a strategy for

advancing uncertainty through the UEOS framework for Au and discuss the consequential implications of our

�ndings.

II. Gaussian Processes in the Equation of State: Handling Input and

Output Noise with Squared Exponential Kernels

GPs present a formidable option for the propagation of uncertainties in the development and construction of

EOS tables. EIV-GPs distinguish themselves by inherently accounting for noise in both inputs and outputs

within the model, thereby offering a predictive paradigm that avoids the reliance on ensemble tables

commonly necessitated by Monte Carlo simulations. This section elucidates the employment of EIV-GPs with

a squared exponential kernel in constructing EOS tables, with a focus on the computation of predictive means

and variances, as well as the signi�cance and application of derivatives within the EIV-GPs framework.

At their core, GPs de�ne a prior over functions and, given data, infer a posterior function space that captures

the underlying data-generating process[6][30]. The kernel or covariance function characterizes the

smoothness and variation of these functions, embodying the GP’s assumption about the data correlation. In

EOS development, the underlying experimental and theoretical data are often contaminated with noise. EIV-

GPs[9][10][11][12] address this by modeling the noise directly in the training data set that a local linear Taylor

expansion about each input point is used. This approach allows the input noise to be reformulated as output

noise proportional to the squared gradient of the GP posterior mean. The formulation of the EIV-GPs approach

is detailed in the Appendix section.

Figure 1. Schematic �ow chart outlining the general process for the UEOS. The process starts with

simulation/experiment data and uncertainties feeding into GP kernels and an optimization scheme, leading to the

UEOS engine’s hyperparameter optimization. This optimization is connected to GP and UP operations, such as

derivatives, additions, and subtractions, that in�uence the resulting energies.
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We have implemented the EIV-GPs methodology in the uncertainty-aware EOS outlined via a �ow chart in

Fig. 1. The work�ow takes simulation or experimental data and their respective uncertainties into GP kernels

alongside a designated optimization scheme. This integration precipitates the hyperparameter optimization

within the UEOS engine. After this optimization, GP and UP operations are employed, which encompass

derivatives, additions, and subtractions. These operations are pivotal in determining the resulting internal

energy, Helmholtz, and Gibbs free energies, each appended with predictive uncertainties. The derived

uncertainties and their mean values, indicative of the EOS energies, can then be looped back into the UEOS

engine to extrapolate additional thermodynamic properties.

GPs are inherently adaptive due to their non-parametric nature, which allows them to model complex

functions and tailor their complexity to the speci�cs of the data. This adaptability renders them particularly

effective for capturing the complex behavior of materials under varying conditions without the constraints of

rigid functional forms, such as those imposed by the Vinet EOS model[31], a widely recognized standard in EOS

modeling[7]. Figure 2 exempli�es the versatility of the UEOS engine in concurrently constructing the energy

vs. density and pressure vs. density equations of state, along with the uncertainties predicted and propagated

from the DFT cold energy data.

The UEOS tool offers a compelling approach for handling measurement and simulation uncertainties in GPs

by explicitly introducing latent variables and probability distributions to model input and output errors. This

allows for more accurate predictions and a better understanding of the underlying system. Additionally, it

provides a way to estimate measurement and simulation uncertainties, which can be useful for identifying

and correcting errors in measurements and simulations. This approach facilitates the estimation of

uncertainties in both measurements and simulations, providing instrumental help in identifying and

amending errors within these domains. Figure 3 exempli�es this application, demonstrating the correlation

between simulation data and experimental results. The analysis incorporates input uncertainties (such as

densities) from experiments and compares them against outputs (like pressure) obtained from simulations

and experimental procedures[32][33]. This integrated analysis underscores the synergy between experimental

data and computational models, enhancing the accuracy and reliability of scienti�c �ndings.
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Figure 2. The Au EOS is derived by inputting DFT data into EIV-GPs. This process facilitates

the automatic computation of the derivative of the cold energy with respect to density,

incorporating the predicted uncertainties within the model’s output
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Figure 3. EIV-GPs present a sophisticated method for correlating uncertainties derived from

simulations and experiments. The plot illustrates the predicted mean and con�dence

intervals of the Hugoniot curve for B C from the theoretical database, FPEOS[33], and

experimental results[32]. This methodology enhances the understanding of discrepancies

between theoretical predictions and experimental data, enabling the identi�cation and

correction of potential errors in both measurement and simulation processes.

