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A model is considered in which the observable spacetime structure emerges from a real scalar field

satisfying the Laplace equation in a four-dimensional Euclidean space without distinguished time or

directions. The observer is described as a localized configuration of the same field on the

hypersurfaces of a foliation; events are defined as local detector activations specified by a functional of

a finite number of mode-decomposition coefficients of the field and the observer’s parameters. It is

shown that the choice of foliation gives rise to inertial reference frames, and that a consistent

reconstruction under transitions between them is possible without introducing a global set of events

—solely on the basis of the observer’s operational description.

The model implies that the event structures of different inertial frames may differ, so that no global

event space exists. It is proven that within the model it is impossible to transmit information about an

event absent in a given frame but present in another. This leads to the distinction between two types

of transformations. The first, direct transformations, describe the actual rearrangement of the event

structure under a change of the inertial frame. The second, observable transformations, represent the

operational re-description performed by an observer within their own frame, based on a hypothetical

assumption of a global event set.

The invariance of all foliations, resulting from the full   symmetry of the Laplace equation,

together with the justified existence of a finite maximal propagation speed  , leads to observable

transformations of Lorentz type with invariant  . Thus, both postulates of special relativity are

reproduced, and the causal structure emerges as a cone   within each frame. The

results demonstrate that special relativity can emerge within a strictly Euclidean, timeless model.
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1. Introduction

1.1. The Problem of Time and Causality

In modern fundamental physics, three interrelated questions remain open: (1) is it possible to formulate a

physical theory in the complete absence of time; (2)  how can causality and measurement be defined in

such a context; (3) and what is the origin of the observable pseudo-Riemannian signature of spacetime 

, which appears to emerge from an ostensibly more natural Euclidean symmetry. These

questions become especially significant in the search for a unified theory combining quantum theory

and gravitation, since many arguments  [1]  indicate that, in such a theory, time should not be a

fundamental quantity but an emergent concept. Closely related to these issues is the question of the

nature of the observer. In standard formulations, the observer is treated as an abstract external agent that

does not affect the question of existence itself, merely measuring what objectively exists independently

of observation.

Many existing approaches (causal sets  [2][3], loop quantum gravity  [4], relational frameworks  [5], and

others) eliminate explicit time at the level of equations but retain it in a hidden form—through a partial

order, an evolution parameter, a logical structure of “histories,” or functional dependencies between

states. Even in Euclidean formalisms such as the path integral, Wick rotation presupposes a return to

time as a physical coordinate.

In contrast, the present model is formulated in a four-dimensional Euclidean space  , where not only

coordinate time but any fundamental structure defining order, evolution, or direction is absent. The field 

, the only underlying field in the model, satisfies the Laplace equation and is specified as a single

static configuration. All structures traditionally associated with time and causality in standard theories

are not imposed a priori but are defined operationally through the interaction of the observer with the

field. The observer here is not treated as an abstract external agent but as a physically realized

configuration within the same field (see Section 3).

In standard quantum field theory, causality is postulated in terms of light cones and hypersurfaces of

constant time. Such a structure requires the prior specification of time and the Minkowski metric and

loses its justification if time is not fundamental but arises as an operational consequence. In problems

related to gravitation, spacetime reconstruction, and timeless formulations of quantum theory, such

postulates cease to be universally applicable.
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In both special and general relativity, the Lorentzian structure of spacetime is taken as a starting

assumption. In special relativity it follows from Einstein’s two postulates—the equivalence of inertial

frames and the existence of a finite invariant speed—which together lead to the Minkowski metric. In

general relativity, the Lorentzian signature is assumed a priori in constructing the Einstein equations.

However, the signature theorem [6] forbids a global transformation from a positive-definite to a pseudo-

Riemannian form. Therefore, if a Lorentzian structure emerges within a Euclidean model, it can only

have an effective and local character. This point is particularly important for approaches in which

spacetime and dynamics are considered emergent phenomena.

Many existing frameworks likewise attempt to remove time from fundamental theory. In causal set

theory, time persists as a partial order on events, effectively defining an oriented causal structure. In loop

quantum gravity and the spin foam formalism, evolution is realized through transitions between

boundary states, and the time axis is introduced only as an external interpretational parameter. In the

Page–Wootters mechanism [7]  and relational quantum mechanics [5], time is defined through quantum

correlations between subsystems, though the existence of a pre-established Hilbert space of states and a

measurement act is still assumed.

In timeless approaches, such as Barbour’s model [8], the time parameter is abandoned, yet a configuration

space or spatiotemporal relations are retained, allowing the recovery of dynamics. In QBism [9]  and

observer-centric QFT [10], the subject is introduced as an external interpretive structure rather than as a

physically realized body within the same theory. In all these cases, some hidden form of time is retained,

or the observer is treated as external; see also the comparative analysis in [11].

The proposed model differs radically: it eliminates not only coordinate time but any internal order or

evolution parameter, while modeling the observer as a localized configuration of the same field. All

causal relations, dynamics, and events arise operationally—from the interaction with the field on a

chosen foliation—rather than being postulated from the outset.

In this work, operationality is understood as the definition of physical structures solely on the basis of the field’s

interactions with a localized observer, recorded by the observer themselves (i.e., leaving a trace in their internal

degrees of freedom), without invoking external time, predefined coordinate dynamics, or an a priori metric. This

interpretation is close to the standard operational approach in physics [12][13][14], but it is radicalized by including

the observer as an internal part of the model and by rejecting any presupposed time. This makes it possible to
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formalize causality, measurement, and observable transformations (see §3, §5) as internal structures of the

model.

In this sense, the model provides a rigorous realization of a timeless formalism with an internal observer,

from which special relativity (SR) can be derived. Modeling the observer as a physical part of the field

configuration makes it possible to reproduce phenomena inaccessible in frameworks with an external

observer—from the reconstruction of causality to the emergence of special relativity.

1.2. Euclidean Models and the Role of the Observer

Euclidean methods have proven to be technically powerful tools, but in all known cases they are treated

as auxiliary constructions—with an inevitable return to time after Wick rotation. Attempts to construct

fully Euclidean models with direct physical meaning face several difficulties: there is no mechanism for

the emergence of causality, the structure of events and its connection to observation remain unclear, and

neither Lorentz transformations nor a finite invariant speed have been derived.

Moreover, in such approaches the observer is either absent or introduced post factum as an external agent.

In the present work, we examine the possibility of describing the observer as a physical configuration

arising within the same model—through a localized decomposition of the field (see Section 3). Such an

observer interacts with the field    and, by choosing a foliation, defines the quantities that acquire

physical meaning, including the structure of events, their sequence, dynamics, and causal connectivity.

This approach allows both causality and measurement to be treated not as external postulates but as

operational structures emerging within the model and dependent on the observer. At the same time, the

model itself remains formally Euclidean, without introducing time or any predefined dynamics.

1.3. Purpose and Scope of the Work

The main objective of this study is to introduce timeless minimal models into the discourse of theoretical

physics. We consider a model based on a four-dimensional Euclidean space endowed with a real scalar

field that possesses neither preferred directions nor additional internal symmetries. The model is used as

a minimally sufficient framework to demonstrate that a timeless construction can be consistent with the

observable aspects of known physics. The goal is not to construct a complete physical theory; rather, we

restrict ourselves to analyzing the key structural consequences of the model.

Φ(x)
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Scope and Limitations

We deliberately do not consider tools belonging to subsequent developments of the mathematical

apparatus of special relativity and quantum field theory: Wick rotation, the Osterwalder–Schrader

conditions, path integrals, the construction of a full unitary dynamics, and so on. Nor do we aim to derive

the complete Lorentz group; for the purposes of this paper, it is sufficient to show that the observable

transformations between inertial frames (IFRs) have the Lorentz form with an invariant  , and that

both postulates of special relativity arise operationally within the model.

