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We consider a model in which the observed structure of spacetime emerges from a real scalar �eld

satisfying the Laplace equation in four-dimensional Euclidean space without time or distinguished

directions. Using an operational de�nition of the observer and events, we show that the structure of

inertial reference frames, Lorentz transformations, and elements of dynamics can be reconstructed

without postulating a Minkowski metric. Elements of general relativity are obtained, including the

emergence of foliation curvature and the derivation (rather than postulation) of the weak and strong

equivalence principles. The results demonstrate that models without fundamental time and metric

can be consistent with observed spacetime structures and admit a rigorous operational reconstruction

of dynamics and geometry.
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1. Introduction

1.1. The problem of time and causality

Modern fundamental physics continues to face three interconnected open questions: (1) Is it possible to

formulate a physical theory in the complete absence of time? (2) How can causality and measurement be

de�ned in such a context? (3)  What accounts for the emergence of the observed pseudo-Riemannian

spacetime signature  , despite the apparent naturalness of Euclidean symmetry?

These questions become particularly relevant in the search for a uni�ed theory combining quantum

theory and gravity, as many arguments [1] indicate that time in such a theory should be emergent rather

than fundamental. Closely related is the question of the nature of the observer. In standard formulations,
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the observer is treated as an abstract external agent, measuring what objectively exists independently of

the act of observation.

Many frameworks - such as causal set theory  [2][3], loop quantum gravity  [4], and relational

approaches [5] - attempt to remove time from the equations, yet retain it in hidden form, through partial

orders, evolution parameters, logical structures of histories, or functional dependencies between states.

Even Euclidean path-integral formalisms rely on Wick rotation to recover time as a physical coordinate.

In contrast, the present model is formulated in four-dimensional Euclidean space   and eliminates not

only coordinate time, but any fundamental structure prescribing order, evolution, or direction. The �eld 

, which is the sole constituent of the model and is detailed in subsequent sections, satis�es the

Laplace equation and is given as a single static con�guration. Structures typically associated with time

and causality in conventional theories are not postulated, but instead emerge through the interaction of

the observer with the �eld. The observer is modeled not as an external device, but as a physically

realizable structure within the model itself (see Section 3).

In standard quantum �eld theory, causality is imposed axiomatically in terms of light cones and

constant-time hypersurfaces. Such a structure presupposes a Minkowski metric and loses its justi�cation

if time is not fundamental, but instead operationally emergent. In problems involving gravity, spacetime

reconstruction, and timeless quantum formulations, these axioms become inapplicable and lack

universal validity.

Moreover, the Minkowski metric in special and general relativity is always postulated. However, the

signature theorem  [6][7]  prohibits globally transforming a positive-de�nite form into a pseudo-

Riemannian one, implying that if Lorentzian structure emerges, it must be effective and local. This is

particularly important in models where spacetime and dynamics are emergent.

Several approaches attempt to eliminate time from fundamental theory. For instance, in causal set theory,

time persists as a partial ordering on events, effectively de�ning an oriented causal structure. In loop

quantum gravity and spin foams, evolution is implemented via transitions between boundary states,

while the temporal axis appears as a parameter in external interpretation. In the Page–Wootters

mechanism [8]  and relational quantum mechanics [5], time is de�ned through quantum correlations

between subsystems, yet the existence of a postulated Hilbert space and measurement act is assumed.

In timeless approaches, such as Barbour’s model [9], time is eliminated as a parameter, but con�guration

space or spatiotemporal relations remain, allowing the recovery of dynamics. In QBism [10] and observer-
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centric QFT [11], the subject is introduced as an external interpreting structure rather than as a physical

body embedded in the theory. In all such cases, either time is retained in a hidden form, or the observer is

treated as external - see the comparative analysis in [12].

The proposed model differs radically: it eliminates not only coordinate time, but also any internal

ordering or evolution parameter, while modeling the observer as a localized con�guration of the same

�eld. All causal relations, dynamics, and events emerge operationally from interaction with the �eld on a

chosen foliation and are not postulated a priori.

Operationality in this work refers to the de�nition of physical structures based on observable interactions

between a localized observer and the �eld con�guration, without invoking external time, coordinate dynamics,

or an a priori metric. This allows for the formalization of causality, measurement, and observable

transformations (see Section 5) as internal operational structures.

In this sense, the model provides a rigorous realization of a timeless formalism with an internal observer,

from which both special relativity (SR) and key elements of general relativity (GR) can be derived.

Modeling the observer as a physical part of the con�guration enables the reproduction of phenomena

inaccessible in external-observer approaches - from causality reconstruction to the emergence of SR and

GR.

1.2. Euclidean models and the role of the observer

Euclidean methods have proven powerful in statistical physics and quantum �eld theory (e.g., in the

path-integral formalism), but in all known cases they are treated as auxiliary, with an essential return to

time via Wick rotation. Attempts to construct physically meaningful Euclidean models face challenges:

no mechanism exists for the emergence of causality, the structure of events and its link to observation

remains unclear, and Lorentz transformations and the speed limit are not derived.