III. First-principles Helmholtz Free Energy for Gold

We conduct a detailed analysis of the system’s free energies in developing our EOS for Au. This analysis

deliberately excludes consideration of electron-phonon coupling at �nite temperatures. Instead, we categorize

free energy into ground-state (cold), electron-thermal, and ion-thermal terms. Each component uniquely

re�ects the system’s characteristics under varying thermal and pressure conditions. For the precise derivation

of these energies, we have utilized plane-wave pseudopotential methods[34][35] within the DFT. We employed

a range of exchange-correlation functionals, including the local density approximation (LDA)[36], Perdew-

Burke-Ernzerhof (PBE)[37][38], PBE for solids (PBEsol)[39], and relativistic effects[40][41], crucial for ensuring a

comprehensive and accurate representation of the system’s behavior. Furthermore, by exploring different

4
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exchange-correlation forms within DFT, we enhance our ability to assess uncertainties, thus providing a more

robust understanding of the system’s properties under various thermal and pressure conditions. We utilized

Born-Oppenheimer Molecular Dynamics (BOMD) simulations to probe low-temperature liquid states. Further

enhancing our approach, we incorporated the self-consistent phonon technique to precisely quantify the

contributions of temperature-dependent thermal vibrations, a method thoroughly developed by Tadano et

al. [42].

To accommodate the broad range of densities ( ) and temperatures (up to 300 eV) for the Au EOS

table, we have generated an optimized norm-conserving Vanderbilt pseudopotential (ONCVpsp)[43][44]. This

Au ONCVpsp, comprising a total of 33 valence states ( , , , , ) and a local potential cutoff radius

of    demonstrates both accuracy and ef�ciency in generating the DFT data necessary for

constructing the Au EOS. This pseudopotential’s accuracy is af�rmed by comparing bulk properties with

existing theoretical and experimental results, as illustrated in Table  I. The extensive valence state

con�guration ensures transferability under extremely high pressure and temperature conditions due to

electron excitation. Additionally, to guarantee the self-consistent convergence of total energy to less than one 

 per atom and pressure in  , we have set the plane-wave kinetic-energy cutoff at 175 Hartree.

XC functional  (Å )  (g/cc)  (GPa)

LDA 16.57 19.72 194 5.61

PBE 17.96 18.20 139 5.83

PBEsol 17.00 19.22 175 5.90

LDA+SO 16.46 19.85 199 5.78

PBE+SO 17.81 18.35 144 5.83

PBEsol+SO 16.92 19.31 179 5.88

Table I. Comparison of equilibrium volume  , bulk modulus  , and its pressure derivative   obtained through

various exchange-correlation functionals (LDA, PBE, PBEsol, and spin-orbit coupling). Among these, PBEsol and

PBEsol with S–O coupling yielded the most accurate results.

0.5 − 5ρ0 ρ0

4f 14 5s2 5p6 5d10 6s1

= 1.1 bohrrc

meV kbars
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3 ρ0 B0 B′

0

V0 B0 B′
0
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Method  (Å )  (GPa)

ONCVpsp 17.00 175 5.90

FP-LMTO[29] 17.10 171 5.78

Exp.

T = 300 K[21] 16.96 167 5.88

T = 0 K[45] 180

Table II. Comparison of equilibrium volume  , bulk modulus  , and its pressure derivative   obtained through

various methods. The �ndings reported here are based on these optimal outcomes from the PBEsol functional.

The Helmholtz free energy ( ) for each phase is a sum of three terms: 

where   is the total energy at T=0 for the crystalline phase,   is the ion-thermal contribution from the

thermal vibration of ions in solids and liquids, and    represents the electron-thermal contribution from

excited electrons.

In our current work, we aim to showcase the construction of the Au EOS using the UEOS tool, with a primary

focus on the solid face-centered cubic (fcc) phase and the liquid phase. This targeted approach is in

preparation for a more extensive exploration, which will be detailed in a forthcoming paper[46]. We will

present the multiphase Au EOS and the corresponding thermodynamic properties in that comprehensive

study. This step-by-step examination allows for a more precise understanding and systematic development of

the Au EOS, setting the stage for the broader, in-depth analysis planned for subsequent publication.