By observable transformations, we intuitively refer to the reparametrization rules for operational

coordinates and recorded observables constructed by an observer-physicist who remains within their own

inertial frame (IFR). In contrast to direct transformations, which describe the actual re-expansion of the

field and the observer’s body when changing the foliation (and which may alter the set of reconstructible

events), observable transformations reflect only how the observer-physicist mentally reconstructs a

description in another foliation, based on the available information and on the hypothetical assumption of

a global event space. A rigorous definition and derivation of their form are given in §5–§6.2.

To achieve the stated goal, we show that within a strictly Euclidean model governed by the Laplace

equation it is possible to:

formalize causality as a local operational structure, independently defined in each inertial frame (IFR);

derive both postulates of special relativity;

obtain Lorentz-type transformations as observable transformations between IFRs.

The construction is based on a scalar field   in  , satisfying 

The field   is not treated as an object for which explicit solutions of the field equation are sought, but

rather as a generalized configuration satisfying this equation in the weak (functional) sense. We are not

concerned with explicit solutions per se, but with the physical consequences of the imposed operational

constraints—specifically, the derivation of the transformations of special relativity and the structures

that emerge from interaction with a localized observer.

The field contains no fundamental dynamics or temporal parameters and has no additional internal

symmetries beyond the Euclidean group  . Interaction with a localized observer (through foliation
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and modal reconstruction) allows one to operationally construct events, evolution, and the structure of

inertial frames.

Main Results

Causality is formalized as a local operational structure independently defined in each IFR.

It is proven that within an IFR it is impossible to transmit information about events absent from its

own event structure; this establishes the informational isolation of IFRs.

Two classes of transformations are distinguished: direct (re-expansion under foliation change without

event bijection) and observable (conceptual reparametrization preserving the event structure).

It is established that observable transformations by construction preserve event structure between IFRs, in

contrast to direct transformations, which may alter the set of reconstructible events.

It is shown that the observer’s operational record (information) is not absolute: under a change of IFR,

events may disappear or appear, while reconstruction remains consistent with the causal structure

within each IFR (§5).

Both postulates of special relativity are reproduced operationally for the observable transformations:

equivalence of all IFRs (invariance of the form of physical laws);

existence of a finite limiting speed of causal influence  , common to all observers.

observable transformations between IFRs are obtained in the Lorentz form with invariant  .

Structure of the Paper

Sections 2–3 introduce the formulation of the model and the definition of the observer. Section  4

constructs inertial frames and defines relative velocity. Section 5 analyzes the types of transformations

under changes of IFRs (direct and observable) and provides a kinematical derivation of the postulates of

special relativity. Section  6 derives Lorentz-type transformations as observable transformations.

Section 7 discusses the observer’s operational information and its reconfiguration. Section 8 addresses

the model’s limitations, and Section 9 presents the conclusions and perspectives.

vmax

vmax
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2. Fundamental Formulation

2.1. Euclidean Space 

The model is based on a four-dimensional real Euclidean space  , equipped with the standard metric 

  of signature  , where the Latin indices  . This space contains no

distinguished directions, coordinates, time axes, or causal structure. The geometry of    is invariant

under the full orthogonal group  , providing the maximal possible symmetry without introducing

any additional structures.

The choice of four dimensions is motivated by the fact that the minimal dimension allowing for the

reconstruction of the observable spacetime structure of special relativity coincides with the

dimensionality of physical spacetime itself. Thus,    serves as the most natural candidate for

reconstructing relativistic kinematics from a timeless model.

Any hyperplane in   is defined by the equation 

where    is a unit normal vector and    is a real parameter. Such hyperplanes will play the role of

foliations used by the observer for the operational definition of events. A formal introduction of the

foliation and its properties will be given in the following section.

2.2. The Underlying Field of the Model and the Laplace Equation

We require a field equation that satisfies the following conditions: absence of preferred directions,

Euclidean   symmetry, absence of internal symmetries, and smoothness of solutions. The Laplacian

is the only second-order differential operator that is fully invariant under the group   and does not

single out any direction. Therefore, the Laplace equation is not merely a convenient example but rather

the unique choice that ensures maximal symmetry and minimal assumptions.

The subsequent constructions rely only on its structural properties—locality, linearity, and harmonicity

—so that any equation sharing these features would lead to the same operational consequences.

On  , we introduce a real scalar field   satisfying 

where   is the Laplacian of the Euclidean space.
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This equation contains no distinguished time, prescribes no internal dynamics, includes no internal

symmetries or preferred directions, and involves no interactions—neither linear nor nonlinear. The

solution    is assumed to be fixed uniquely, including its boundary conditions. This reflects the fact

that, in a timeless model, independent initial conditions cannot be specified: the entire content of the

model is determined by a single field configuration, without invoking any notion of evolution.

2.3. Absence of Time and Causal Structure

No additional structures are introduced in the model that would define a direction of evolution, an order

of events, or dynamical variables. This implies the complete absence of time—both as a coordinate and as

an evolution parameter. The field    is treated as a configuration on  , determined by the Laplace

equation and the boundary conditions, without invoking any internal dynamics.

Thus, neither the field nor the space   possesses causal relations at the fundamental level. The notions

of causality and sequence of events will be introduced not as primitive entities but as emergent

structures that arise only at the level of operational description. In particular, the role of the observer as

the source of consistent causal reconstruction will be formalized in the next section.

2.4. Purpose of the Construction

The aim of this section is to formalize the minimal setting on which the subsequent operational

description will be defined. At the fundamental level, the model does not incorporate any physical

quantities, events, symmetries, or equations of motion. Everything that can be interpreted as spacetime,

matter, or dynamics must emerge solely as a result of the interaction between a localized field structure

and its global configuration. Such a localized structure will later be formalized as an observer.

3. Observer and the Operational Definition of Events

3.1. Foliation and Direction of Propagation

A foliation of the Euclidean space  , defined by the hyperplanes    (see (2)), divides the space

into a family of three-dimensional hypersurfaces  , orthogonal to a chosen vector    and

parameterized by the real scalar  . The choice of direction   fixes an inertial reference frame (IFR), and

the parameter   in this frame plays the role of operational time—an internal parameter of evolution that

arises only relative to the given foliation.

Φ(x)
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Each hyperplane is interpreted as a “moment of time” in the corresponding inertial reference frame. It

will later be shown that different orientations of the normal vector   correspond to different IFRs. Here 

 is the vector,   its components,  , and  .

A fixed orientation of    determines the direction of propagation between slices, while the choice of

foliation defines the structure of local temporal ordering. Thus, the direction of time in the model is not

predefined but arises operationally: it is determined relative to the chosen orientation of hyperplanes,

which is associated with the reference frame of the observer.

Definition (Causal Reconstruction)

For a fixed observer   and a chosen foliation   with normal  , a causal reconstruction is defined as a

procedure that, from the local information about the field   in a region  , constructs a consistent

description of the set of events   and their ordering   relative to the direction of propagation  . The

specific mechanism for identifying events will be given below (see Subsection 3.4).

Causal Reconstruction Requirement

Each operational IFR is associated with a choice of foliation    and normal vector  . For the

reconstruction of events in a given IFR to be consistent with the principle of causality, the following

conditions must hold:

i. The decomposition of the field    into modes of the given foliation is constructed so that the

individual modes    are localized within the hypersurface    and admit local propagation along 

 with respect to the parameter   (a linear transformation of the coefficients  , see (8) below)

with an effective speed   bounded above by a universal quantity  1.

ii. The equation satisfied by the field   admits such local modes and preserves their evolutionary

consistency along any direction  .

iii. The transition between nearby IFRs (small rotations of the foliation) does not destroy the consistent

event structure: as  , where  , the sets of events in    and    coincide

identically.

These conditions are operational in nature: they follow from the requirement of reproducibility of the

event structure and consistency between foliations. Causality is not postulated a priori but emerges as a

n

n nA :=nA δABnB = 1nAn
A
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condition for admissible reconstruction in the presence of a constraint on the speed of interaction

transfer.

It should be noted that conditions (i)–(iii) are formulated for an idealized decomposition over the entire

hypersurface  . In the operational sense, it is sufficient for an observer to perform a decomposition

localized in a compact region  , which will be introduced and justified in the following

subsection 3.2.