This section outlines the methodology employed to derive the Helmholtz free energy from DFT calculations.

V0
3 B0 B′

0

V0 B0 B′
0

F = U − TS

F(ρ,T ) = (ρ) + (ρ,T ) + (ρ,T ),Fcold Fvib Felec

Fcold Fvib

Felec
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Figure 4. Comparison of cold EOSs for fcc Au using different density functional forms and S–O

coupling. For the energy difference, we use PBEsol as the reference.

A. Ground state energy

The ground state energies of fcc solids were calculated using DFT within the framework of plane-wave

pseudopotentials. We utilized various exchange-correlation functionals within the DFT framework, including

LDA, PBE, PBEsol, and the relativistic effect. Table  I lists the equilibrium bulk properties of Au based on

various DFT functionals. Among these, PBEsol and PBEsol with S–O coupling yielded the most accurate bulk

properties, as indicated in Table II.
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Figure 5. (a) Au isotherm data from DFT calculations (solid line), DAC[22] (orange hexagons), and

tDAC[20] (blue squares) measurements. (b) The percent difference between DFT isotherm data and

experiments.

We performed an in-depth comparison of isotherm pressure against density using our DFT calculations and

diamond anvil cell (DAC) data[22], over a density span of 19.28 ( ) to 26.5 g/cc. This analysis examined the

pressure differences between our DFT results and the DAC data. The outcomes demonstrate a notable

alignment between the two, with an overall consistency within a 2.5% margin, as depicted in Figure  5 (b).

Additionally, we extended our comparison to higher pressures, reaching up to 600 GPa (36 g/cc), by

contrasting our DFT data with recent �ndings using a toroidal diamond anvil cell (tDAC), as reported by

Dewaele et al.[20]. In these high-pressure conditions, the discrepancies between DFT and tDAC data become

more pronounced, culminating in differences as large as 8% around 27 g/cc.

B. Electron-thermal free energy

In our study, akin to the approach used in ground-state calculations for solids, we determined the electron-

thermal free energy by solving the Kohn-Sham equation, integrating Fermi-Dirac statistics to model electron

occupancy at �nite temperatures. We selected the face-centered cubic (fcc) solid at T = 0 K as the reference

ρ0
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con�guration for ions. We computed both the internal energy, , and the free energy,  , in a

self-consistent manner across each density ( ) and temperature (T) grid point. Additionally, we incorporated

snapshots from BOMD simulations as alternate reference con�gurations for ions. This method enabled us to

evaluate the uncertainties associated with the electron-thermal free energy, particularly those arising from

variations in electron occupation at �nite temperatures.

C. Ion-thermal free energy

To calculate the Helmholtz free energy    and internal energy  , we employed self-consistent phonon

(SCP) calculations. The SCP theory is used for calculating temperature-dependent phonon frequencies

nonperturbatively. This involves assuming an effective harmonic phonon frequency and a polarization vector,

which are used to de�ne an effective harmonic Hamiltonian. The renormalized phonon frequencies and

eigenvectors are determined to minimize the vibrational free energy within the �rst-order cumulant

approximation. The SCP theory involves dealing with the anharmonic system described by a Hamiltonian that

includes a harmonic part and anharmonic terms of different orders. While SCP accounts for quartic

anharmonicity, it neglects cubic anharmonicity. The improved self-consistent (ISC) phonon theory, however,

includes an additional three-phonon term perturbatively. This is expressed as the Helmholtz free energy from

a bubble diagram associated with cubic anharmonicity[42].

a. Vibration free energies for solids

Within the framework of SCP theory, the extraction of second, third, and fourth-order interatomic force

constants (IFCs) is achieved through �rst-principles calculations. This process entails systematically

displacing atoms within a supercell and subsequently computing the forces that arise from these

displacements. The resulting data are then �tted to accurately estimate the force constants. Speci�cally, for fcc

Au, we conducted 65 distinct atomic displacements in a supercell comprising 64 atoms at each density to

determine these force constants. We have examined the simulation size effects on the energy by employing

supercells containing 108 and 256 atoms, respectively. The discrepancy is less than    on average for the

density range we presented in this work. The uncertainty due to the choice of simulation sizes will be

addressed in Sec.IV. Additionally, the anharmonic IFCs are derived using the Compressive Sensing Lattice

Dynamics (CSLD) method[42][47].

The SCP equation is solved using numerical algorithms such as the least absolute shrinkage and selection

operator (LASSO) technique. The   mesh   of the SCP is set commensurate with the supercell size,

and an inner    mesh is increased for convergence of anharmonic phonon frequencies. Effective dynamical

(ρ,T )Uele (ρ,T )Fele

ρ

Fvib Uvib

1%

q (4 × 4 × 4)

q
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matrices are converted into real-space effective second-order IFCs, which are used to calculate anharmonic

phonon frequencies on a denser  -point grid. For the Au fcc solid, a  -point grid is employed.

Utilizing SCP theory to compute the ion-thermal free energy offers a notable advantage over BOMD, as it

maintains the crystalline symmetry in solids. Simultaneously, SCP theory ef�ciently calculates the vibrational

free energy.

b. Vibration free energies for liquid

For low-temperature liquids, our SCP calculations are based on con�gurations sampled from BOMD

simulations. We have calculated the �nite-temperature IFCs and frequencies using the SCP method, which

was previously detailed for the solid phase. To extend the internal and free energy models of the SCP to higher

temperatures in the warm dense matter region, we used the cell model[5][7], which enforces an ideal gas limit

for   as T  . This free-energy model is represented by the following equations: 

where   is the  -dependent energy de�ned in the cell-model[5][7]. 

 is the  -dependent Debye temperature derived from DFT  -dependent elastic constants (Fig. 6), and 

For the internal energy, we adopt the following equation so it satis�es the ideal gas limit as T  : 

This approach allows for a more comprehensive modeling of internal and free energies across various

temperature ranges.

q (51 × 51 × 51) q

→ T/atomC ion
V

3
2
kB → ∞

(ρ,T ) = (ρ,T ) − T ln[erf( )− exp(− )],Fvib,liquid Fvib,solid kB
T ∗

T

2

π−−√

T ∗

T

−−−
√

T ∗

T

kBT
∗ ρ

(ρ) = ,kBT
∗

Mk2
B[θ(ρ)R(ρ)]2

2ℏ 2

θ(ρ) ρ ρ
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3M

4πρ
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3
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Figure 6. Debye temperature of gold as a function of density from DFT calculations (orange

dots) and experimental data[48]. The blue solid line represents a Gaussian Process (GP) �t,

with the 95% con�dence interval indicated by the shaded region.

IV. Sources of DFT data uncertainty

Uncertainty quanti�cation (UQ) in DFT calculations is paramount in assessing the credibility and precision of

simulation outcomes. In these calculations, many factors contribute to uncertainty, encompassing the choice

of exchange-correlation functionals, various numerical approximations (including distinct algorithms for

solving the Kohn-Sham equation), and establishing convergence criteria. Consequently, a continuous and

dedicated research effort is aimed at quantifying and reducing these uncertainties to enhance the �delity of

DFT simulations[49][50][51][52].

Benchmarking plays a pivotal role in evaluating the uncertainties associated with DFT techniques. It involves

comparisons of computed properties with experimental data or high-precision theoretical models such as

quantum Monte Carlo or advanced all-electron electron-structure methods. In our pursuit of benchmarking

against experimental data and the all-electron FP-LMTO method[53]  for the ground-state EOS, we have
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undertaken a comprehensive approach. This approach extends to utilizing two distinct pseudopotential

plane-wave codes[34][35], strategically chosen to probe potential discrepancies stemming from divergent

numerical algorithms.

The examination of property convergence, considering both the basis set’s size and the simulation’s

dimensions (number of atoms), is a pivotal aspect of our uncertainty assessment. In practice, utilizing larger

basis sets or supercell dimensions frequently enhances result accuracy, albeit at the cost of increased

computational resources. To ascertain the limits of basis set sizes and supercell dimensions and to quantify

the accompanying errors, we consistently integrate basis set extrapolation techniques as a fundamental and

standard element of our analytical methodologies.