Admissibility of Decompositions and Configurations

Not every solution of  (1) allows for causal reconstruction. We consider the subset of solutions 

 that admit decomposition into the modes of the foliation   and satisfy:

localizability of the modes   within the region of the hypersurface  ;

the possibility of an event-based interpretation of the interactions between the field modes and the

modes of the observer’s body;

preservation of consistent reconstruction under a small rotation of  .

Thus, the admissibility of a field configuration is determined not only by the satisfaction of the equation

itself but also by the operational realizability of a modal decomposition possessing a causal structure.

3.2. Localization of the Observer

The observer is not an external agent but is described as a localized structure in    within the field

configuration  . A foliation is fixed as 

where    denotes the corresponding unit vector,    its components, and the measure    on    is

induced by the Euclidean metric. A local region  , compact in the three spatial directions, is also

fixed; this region defines the working domain for the modal decomposition of the field. It is within this

region that the operationally accessible description of events is formed (in the physical sense, it may be

regarded as an analogue of the observable part of the universe). For a particular observer’s body, a smaller

region   is used.

Σ3
s

Ω ⊂ Σ3
s

S ⊂ ker Δ Σ3

uα Σ3

n

E
4
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s E
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Field Projections and Terminology

On  , an orthonormal set of functions    localized in    is chosen (for any  : 

). The field modes on a slice are understood as the elements of this fixed basis. The

local configuration of the field is decomposed over this basis: 

where the coefficients are given by 

since  , and the measure    is induced by the Euclidean metric on  . To make the

orientation of the foliation explicit, we may write, when necessary,  . The vector   will

be called the local representation of the field in the modal basis; it introduces no new degrees of freedom

relative to  .

The Observer’s Body and Internal Modes

The physical substrate of the observer   is defined by an orthonormal, localized set of its internal modes

(sensitivity profiles)  , the subspace  , and the coordinates 

  on the same slice. In general, the internal modes do not coincide with the field-mode

basis but can be represented as local linear combinations of the field modes (see the next paragraph); this

guarantees the comparability of descriptions by different observers. The detector sensitivity matrix 

 relates   and is used below for the operational definition of an event (see (12)).

Common Reference Basis and Inter-Observer Consistency within an IFR

If two observers within the same foliation    use incompatible bases, then the observation of one

observer by another becomes ambiguous, and a direct comparison of results loses definiteness.

Therefore, in each IFR a common reference orthonormal basis   is fixed, identical for

all observers on the given slice. The internal modes of any observer are expressed as local linear

combinations of the elements of this basis: 

Σ3
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where the matrix    has local support (within  ). Thus, all operationally observable quantities are

expressed through the same set of coefficients  , ensuring inter-observer consistency within a given

IFR.

Operational Definition of the Body

The body of the observer is defined as the tuple  , where  , and an

event is registered according to the threshold criterion (11)–(12). Perturbations of the field that are nearly

orthogonal to   or produce a signal below   are operationally not recorded.

Operational Records (Information)

Records are implemented as distinguished registers    of the internal state of the body. The

operationally accessible information of the observer on a slice is the pair 

When the foliation changes, the observer’s informational state and records may be reconfigured. The

corresponding transformations are discussed in detail in Section 5.

3.3. Invariance of the Transfer Operator and the Emergence of Causality

For any foliation direction  , we introduce the coefficients 

where   is the reference basis of functions localized within the working region  .

From the requirements of operational reconstruction within a given IFR, it follows that there exists a

local linear transfer relation 

where the indices    run over the set of modes of the reference basis  . The matrix 

 depends only on the local configuration of the field   in the neighborhood of the observation

region on the slice  . For the transition to the internal modes of an observer  , one uses the

coefficients   and the matrices   that connect the subsets   (see Section 3.2).

The consistency requirement of reconstruction under a small rotation of the foliation (see condition (iii)

in the causal reconstruction requirements) implies that one and the same rule of basis construction is

C(O) ΩO

(s)aα
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(n)

a
(n) (6)

nA

(s) = (x) Φ(x) x, α ∈ Λ,a
(n)
α ∫

Ω
uα d3 (7)
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s

(s+ds) = [Φ; s] (s),a
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used for all hyperplanes, rather than introducing a new basis for each slice. That is, the basis    is

chosen from the admissible class of orthonormal functions that ensure localizability, event

interpretability, and continuity under foliation rotation. Otherwise, as  , where  ,

inconsistent transformations would appear, violating the continuity of event reconstruction.

Hence, the   rotational invariance reduces to the equality of the components of the transfer matrices: 

This condition is formulated solely for the coefficients   and does not assume the existence of a global

correspondence of events between IFRs.

Remark 1 (On the Interpretation of the Invariance of the Transfer Operator). When changing foliations, the

rotation   is understood not as a coordinate transformation within a fixed basis, but as a replacement of

the entire family of hyperplanes  . The basis   on each hyperplane is determined by the same

construction rule  , which depends only on the local properties of the field and the direction of the

normal vector, and does not transform by rotation. A rotation of the foliation changes the arguments of the

functions, but not the functions themselves, which are reconstructed anew for the new foliation by the same

method. Therefore, the transfer operators    and    coincide identically, expressing the

invariance—rather than covariance—of the transfer law under a change of foliation.

The invariance of the transfer law follows from the   symmetry of the field    in combination with

the fixed rule for constructing the reference basis  .

It should be noted that, for the purposes of this paper, it is sufficient to take any basis satisfying the above

requirements. The construction of a complete theory may require imposing additional constraints.

Emergence of Causality

Thus, the principle of causality in each IFR is realized as a condition of operational consistency: the

observer can reconstruct a causal structure if and only if there exists a corresponding local field

decomposition and an invariant transfer relation  (8)–(9). Despite the absence of fundamental time, the

temporal direction and causal structure emerge as operational entities, determined by the choice of

foliation and the admissibility of reconstruction.

{ }uα
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3.4. Definition of an Event

Before defining what constitutes an event in the model, we first note several issues inherent in such a

definition and list the assumptions needed for it.

Real detectors, spacecraft, etc., are confined to scales no larger than the Solar System—negligible

compared to the size of the observable universe. Using this analogy, within a single IFR we may treat the

working region   as the same for all observers at rest. Hence, in each IFR we assume that the observable

region  —the region within which causal reconstruction is possible—is identical for all observers at rest

with respect to that IFR.

In contemporary physical theory, and in contrast to classical physics, quantum physics lacks a single,

widely accepted, and fully adequate definition of an event that is independent of the observer or the

measurement process. Several leading interpretations of quantum mechanics exist, each defining

“event” in its own way.

Within the present model it is clear that all observable phenomena depend on the observer and on

measurement by the observer. Since our aim is not to construct a complete theory, we must adopt certain

simplifications that preserve the properties of the model most relevant to our purposes.

In formulating the notion of an event we impose several requirements.

i. Operational origin. An event should arise as a result of interaction between the observer and the

field, rather than as a pre-given ontological entity: an event is defined as a configuration of

interaction between the field modes and the observer’s internal modes that leads to a discrete

update of the observer’s internal state (a record in the registers), as registered by the observer. The

observer records only a local measurement outcome but, on that basis, reconstructs a network of

causes and events that (according to the reconstruction) led to the measurement. This network is

always a reconstruction, not something that exists independently. Thus, an event may be

interpreted as having occurred far outside the observer’s body. Analogously, when detecting a

photon from a star, the observer operationally reconstructs a network of events that led to the

emission of that photon.

ii. Consistency across scales. Because the observer has finite extent and spectral limitations,

interaction with the field is described by projection onto a finite-dimensional subspace. The

definition of an event must be stable under coarse-graining/refinement of modal decompositions

(i.e., independent of the chosen “resolution”).

Ω

Ω
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iii. Sufficiency for the goals of the paper. The definition should be schematic (without constructing a

full theory of measurement) yet retain the properties needed to derive a limiting speed and the

Lorentz form of the observable transformations.

iv. Classical regime. For simplicity we consider a regime in which the sets of events coincide (up to

isomorphism of partially ordered sets) for all observers at rest in a given IFR (see below). This does

not yield a global event space unifying different IFRs. We call this the classical regime because, in

classical physics, event sets are the same for all observers.

After making an observation, the observer forms a hypothesis about what was observed. The primary

open point in the model is what events are tied to. In quantum physics, events are associated with

particles arising from gauge symmetries. In the present model gauge symmetries are not obtained and,

given our goals, need not be. We shall therefore say that when the observer performs a measurement,

they observe the consequences of certain events occurring within the region  —the region in which

they can reconstruct causal relations. We now adopt the following assumption: the model contains some

mathematical construction playing the role of an analogue of particles in quantum physics to which

events are tied. The search for this construction is not the goal of this paper. Then one may say that a

causal network arises upon observation. In view of the classical regime, we avoid observer-dependent

events and pass to events common to observers within the same IFR. Thus, an analogue of a causal set

arises, but specific to each IFR.

As will be shown later, the model admits a consistent reconstruction of event structure under transitions

between IFRs (different foliation directions). Although events are defined relative to a specific observer

and their IFR, agreement between IFRs is ensured by compatibility of reconstructions; the corresponding

observable transformations turn out to be Lorentzian. As noted earlier, the model implies that a transition

between IFRs is described not by one but by two types of transformations. The justification appears

below.

While defining an event via equations in the model is a difficult task requiring a full theory, defining a

measurement act is simpler. A measurement should lead to a change in the observer’s information within

their body, depending on the decompositions of the field and the observer’s body.

Definition of a Measurement

Let observer   fix a foliation   and a subspace 

Ω

O Σs
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where  , together with a set of their internal modes  . Their detector (readout) functional is a

local scalar functional 

where   and   are the coefficients of the corresponding decompositions

on  .

A measurement act  is the instant   at which 

where    is the sensitivity threshold. When this condition holds, one of the binary memory

registers   flips discretely  . The measurement act is localized within  .

Remark 2. Refinements of the criterion are possible (e.g., extremum conditions or smoothing), but for the

purposes of this paper the threshold condition (11) suffices.

This functional can be regarded as analogous to a photodiode: if a combination of signals exceeds the

threshold, the detector clicks, registering a one in memory.

Example (bilinear functional)

As a special case of (10) one may use the bilinear form 

where   is the sensitivity matrix; then  .

Stability under Coarse-Graining

Upon passing to a coarser description (grouping modes into effective combinations), the functional   is

rewritten in terms of the new coefficients, while the criterion (11) is preserved. Thus, the definition of a

measurement does not depend on the level of detail.

Separation of Notions

We distinguish between a local measurement act (a detector click within the observer’s body  ) and an

event as an element of the causal network in the working region   ( ).

= span{ : α ∈ } ⊂ ( ),H
(O)
field uα ΛO L2 Σs

⊂ ΛΛO { }χβ
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Definition 1 (Event in the Model). An event is a vertex   of the causal network   in

the working region  , where:

 are observable (local) vertices generated by measurement acts;

  are reconstructed vertices for which there exists an operational causal relation to at least one 

, consistent with the admissible action of the transfer operator (8).

The order   is interpreted as “can influence,” is defined within a given IFR, and does not require a global event

set.

Note. The measurement act    is a local trigger of recording (vertices  ), while an “event” in the

broader sense is an element of the network  , including both local measurements and reconstructed

vertices  . Thus, events outside the observer’s body are not identified with measurements but enter as

reconstructed elements obtained from measurement data and reconstruction rules.

As an example: an observer may register a photon ( ) and then reconstruct the event of its emission by

a distant star ( ).

Causal Network

The elements of    are not confined to the observer’s body: they are treated as consequences of

interactions within the working region  . In each IFR there arises a network of events

 equipped with a causal order   if   can operationally influence   through the admissible action

of the transfer operator (8) at fixed foliation  . Local measurement acts    form a subset 

, and reconstructed vertices   complete the network. The observer’s memory is realized as an

ordered subset  .

Classical Regime

In the approximation we call the classical regime, we assume that for all observers at rest in a given IFR

the event sets coincide:    does not depend on the observer. This approximation allows us to ignore

differences due to localization and spectral limitations and simplifies the derivation of Lorentz

transformations. Under changes of IFR, the event sets may differ, and no global unified event space

arises. In what follows we consider only the classical regime, except where explicitly stated otherwise.

E ∈ ∪Vobs Vrec = (V , ≺)Cn

Ω

= { ( )} ⊂Vobs MO sk ΩO

⊂ ΩVrec

( )MO sk

≺

(s)MO Vobs

Cn

Vrec

Vobs

Vrec

Cn

Ω

= { },Cn Ei (13)

≺Ei Ej Ei Ej

Σ(n)
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Interpretation

Thus, an event is not reduced to an ontological “point in spacetime,” but may be interpreted as an

element of a discrete causal network arising from the interaction of the field with the observer. Unlike

traditional causal set models, here each IFR has its own network  . Consistency between them is

ensured by the compatibility of reconstructions under transitions between IFRs, as discussed later.

Remark 3 (Observer as Part of the Event Structure). Analogously to approaches used in causal-set-like

theories, the observer may be described not only via a modal state but also as part of the event structure itself:

their configuration selects the subset of events accessible for reconstruction in the given IFR. Unlike standard

causal-set approaches, these events depend on the chosen foliation, and when the foliation changes, the subset is

reorganized.

4. Inertial Reference Frames and Relative Velocity

4.1. Foliations as Inertial Frames

In the absence of time and dynamics, each foliation direction in  , specified by a unit vector  , defines

a local event structure arising from the interaction of the observer with the field. Such a structure is

completely determined by the choice of hyperplanes  , orthogonal to  , and by the operational

interpretation of   as an emergent operational time that appears through the observer’s interaction with

the field.

Within the present model, an inertial reference frame (IFR) is understood as a foliation direction   with

respect to which events, causality, and observable quantities can be consistently defined through the

localized decomposition of the field and its interaction with the observer’s body. All IFRs in this work are

treated in this operational sense.

No IFR is physically distinguished: the model is invariant under the full orthogonal group  , and

differences between IFRs arise solely from the choice of reconstruction direction. It will later be shown

that transitions between foliation directions give rise to consistent transformations of observables that

formally coincide with the Lorentz transformations.

Cn

E
4 nA

= snAx
A nA

s

nA

O(4)
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Operational Principle of Inertia

Each body in the model is represented as a localized collection of modes of the underlying field, defined

on the hyperplanes of a chosen foliation. Its motion in a fixed IFR is described as a sequence of events

generated by the interaction of the body with the global configuration of the field  .

Let  . If the geometry of the sequence of events along the parameter    changes within the

hyperplanes  —for instance, if a displacement or curvature of the body’s trajectory is observed—such

behavior is interpreted as acceleration. According to the operational approach, acceleration requires a

cause, i.e., an additional interaction of the body with field modes not belonging to its own subspace (the

localized decomposition defining the body). Such an interaction is interpreted as external with respect to

the body and leads to a deviation of its event trajectory from the inertial one.

Thus, if in an IFR a body maintains uniform and rectilinear motion (in terms of a consistent sequence of

events), this signifies the absence of external influence and, therefore, the absence of a cause for change

in its behavior. In this sense, causality in the model is realized through deviations from inertiality: every

acceleration is operationally associated with an additional interaction.

Consequently, in the absence of external influence, the body’s event trajectory remains rectilinear and

uniform in the chosen IFR. This corresponds to the operational formulation of the principle of inertia: if

no cause acts upon a body, its reconstructed behavior in a given IFR remains unchanged. In this way, inertiality

is interpreted as the stability of the body’s event structure under a fixed field configuration and a given

foliation direction.

4.2. Transition Between Inertial Frames and the Definition of Relative Velocity

Let two inertial reference frames (IFRs) be given, corresponding to foliations along the directions   and 

. These directions are related by an orthogonal transformation of the Euclidean space: 

It is convenient to introduce orthogonal projectors onto the hyperplanes of the slices: 

Here    denotes the identity operator on  , and    the tensor product. We also use the notation 

.