Source of uncertainty

Exp.-Theory 5% 1% 3%

Theory 1% 1% 2% 4%

Table III. Sources of uncertainty in our DFT free-energy training data for the development of the UEOS table for

Au. Exp.-Theory accounts for the model discrepancy between DFT data and experiments. The assessments on the

theory side include simulation size effect, BOMD con�guration samplings, and higher-order terms for the SCP

calculations.

Additional sources of uncertainty in our analyses include the incorporation of higher-order terms in SCP

calculations, statistical sampling through BOMD for electron-thermal properties, and using SCP calculations

to model the liquid state. These factors introduce complexity and potential variations in our results,

necessitating careful consideration and thorough quanti�cation of their impact on our overall uncertainty

assessment.

The various sources of uncertainties related to the generation of our DFT database are comprehensively

outlined in Table  III. We have meticulously integrated these uncertainties into EIV-GPs to create an

uncertainty-aware EOS table for Au.

Ucold Felec Fvib,qha ΔFvib,ah
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V. Uncertainty-aware EOS for gold

The EOS table is meticulously constructed by evaluating the free energy across a comprehensive grid of

temperatures and densities, utilizing the UEOS tool, as depicted in Fig.  1. At each grid point, we derive the

pressure ( ) and other thermodynamic properties directly from the Helmholtz free energy. For example, the

thermal pressure   is calculated using the equation: 

 Here,   represents the total mass in the system. This pressure calculation uses the energy-density isotherm

via the EIV-GP engine, as demonstrated in Fig. 2.

Furthermore, the Gibbs free energy  , which is de�ned as  , simpli�es

to  . This allows for a direct evaluation of the Gibbs free energy from the

Helmholtz free energy   within the EIV-GP framework, ensuring a robust and accurate determination

of these critical thermodynamic quantities with predicted uncertainties propagated from the free energy.

P

P

P (ρ,T ) =
ρ2

M
( )

∂F(ρ,T )

∂ρ T

M

G(ρ,T ) G(ρ,T ) = F(ρ,T ) + P (ρ,T ) M
ρ

G(ρ,T ) = F(ρ,T ) + ρ( )
∂F(ρ,T)

∂ρ T

F(ρ,T )
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Figure 7. The total free energy with predicted uncertainty is constructed using the EIV-GP engine. The engine takes

the free energy components: (a) cold energy, (b) electron-thermal free energy, and (c) ion-thermal free energy with

uncertainties as training data and processes them to generate (d) the total free energy with predicted uncertainty.

A. Helmholtz free energy with predicted uncertainties

Figure  7 illustrates the method of computing the Helmholtz free energy, denoted as  , over a

temperature range from 0 to over 50,000 K. To construct the total free energy along with its predicted

uncertainty, we utilize the EIV-GP engine. This engine operates by taking the individual components of free

energy, each accompanied by their respective uncertainties, as input data. It then processes these inputs to

generate a comprehensive total free energy, complete with a quanti�ed uncertainty prediction.

F(ρ = 2 ,T )ρ0
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Figure 8. Helmholtz free energy comparison between U790 and Y790 across a broad

spectrum of densities, ranging from 16 g/cc to 100 g/cc, and temperatures spanning from 0 K

to 10  K. The comparative analysis reveals that the agreement between Y790 and U790

remains within a narrow margin of less than 10%.

6
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Figure 9. (a) Comparing the internal energy of U790 and Y790, a notable consistency is observed across various

densities (16 to 100 g/cc) and at speci�c temperatures (900,000 K, 950,000 K, and 1,010,479 K). (b) Total thermal

pressure comparison between U790 and Y790.