Φ(x)

≡Σs Σ(n)
s s

Σs

nA

n′
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A
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For a small displacement   in the IFR  , an observer in the IFR   perceives a transverse shift in

the hyperplane    equal to  , with norm  , while the increment of the

parameter   in the IFR   is  , where  .

Each foliation direction   defines a family of hyperplanes  , interpreted as “moments of time”

in the corresponding IFR. Events are defined as local interactions within these hyperplanes. However, the

projections of the same points    onto the hyperplanes of two different foliations—e.g., 

 and  —differ. This leads to an operationally detectable displacement of events when

performing successive transfers along the direction  , if   is tilted with respect to  .

Such a discrepancy is naturally interpreted as an observable relative velocity between IFRs, defined as the

ratio of the transverse displacement to the increment of emergent time in the compared IFR (with a

dimensional scaling factor  ): 

where   is a scaling constant that fixes the correspondence between the transfer parameter and the unit

of observable time (to be specified in Section  6). In the limit  , we have  , whereas for 

 the velocity formally diverges, consistent with the absence of a global event space in the model.

Thus, the relative velocity between IFRs is determined solely by the angle between their foliations. In the

limit  , the corresponding spacetimes become locally consistent.

4.3. Corollary: The Multiplicity of Spacetimes

Since the foliations   and   lead to different decompositions of the field and therefore to different sets

of events, each direction   defines its own spacetime with its own causal structure, understood in the

model as the causal network    with its order relation  . There exists no single consistent mapping

between these spacetimes at the level of events. The model contains no global event space: only local

projections exist, specific to each IFR.

Strictly speaking, there is no bijection between    and    (see also Appendix  10); only local event

reconstructions that remain consistent in the limit   are comparable.

The observable velocity arises as the relative discrepancy of events between these spacetimes under

perpendicular displacements of the hyperplanes. In the limit  , the spacetimes become locally

consistent, a property that will be used in deriving the observable transformations formally equivalent to

the Lorentz transformations.
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5. Observable Transformations and the Postulates of Special

Relativity

5.1. Generalized Principle of Causality

In its classical formulation, causality relies on a global event space. In the present model, no such global

space is postulated; causality is defined operationally within each individual IFR (see §3). As a result, the

model implies a generalization of the principle of causality.

This generalization consists in abandoning the implicit postulate of a global event space and explicitly

introducing an internal observer as part of the model. We use the notation of §3:    denotes the

operationally reconstructed set of events for the foliation with normal  , and 

 represents the local representation of the field in the modal basis, evolving according to

the transfer relation (8). The angle   denotes the angle between the normals, with  .

Generalized Principle of Causality (as a Consequence of the Model)

Locality by IFR. Causality is defined and applied independently within each IFR  , without appeal to a

global event space.

Consistency under small rotations. As  , the reconstructions of events become

consistent:  , where   denotes the symmetric difference of sets; see §3, condition (iii).

Remark. (G1) follows directly from the operational definition of events and the informational state on

each foliation, while (G2) follows from the requirement of reconstruction consistency under small

rotations (§3, condition (iii)) and from the use of the classical regime for events.

As follows from the above, the principle of causality applies separately and independently to each IFR,

allowing for possible differences in causal relations between IFRs (see also Proposition 1 below).

5.2. Principle of Causality and the Observer

Recall that we consider events in the classical regime, invoking properties of the full model when

necessary. As established earlier, each IFR corresponds to its own set of events (13) with causal relations

among them. The observer, together with all the information available to them, forms a part of this set.

Cn
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In the classical regime, the observer operates directly with the elements of    corresponding to their

foliation. In the general case, such events are specified through functionals of the local representation of

the field in the modal basis  , which evolves according to (8). Any signal originating from systems

that are external to the observer but internal to the model likewise manifests itself as a change in these

functionals, provided that causality is preserved (see §5.1).

Theorem 1 (Inaccessibility of Non-Reconstructible Events). Let an observer    be situated in an inertial

reference frame (IFR)   and operate with the set of events   reconstructed within their foliation  . Then

no finite composition of admissible local operations defined within the IFR   can render operationally accessible

any event that does not belong to the set  .

Proof. We work in the classical regime, where the event set   is fixed for all observers of a given IFR (see

§3.4). Consider three classes of possible observer actions:

1. Local transfer. The evolution of the coefficients   obeys the transfer law (8), which acts in the

coefficient space and is local on  . It cannot generate an event outside the current network  ,

since its action is confined to the admissible reconstruction domain and does not alter the set of

events but only reorganizes their internal relations.

2. Composition of admissible local operations. Any finite composition of such operations—functionals of 

 and  , both local on  — remains within the algebra of observables in the IFR  .

These operations do not extend the domain of definition of the network   and do not create new

vertices outside it.

3. Rotation of the foliation. The transition to another IFR    is described by a direct

transformation    (see  (16)), which replaces the entire network    by a new one,  . Since a

change of foliation is not an operation admissible within the IFR  , and no bijection exists between 

  and    (see Appendix  10), an event    cannot be mapped into    by any finite

sequence of operations within  .

Therefore, an event   cannot be operationally reconstructed or registered by an observer in the IFR 

 through any finite sequence of local actions permitted by the transfer law and the conditions of causal

reconstruction (§3). ◻

It follows that an observer cannot operationally confirm the existence of events absent from their current

IFR—neither through signal exchange with observers in other IFRs, nor through subsequent transition to

another IFR.
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This forms the foundation for a new class of transformations—the observable transformations—which, as

will be shown below, are Lorentz-like.

5.3. Two Types of Transformations

In the absence of a global event space, the transition between different inertial reference frames (IFRs),

corresponding to the foliation directions   and  , can be interpreted in two distinct ways.

Formal Definitions

Direct transformations describe the action of the Euclidean symmetry on the field configuration and

the direction of foliation. The transition from IFR    to IFR    entails replacing the slice    with 

 and, consequently, reconstructing a new set of events. Since no global event set exists, there is no

bijection between    and  : direct transformations merely associate each slice with a new set of

events in the rotated foliation.

For direct transformations we write 

which corresponds to replacing the family of slices   and subsequently reconstructing the

event set  .

Observable transformations describe a hypothetical change of IFR from the perspective of a fixed

observer who remains within their own system. The observer has no access to events absent from

their own network    (Proposition  1) and is therefore forced to proceed under the assumption of a

global event space. This assumption allows them to construct transformations that, by definition,

preserve eventhood. In the general case, without invoking the simplification of the classical regime,

these transformations depend on the observer   and are represented by operators

acting on the observer’s state subspace  . In the classical regime (see §3.4), where the event set   is

identical for all observers within a given IFR, the dependence on    disappears, and the observable

transformations reduce to a universal operator

These transformations, by construction, preserve eventhood and are precisely those used below in

deriving the Lorentz-like transformations (see §6.2).

nA n′
A

n n
′ Σ(n)

s

Σ( )n
′

s′

Cn Cn′

: ⟼ ,Dn→n′ Cn Cn′ (16)

↦Σ(n)
s Σ( )n

′

s′

Cn′

Cn

O

: (s) ↦ (s),O
(O)
n→n′ b

(O,n)
b

(O, )n
′

(17)

BO Cn

O

: (t, r) ↦ ( , ).Mn→n′ t′
r

′ (18)

qeios.com doi.org/10.32388/PLF0VP.2 23

https://www.qeios.com/
https://doi.org/10.32388/PLF0VP.2


Intuitive Description

Observable transformations are re-descriptions performed by an observer within their own IFR.

Relying on the hypothetical assumption of a global event space, the observer interprets the results as

if the same events were preserved when transitioning between IFRs. Observable transformations are

not associated with an actual change of the observer’s IFR.

Direct transformations, in contrast, describe the action of the Euclidean symmetry on the field and

the foliation. Upon transition to another IFR, the event set    is replaced by  . In this transition,

some previously reconstructed events may leave the network, while new ones may appear, so that the

observer’s informational state changes.

Novelty of the Approach

The key element leading to the emergence of two types of transformations is the impossibility of

transmitting within a given IFR information about an event that does not exist in this IFR but exists in

another. In the standard formulations of special and general relativity, such a distinction is not made:

coordinate transformations are simultaneously treated as both direct (actual) and observable. In the

present model, the separation between direct and observable transformations constitutes a novel feature:

it arises as a consequence of the informational isolation of IFRs and the absence of a global event space.

In this sense, observable transformations can be viewed as the interpretation of a transition between

IFRs from the observer’s standpoint, whereas direct transformations describe the action of the symmetry

on the field configuration.

5.4. Invariance of the Operational Law of Interaction

Earlier, the invariance of the local transfer law for the field coefficients    was established (see  (9)),

expressing the uniformity of the laws of physics across all IFRs. However, the observable quantities

themselves depend on the choice of functionals and the parameters of the observer’s body, and it is not a

priori evident that their dynamics will also be invariant. It is therefore necessary to demonstrate that the

invariance extends to the level of operational quantities—namely, to the observable functionals and

operators  . Thus, it is established that not only the equations for the fundamental field but also the

laws of interaction, as registered by the observer, have the same form in all IFRs.

Theorem 1 (Invariance of the Operational Law). Let   be defined by the transfer relation (8) for an

admissible basis satisfying condition (iii). Then, for any   and all  , the following holds: 
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  that is, the local operational law of interaction/transfer is invariant under rotations of the foliation. If the

detector is specified by a functional   that is local on  , then the observable operator 

 is likewise defined invariantly, without reference to data in  .

Proof. The  -invariance of the Laplace equation and condition (iii) ensure the same admissible class of

bases under rotations, which yields  (9). The locality of    and the invariance of  (9) imply the well-

definedness of the operator (19). ◻

This corresponds to the first postulate of special relativity in its operational formulation:

The laws of physics have the same operational form in all inertial reference frames.

5.5. Constraint on the Limiting Velocity

Within the present model, causality is defined as the operationally consistent reconstruction of events

within a single inertial reference frame (IFR). From this definition follows a constraint on the maximum

speed at which an observable causal influence can propagate without violating the consistency of the

reconstruction. This condition is not a direct consequence of the Laplace equation but is introduced as a

necessary requirement for a self-consistent description of the observable history. It thereby excludes

those formally admissible solutions of the Laplace equation that do not yield a coherent causal structure.

The necessity of a limiting velocity may thus be regarded as a condition for the very possibility of an

operational description of eventhood by the observer.

If such a maximal velocity   exists, then the   symmetry of the scalar field implies that its value is

the same in all IFRs. It is important to emphasize that   constrains the speed of causal connections

only within a single IFR. It does not impose any restriction on the relative velocities   between different

IFRs, which are determined by the angle between the foliation directions. Values of    exceeding 

 do not lead to contradictions; they merely indicate that the event networks in the respective IFRs

differ substantially and cannot be directly reconciled. For an observer, such velocities have no operational

meaning, since they lie beyond the observer’s own event structure. In other words,    must not be

confused with the relative velocity   between IFRs introduced earlier.

[Φ; s] ≡ [Φ; s],A
(n)
αβ

A
( )n

′

αβ

(a, b)FO Σs

: (s) ↦ (s)O
(O)
n→n′ b

(O,n)
b

(O, )n
′

(19)

n
′

O(4)

FO

vmax O(4)

vmax

v(θ)

v(θ)

vmax

vmax

v(θ)
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For instance, when the foliations of two IFRs are oriented perpendicularly, the discrepancies that arise in

their direct comparison of configurations are unbounded. However, in the observable description, events

are by definition considered preserved under transitions between IFRs, while causal relations within

each IFR are constrained by  ; it is this limitation that possesses operational significance.

The maximal velocity   is determined by the structure of the observer’s modes and by the constraints

on the consistent projection of the field configuration onto the chosen foliation. It is of a strictly

operational nature: an observer cannot interpret two events as causally related if their reconstruction

would require exceeding   within their own coordinate structure.

In principle, the quantity    can be computed from the field equation and the structure of the

observer’s admissible modes. However, doing so requires the construction of a complete theory, which

lies beyond the scope of the present work.

In the following section (§6),    will be related to the scaling parameter of temporal normalization,

which is determined by the consistency of reconstructions under small transitions between IFRs. Since

such consistency is possible only for a finite value of this parameter, it will be shown that    must

likewise be finite.

Thus,   represents the intrinsic limit of operational causality within a given IFR. It is independent of

the choice of coordinates, registration procedures, or other observers, and it corresponds to the second

postulate of special relativity in its operational formulation:

There exists a limiting velocity  , identical in all IFRs, which constrains causal

connections within each IFR and ensures the consistency of the operational reconstruction

of events.

6. Derivation of Lorentz Transformations from the Operational

Structure

6.1. Constraints on the Class of Reconstructions

This section considers cases of operational reconstruction satisfying the following conditions:

The direction of operational time is defined by a unit vector  ,  ;

vmax

vmax

vmax

vmax

vmax

vmax

vmax

vmax

n ∈ E
4 ∥n∥ = 1
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The operational event space is identified with the hyperplane 

  orthogonal to  , with the actual reconstruction confined to the

working region  ;

The metric on    is taken to be the induced Euclidean one; the distance in the slice between 

 is  ;

The simplified classical regime from the definition of an event is considered, i.e., the event set   in

any IFR is the same for all observers at rest with respect to that IFR.

Remark on the Constraint of Causal Connections

Within the model, the reconstruction of events must preserve causal consistency. This requires that two

spatially separated events at a distance   in   can be regarded as causally connected only if 

where   is the operational time between the events (see (20)), and   is the limiting velocity of causal

interaction in the given IFR. This restriction is not postulated but arises as a consequence of the

requirement of operational consistency of reconstruction (see also the consistency condition under small

rotations, §5.1).

The invariance of the quantity    in all admissible reconstructions follows from the full 

  symmetry of the Laplace equation and from the invariance of the coefficient transfer rule (see  (8)):

since all directions in   are physically equivalent, the limiting velocity of interactions defined within a

foliation cannot depend on the orientation of the hyperplane.

This fundamental property is complemented by the requirement of continuity for direct transformations:

at  , the event sets coincide identically,  , and as  , the symmetric difference tends to the

empty set, 

  In the observable description, this corresponds to the limit    and the operational

indistinguishability of reconstructions (see §5.1).

:= {x ∈ ∣ n⋅x = const }Σ(n)
E

4
n

Ω ⊂ Σ(n)

Σ(n)

, ∈r1 r2 Σ(n) λ = ∥ − ∥r1 r2

Cn

λ Σ(n)

t ≥ ,
λ

vmax

t vmax

vmax

O(4)

E
4

θ = 0 =Cn Cn′ θ → 0

△ → ∅.Cn Cn′
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6.2. Operational Derivation of Lorentz Transformations

As shown earlier, the model gives rise to two types of transformations. The first type, direct

transformations, describes how events transform “in reality” when transitioning between IFRs. In other

words, direct transformations represent the actual restructuring of the event set when passing from one

IFR to another. Information about which events exist in one IFR and which in another could, in principle,

be obtained only if information about events absent in one IFR but present in another could be

transmitted between them. However, as shown previously (1), such transmission is impossible. In this

model, there thus exists a form of informational isolation between IFRs. All information accessible to an

observer is confined to the information available within their own IFR—the IFR in which the observer is

at rest.

The second type of transformations, observable transformations, describes a hypothetical change of IFR.

Under such transformations, no actual change of IFR occurs. The observer-physicist, based on the

information available within their IFR, constructs transformations that describe a hypothetical transition

to another IFR—i.e., what, according to their data, would occur in other IFRs. Hence, by construction,

observable transformations preserve eventhood under the hypothetical change of IFR. It should be

emphasized that this is an operational preservation of eventhood (the observer assumes that events are

the same), rather than an actual coincidence of event sets.

The distinction between direct and observable transformations is nontrivial. The key property of the

model leading to this separation is precisely the impossibility of transmitting information about events

that do not belong to the observer’s IFR but exist in another.