B. Comparisons with L790 and Y790

Comparative analysis of the newly developed U790 is essential, particularly when compared with the well-

established EOS table for Au. Here, we speci�cally focus on contrasting the Helmholtz free energy pro�les

between the recently developed U790 and the Lawrence Livermore National Laboratory (LLNL) L790 and Y790

EOS tables. It is important to note that the L790 is based on the Thomas-Fermi electron-thermal model, while

Y790 was generated from the Purgatonio electron-thermal model. These fundamental differences in the

modeling approach account for the observed discrepancies between U790 and these two well-established

tables. Such disparities, while expected, offer valuable insights into the limitations and applicability of each

model, especially in high-pressure and high-temperature conditions where precise EOS data are crucial. This

close correlation underscores the reliability and accuracy of the proposed U790 table in replicating the

thermodynamic properties of materials under a wide range of extreme conditions. This comparison not only

underscores each model’s unique characteristics but also aids in re�ning our understanding of materials’

behavior under extreme conditions.
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Figure 10. Comparison of shock Hugoniot (pressure versus density) from the initial density 

 g/cc calculated in this work (U790), L790, Y790, and experiments in the literature[13]

[14] shows the alignment of current results with established benchmarks in the �eld.

= 19.28ρ0
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Figure 11. Comparison of shock Hugoniot Us-up relation from the initial density   g/cc

calculated in this work (U790), L790, Y790, and experiments in the literature[13][14].

C. Shock Hugoniot comparison

One key property derived from the EOS table is the shock Hugoniot data, which is obtained by solving the

Rankine-Hugoniot equation. This equation encompasses the internal energy, density, and pressure.

Benchmarking the Hugoniot data against existing EOS tables and experimental results is an essential aspect

of the validation process.

Figure 10, which displays the Hugoniot pressure versus density, clearly exhibits a signi�cant correlation with

the L790 and Y790 and experimental �ndings[13][14]. This consistency validates the current methodologies for

calculating Hugoniot pressure across various densities, af�rming their accuracy in line with established

models like the L790 and Y790.

= 19.28ρ0
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Furthermore, Figure  11 explores the relationship between shock velocity and particle velocity, providing

additional support for the validity of the current approach. The close alignment of these results with both the

L790, Y790, and existing experimental data serves as a testament to the precision and reliability of the UEOS

tool.

In summary, our Hugoniot data underscore the capability of the UEOS tool in accurately reproducing and

understanding intricate physical phenomena, especially in the �eld of high-pressure physics. The agreement

between new �ndings and well-established data is pivotal for propelling the �eld forward, offering a solid

basis for future investigations and potential applications in the plasma physics �eld.

VI. Conclusions

A key idea in our methodology is integrating the Error-in-Variables (EIV) approach into the Gaussian Process

(GP) model. This strategy adeptly manages uncertainties inherent in both input parameters (such as

temperature and density) and output variables (including pressure and other thermodynamic properties). The

robustness of our approach is demonstrated through its application to �rst-principles density-functional-

theory (DFT) data for gold, meticulously examining its behavior at maximum density compression (up to 100

g/cc) and extreme temperatures within the plasma region (up to 100 eV). Moreover, we critically evaluated the

resilience of our uncertainty propagation techniques within the generated EOS tables under various

challenging scenarios, including data scarcity and the intrinsic noise of experimental and simulation data.

However, our study also acknowledges the computational cost and limitations inherent in using GPs. While

they are incredibly versatile in modeling complex functions and tracking uncertainty, their scalability to large

datasets is a signi�cant challenge. The primary constraint is the   computation cost required for matrix

factorization to evaluate marginal likelihoods and make predictions. Additionally, the computational burden

of kernel matrix calculations  ,    being the dimension of input data, and the extensive memory

requirements    can be substantial, often imposing a hard limit on the size of problems that can be

tackled. While there exists a rich body of literature on special cases and approximations of GPs that are more

computationally ef�cient, these models are not without their limitations. For instance, certain functions

cannot be represented accurately by a Gaussian process, and any deviation from Gaussian observation

processes necessitates additional approximations and computational work.

In conclusion, our work illustrates the potential of integrating advanced statistical methods like EIV-GP into

materials science research, especially in constructing comprehensive EOS tables. Despite the computational

challenges, the bene�ts of such approaches in accurately modeling material behavior under extreme

O( )N 3

O(D )N 2 D

O( )N 2
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conditions are undeniable. Future research should focus on optimizing these models for greater

computational ef�ciency and exploring their application in a broader range of materials and conditions.