Observable transformations between IFRs will be denoted as    (see  (18)). These

operators describe a hypothetical change of foliation from the direction    to    as interpreted by an

observer who remains within their own IFR. By construction,    acts linearly on the coordinates 

 obtained from the normalization (20).

To construct the observable transformations, we explicitly state several properties that have already been

established earlier.

(I) Preservation of Eventhood (by definition).

Observable transformations are constructed such that, for a fixed observer in the IFR  , they preserve the

outcomes of all admissible registration and processing procedures. In other words, an event

: (t, r) ↦ ( , )Mn→n′ t′
r

′

n n
′

Mn→n′

(t, r)

n
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reconstructed in   remains the same event under a hypothetical transition to  . This condition is not

introduced as an additional postulate but reflects the operational construction of the observable

transformations themselves.

(R) Regularity of the Transformation Family.

For the observable transformations  , the following properties hold:

i. Identity at  : if the directions coincide,  , then  ;

ii.   depends continuously and differentiably on the transition parameter. In the model, this

parameter is given by the angle between the directions   and  , and in the observable description

it is equivalent to the relative velocity  . The derivative with respect to this parameter is also

continuous;

iii. Compositionality: .

These properties follow directly from the operational construction and from the linearity of the transfer

rule; they are not introduced as independent postulates.

Operational Time Normalization

Consider two events    lying on the slices    and  , respectively. Let    and

define the projection onto the normal  : 

where    is a scaling parameter (later identified with  ), and the spatial component is given by 

, with  .

Theorem 1 (Lorentz-Like Form of Observable Transformations). Let conditions (I) and (R) hold, and let there

exist an invariant velocity   identical in all IFRs. Then, for any fixed direction  , the family

of observable transitions parameterized by the relative velocity   along   forms a one-parameter group of linear

transformations  , having one of the following forms:

(i) If  , the quadratic form 

is preserved, and the transformation takes the form 

Cn n
′

Mn→n′

v = 0 n = n
′ = 1Mn→n

Mn→n′

n n
′

v

= ∘Mn→n′′ M →n′ n′′ Mn→n′

, ∈x1 x2 E
4 Σ(n)

s1 Σ(n)
s2 Δx := −x2 x1

n

t := , ℓ := n⋅Δx = − ,
ℓ

vt
s2 s1 (20)

> 0vt vmax

r := ΔxPn := 1 − n ⊗ nPn

∈ (0, ∞]vmax ⊂û Σ(n)

v û

(t, r) ↦ ( , )t′
r

′

< ∞vmax

Q(t, r) := − ∥r , Q( , ) = Q(t, r),v2
max t

2 ∥2 t′
r

′ (21)
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that is, the observable transformations have a Lorentz form with invariant  ;

(ii) If  , the null cone degenerates, and the limiting form is the Galilean transformation: 

. It will later be shown that this case is not realizable within the model.

These conditions are standard for deriving the Lorentz (or limiting) transformations; therefore, we

present only a sketch of the proof.

Sketch of the Proof. Conditions (R) ensure linearity and a block structure with respect to the

decomposition  : mixing occurs only in the   plane, while   transforms orthogonally

(reflecting the homogeneity and isotropy of the slice).

Condition (I), together with the existence of an invariant velocity  , implies the preservation of the

null cone  . For  , this yields the preservation of two independent null directions 

; the linear transformation preserving them has the Lorentz form (22). If  , the cone

degenerates, and the Galilean limit remains.

Compositionality and the condition   (from (R)) exclude nontrivial multiplicative factors, so the

form (21) is preserved exactly. ◻

6.3. Time Normalization and the Exclusion of the Galilean Branch

As established in Theorem  1, observable transformations admit two possible forms: the Lorentzian

branch (i) for a finite invariant speed  , and the Galilean branch (ii) for  . It will now be

shown that, within the present model, only the first of these is admissible.

Small-Velocity Limit

We employ the previously introduced normalization of the temporal coordinate through the scaling

parameter    (see  (20)). When comparing two foliations defined by the directions    and  , the angle 

 between them is related to the observable relative velocity   by 

For small angles, where  , this yields 

γ(v) = ,
1

1 − v2

v2
max

− −−−−−−
√

t′

r′
∥

r′
⊥

= γ(t − ) ,
v

v2
max

r∥

= γ ( − vt),r∥

= ,r⊥

(22)

vmax

= ∞vmax

= t,   = − vt,   =t′ r′
∥ r∥ r′

⊥ r⊥

r = +r∥û r⊥ (t, )r∥ r⊥

vmax

∥r∥ = |t|vmax < ∞vmax

= ± tr∥ vmax = ∞vmax

M(0) = 1

< ∞vmax = ∞vmax

vt n n
′

θ v

tan θ = .
v

vt
(23)

tan θ ≈ θ
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Since all eventhood is formed in projections onto the chosen foliation, consistency requires that in the

limit   (i.e., for infinitesimal rotation) the observable outcomes of any fixed registration procedure

coincide when described in IFRs   and   (see condition (iii) in §5.1). This is possible if and only if the null

cones in both systems are tangent to each other as  . If  , then for small   admissible causal

links are excluded (some events incorrectly fall outside the cone); if  , forbidden links are instead

admitted. In both cases, an operationally observable inconsistency arises. The only consistent case is the

coincidence of the temporal scaling parameter with the maximal admissible speed of causal interaction: 

When considering an infinitesimal rotation, we rely on the properties of direct transformations following

from the requirements of causal reconstruction; the obtained result refines the properties of observable

transformations.

Physical Interpretation

If  , time would be “stretched,” and the observer would exclude admissible causal links. If 

, links incompatible with reconstructions in other IFRs would be admitted. In both cases, even

an infinitesimal rotation of the foliation would lead to an operationally observable inconsistency.

Nondegeneracy of the Time Scale

Theorem 2 (Nondegeneracy  ). If  , the temporal scale becomes degenerate: for any finite

shift along the normal  , one has  . Moreover, from (23) it follows that for any finite   the

angle between the foliations is  , so that distinct IFRs become indistinguishable. Finally,

the invariant    from  (21) degenerates to  : the null cone disappears, and causal classification of

events becomes impossible. This contradicts the requirement of regularity at the identity transformation. Hence, 

.

Proof. By reduction to absurdity: for   one simultaneously obtains  ,  , and degeneracy of 

; each of these consequences contradicts the regularity conditions and the existence of a nonzero causal

cone. ◻

θ ≈ .
v

vt
(24)

v → 0

n n
′

θ → 0 <vt vmax θ

>vt vmax

= .vt vmax (25)

<vt vmax

>vt vmax

⇒ < ∞vt = ∞vt

ℓ = n⋅Δx t = ℓ/ ≡ 0vt v

θ = arctan(v/ ) = 0vt

Q Q = −∥r∥2

< ∞vt

= ∞vt t ≡ 0 θ = 0

Q
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Corollary

From Proposition  2 it follows that  . Together with  (25), this yields  , so that in

Theorem  1 only branch  (i) is realized. Thus, the Galilean limit ( ) is excluded, and the

observable transformations take the Lorentz-like form (22).

6.4. Conclusion

Thus, within the considered class of reconstructions and under the conditions (I) and (R) (see Theorem 1),

the observable transformations of Lorentz-like form are obtained. Both postulates of special relativity—

the equivalence of inertial reference frames and the invariance of a finite limiting speed—arise here not

as axioms but as consequences of operational reconstruction.

This reconstruction rests on three foundations:

the full   symmetry of the underlying field (the Laplace equation);

the operational definition of events through the observer and their informational state;

the application of causality separately within each IFR and the impossibility of accessing events

absent from the given IFR.

Once the equality   is established (see (25)), excluding the Galilean limit, the resulting observable

transformations formally coincide with the Lorentz transformations under the substitution  .

They describe the observable event structure within each IFR as an emergent one, without introducing a

priori a Minkowski metric, a fundamental temporal coordinate, or a global event space. In this way,

special relativity is reproduced as an operationally consistent structure within a timeless model based on

the Laplace equation (cf. [15]).

It should also be noted that the complete form of the direct transformations within this model cannot be

obtained without constructing an extended theory; however, certain of their properties can be derived

from the requirements of causal reconstruction.

7. Operational Information and Consistent Reconstruction Under a

Change of IFR

In this section we consider the classical regime (see §3.4), in which the set of events    in each inertial

reference frame (IFR) is fixed and identical for all observers at rest with respect to that IFR. This

< ∞vt = < ∞vmax vt

→ ∞vmax

O(4)

=vt vmax

c ↦ vmax

Cn
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simplification eliminates the dependence of the event structure on the observer’s localization and the

differences in working regions  , while retaining a sufficient operational foundation for analyzing

reconstruction under a change of foliation.

7.1. Classical Regime and Event Structure

In the classical regime, the observer’s information reduces to access to the set of events   of their own

IFR. Under a direct transition to another IFR, causal order remains consistent within each IFR, but

identical identification of events between distinct IFRs is not required and occurs only in the limit of

small foliation rotations.

7.2. Reconfiguration of the Event Structure Under Foliation Change

When transitioning from an IFR with normal    to one with normal  , the global field    remains

unchanged, but the set of events is reconfigured: some elements of   disappear, while new ones appear

in  . This reconfiguration is described by a direct transformation (see (16)) and remains consistent with

causality within each IFR (see §5.1). Intuitively:

Partial disappearance: events that had operational meaning in    may no longer satisfy the

reconstruction conditions in  ;

Emergence: new events may appear in   that were absent in  .

In contrast, the observable transformations  , constructed by the observer under a hypothetical

change of IFR based on the assumption of a global event set, by definition preserve eventhood between

IFRs and do not require a bijection between   and   (cf. Proposition 1).

7.3. Conclusion

The model contains no global event set: in each IFR only its own structure    is accessible, and no

information can be obtained about events absent from that IFR (Proposition 1). The distinction between

direct transformations    (the reconfiguration of    under an actual change of IFR) and observable

transformations    (a hypothetical reinterpretation preserving eventhood) serves as the starting

point for the derivation of Lorentz-like observable transformations in §6.

Ω

Cn
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Cn

Cn′
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8. Limitations and Discussion

8.1. Finite Informational Capacity and Reconfiguration of Event Records

In the general case, beyond the approximation of the classical regime, the local representation of the field

with respect to a chosen foliation is given by the coefficients    defined on the slices 

 (see §3, (8), (9)). When transitioning between IFRs (i.e., changing the foliation  ), the induced

set of modes on the hyperplane   as well as the corresponding coefficients   change. Note that

the global basis in   is fixed, and for different hyperplanes the sets   differ only by the rotation of

the hyperplane. As a result, according to the direct transformation   (16), the operational record of

events—that is, the collection of detector readouts defined through functionals of these coefficients—is

reconfigured as well.

In particular:

Partial disappearance: combinations of modes that produced nonzero values of detector functionals

in the  -IFR may no longer satisfy the event conditions in the  -IFR;

Emergence: new admissible events may arise in   that were absent in  .

These effects are a direct consequence of the finite spectral support of the observer (i.e., their finite

informational capacity). When exchanging information, observers within the same IFR (using the

common basis  ) synchronize their records and arrive at the same event structure  . Thus,

operational consistency within an IFR is preserved despite possible differences in local records.

Remark on Different Bases

If one allows observers with distinct bases of modal decompositions, their event structures cannot be

made fully consistent even through information exchange. Such a case lies beyond the scope of the

present model and may be interpreted as the existence of several parallel reconstructions (“parallel

universes”). In this paper, we restrict ourselves to the case of a single common basis, which ensures

internal consistency within each IFR.
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9. Conclusion and Outlook

In this work, we have examined a model in which the fundamental structure is a real scalar field 

  satisfying the Laplace equation in four-dimensional Euclidean space  , without time, privileged

directions, or fundamental dynamics. The Laplace equation was employed in a functional sense: we did

not seek explicit solutions but instead considered the subset of admissible configurations satisfying the

imposed operational constraints. From the analysis of the observer’s interaction with this field, the

following main results were obtained:

It was shown that the observer’s foliation of space and the modal decomposition of the field generate

a structure that can be interpreted as an inertial reference frame (IFR), possessing its own event

structure, causality, and inertia (§3, §5).

Two types of transformations between IFRs were identified: direct transformations (relating global

field configurations) and observable transformations (constructed by the observer based on the

assumption of a global event space).

It was proven that an observer within a given IFR cannot obtain information about events absent from

their own event structure; this establishes the distinction between direct and observable

transformations (Proposition 1).

Both postulates of special relativity were operationally reproduced:

the equivalence of all IFRs as observational foliations (invariance of the form of physical laws);

the existence of a finite limiting speed of causal interaction  , identical for all observers.

Observable transformations between IFRs were derived, which by construction preserve eventhood

from the observer’s perspective; it was shown that they take the Lorentz form with invariant 

  (Theorem  1, §6), while the Galilean limit is excluded as incompatible with the operational

consistency of the temporal scale.

It was established that the observer’s information (the operational record of events) in this model is

not absolute: when transitioning between IFRs, events may disappear or appear, while reconstruction

remains consistent with the causal structure within each IFR (§7).

Thus, from purely Euclidean geometry and the Laplace equation, an observable spacetime structure of

Minkowski type and a consistent causal order emerge. The results demonstrate that models lacking

fundamental time can be made strictly consistent with the observable structures of spacetime and can be

coherently incorporated into the modern theoretical-physics discourse as both non-contradictory and

Φ(x) E
4

vmax

vmax
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promising. This opens the possibility for further investigation of timeless models in a broader context,

including the reconstruction of metric, dynamics, and interactions from geometric and operational

foundations.

Appendix. Absence of Bijection Between Single Slices

Consider two foliation directions in  , defined by unit vectors    and  , and the corresponding level

hyperplanes

Let   be a fixed solution of the Laplace equation  . Its restrictions to   and   can be

expanded over orthonormal bases defined on the respective slices (see (3)): 

Here,    and    are the expansion coefficients, and  ,    are orthonormal bases in 

 and  , respectively, induced by the Euclidean metric. Note that the basis functions are

defined globally in   and coincide on all hyperplanes up to a rotation of the foliation; thus, the choice of

foliation corresponds merely to a reorientation of the basis.

Theorem 3 (Absence of Bijection Between Single Slices). If  , then, in general, no bijective rule exists

that expresses the set of coefficients    solely in terms of the set    (for fixed  ) without

knowledge of the full configuration    in the neighborhood of the corresponding layers. In particular, the

mapping   within natural classes of solutions is neither injective nor surjective.

Proof. Non-injectivity. There exist at least two distinct harmonic functions that coincide on   but yield

different restrictions on  . For example, let   and   with  .

Then    is harmonic (being linear) and satisfies  , so the sets   coincide for   and  .

However, on the rotated slice  , the trace of   is generally nonzero, and   differ.

Non-surjectivity. For a given set  , not every set    can be realized by a harmonic  : it

must belong to the image of the operator mapping “restriction to  ”    “restriction to  ”. This

operator is defined by solving an elliptic problem in the region between the slices and is inherently

nonlocal. It imposes integral consistency conditions, meaning that arbitrary    cannot be

achieved for fixed  . ◻
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Corollary.

Between the descriptions on individual slices corresponding to different foliations, no bijective

correspondence exists in terms of the coefficients of the instantaneous expansion. Therefore, direct

transformations  , which relate the sets of events under a change of foliation, generally do not

define a one-to-one correspondence between events. This emphasizes the necessity of distinguishing

between the two types of transformations: direct transformations describe the reconfiguration of the

event set under a change of IFR, whereas observable transformations    act on the operationally

accessible state and, by construction, preserve eventhood (see §5, (18)).

Footnotes

1   denotes the limiting speed of interaction in the reconstructed spacetime; its universality for all

foliations follows from consistency conditions, while its finiteness will be justified in Section 6.
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