Appendix: Handling Input and Output Noise with Squared Exponential

Kernels

At their core, GPs de�ne a prior over functions and, given data, infer a posterior function space that captures

the underlying data-generating process[6][30]. The kernel or covariance function characterizes the

smoothness and variation of these functions, embodying the GP’s assumption about the data correlation. EIV-

GPs[9][10][11][12]  address this by modeling the noise directly in the observations that a local linear Taylor

expansion about each input point is used. This approach allows the input noise to be reformulated as output

noise proportional to the squared gradient of the GP posterior mean. The EIV-GP approach is described as

follows:

Given a pair of measurements   and  , where   is a  -dimensional input and   is the corresponding scalar

output, we have: 

with    and  , where    is diagonal since each input dimension is assumed to be

independently corrupted by noise.

Under the GP model, the output as a function of the input is given by: 

However, due to the noise in the inputs, we consider a Taylor expansion around the latent state  , which leads

to: 

The derivative of a GP is another GP, thus we can express the probability of an observation    given the

function   as: 

 , where   is the gradient of the GP function value for the  -dimensional input. The predictive

posterior mean and variance for a new input   are then given by:

X y X D y

y = +y~ ϵy

X = +X
~

ϵx

∼ N (0, )ϵy σ2
y ∼ N (0, )ϵx Σx Σx

y = f( + ) +X
~

ϵx ϵy

X
~

f( + ) ≈ f( ) + f( )X
~

ϵx x~ ϵTx ∇
X
~ X

~

y

f

P (y|f) = N (f, + ∇ ∇f)σ2
y f T Σx

∇f ≡ f( )∇
X
~ X

~
D

x∗
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where   denotes the covariance function,   is the covariance matrix based on the training inputs  , and   is

the noise variance in the outputs. The notation   results in a diagonal matrix whose elements come from

its matrix argument.

Training involves an iterative scheme that alternates between optimizing the hyperparameters via the

maximization of the marginal likelihood and calculating the posterior gradient. 

where    denotes the matrix of inputs,    the vector of outputs,    the covariance matrix, and    the

hyperparameters. This procedure accounts for both input and output noise in the GP, leading to a robust

model capable of making predictions at noisy input locations with a reasonable computational load.

The formulation of the derivative of a GP with input and output noise is central to the EOS thermodynamic

properties, such as thermal pressure and speci�c heat, where the derivatives of free energies are subject to

uncertainty. Here, we will provide the formulation of the exact mean and covariance of the predictive

distribution of the latent function   and its gradient   at an uncertain input  .

The squared exponential (SE) covariance function is de�ned as:

where   is typically a diagonal matrix of the length scales,  , and   is the signal variance. Both   and   are

optimized hyperparameters   via the maximization of the marginal likelihood.

The derivatives of this kernel with respect to the inputs are given by:

0 and 1 denote the zeroth- and �rst-order derivatives, respectively. When dealing with the mean and

covariance of the latent function and its derivatives, the mean of the derivative,  , at the uncertain input, is

obtained by the rule of iterated expectations:

E[ |X,y, ]f
∗ x∗ = k( , X)[K(X, X) + I+x∗

σ2
y

diag(∇f ∇ ) yΣx f T ]−1

Var[ |X,y, ]f ∗ x∗ = k( , ) − k( , X)[K(X, X)+x∗ x∗ x∗

I + diag(∇f ∇ ) k(X, ),σ2
y Σx f T ]−1 x∗

k K X σ2
y

diag

logP (y|X, θ) = − (K + I y
1

2
y⊤ σ2

y )−1

− log |K + I| − log(2π),
1

2
σ2
y

n

2

X y K θ

f ∇f X

(X, ) = exp(− (X − (X − )),K ,Λσf
X′ σ2

f

1

2
X′)T Λ−1 X′

Λ λi σ2
f

Λ σ2
f

θ

(X, ) = K(X, ) = − (X − )K(X, )K(10) X′ ∇X X′ Λ−1 X′ ′
X′

(X, ) = K(X, ) = (X − K(X, )K(01) X′ ∇X′ X ′ X′)T Λ−1 X′
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Here,   is the vector of optimized weights from the GP posterior, and   denotes the  -th input to calculate the

predictive mean  .

For the variance of the derivative, the total variance rule is applied:

The covariance between the latent function   and its derivative   is given by:
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