Furthermore, in most such approaches the observer is either absent or introduced post hoc as an external

agent. This work explores the possibility of describing the observer as a physical con�guration emergent

within the same model: through localized decomposition of the �eld (see Section  3). Such an observer

interacts with    and, via the choice of foliation, determines which quantities acquire physical

meaning - including the structure of events, their ordering, dynamics, and causal connectivity.

This approach allows causality and measurement to be treated not as external postulates but as

operational structures that emerge within the model and depend on the observer. At the same time, the
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model remains formally Euclidean, without introducing time or prede�ned dynamics.

1.3. Objective and structure of the work

The main goal of this work is to introduce timeless models into the discourse of theoretical physics. We

adopt a model de�ned by a four-dimensional Euclidean space and a real scalar �eld with no

distinguished directions or internal symmetries. It is regarded as minimally suf�cient to demonstrate

key properties of timeless models and to show that such models can be consistent with observed aspects

of known physics. The objective is not to construct a complete physical theory, but to analyze structural

consequences of the model.

To this end, we demonstrate that in a strictly Euclidean model governed by the Laplace equation, one can:

formalize causality as a local operational structure, independently de�ned in each inertial reference

frame (IRF);

derive both postulates of special relativity;

derive Lorentz transformations;

indicate how the model can be extended to incorporate general relativity.

The construction is based on a scalar �eld   in  , satisfying: 

In this work, the �eld    is not considered as an object for which an explicit solution to the Laplace

equation is sought, but rather as a generalized con�guration satisfying the equation in the weak

(distributional) sense. The focus is not on solving the equation per se, but on deriving physical

consequences arising from imposing constraints on admissible solutions - in particular, the derivation of

special relativity transformations and operational structures arising from interaction with a localized

observer.

The �eld contains no fundamental dynamics, temporal parameters, or internal symmetries. Its

interaction with a localized observer - de�ned through foliation and mode decomposition - allows for

the operational construction of events, evolution, and the structure of IRFs.

The main results of the work are:

It is shown that through the operational de�nition of events and transitions between IRFs, the

following structures emerge:
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causality as a local operational structure, independently de�ned in each IRF;

both postulates of special relativity;

observable transformations with Lorentzian structure;

an invariant maximal speed   as the maximal speed of causal in�uence propagation within any

IRF.

A strict distinction is introduced between:

direct transformations, which describe mappings of events between IRFs as if a global event space

existed;

observable transformations, which de�ne how events and relations appear to an observer situated in

a given IRF.

It is established that special relativity corresponds to the structure of observable transformations - an

apparent consistency of events across IRFs in the absence of a global event space.

The causality principle is shown to be modi�ed: it applies independently within each IRF and does not

rely on a global event space. However, differences between causal structures in different IRFs vanish

as their relative velocity approaches zero.

A correspondence between the model’s operational structure and principles of general relativity is

outlined, to be further developed.

The work is organized as follows. Sections 2–3 describe the fundamental formulation of the model and

the de�nition of the observer. Section 4 constructs IRFs and introduces the concept of relative velocity.

Section 5 analyzes the types of transformations arising from changing IRFs and derives the postulates of

special relativity. Section 6 derives Lorentz transformations as a speci�c type of transformation between

IRFs. Section 7 discusses observer memory. Section 8 sketches the emergent dynamics and explores the

possibility of recovering elements of general relativity within the model. Section 9 is devoted to model

limitations. Section 10 summarizes conclusions and outlines future directions.

2. Fundamental Setup

2.1. Euclidean Space 

We consider a four-dimensional real Euclidean space  , equipped with the standard metric    of

signature  , where Latin indices  . The space contains no distinguished

directions, coordinates, temporal axes, or causal structure.

vmax
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The geometry of    is invariant under the orthogonal group  . Any hyperplane de�ned by the

equation  , where   is a unit normal vector, plays an equivalent role. No foliation of space is a

priori physically privileged.

2.2. The Basic Field and the Laplace Equation

A real scalar �eld   is de�ned on  , satisfying the equation 

where   is the Laplacian in Euclidean space.

This equation is regarded as the only equation of the model. It contains no designated time variable,

imposes no intrinsic dynamics, possesses no internal symmetries or preferred directions, and includes

no interactions - neither linear nor nonlinear. The solution    is assumed to be uniquely �xed,

including boundary conditions. This re�ects the fact that in a timeless model, independent initial data

cannot be speci�ed: the entire content of the model is determined by a single �eld con�guration, without

recourse to evolution.

2.3. Absence of Time and Causal Structure

No additional structures de�ning a direction of evolution, ordering of events, or dynamical variables are

introduced. The entire construction presupposes the complete absence of time - both as a coordinate and

as a functional parameter. The �eld   is interpreted as a static con�guration on  , not as the outcome

of any evolution.

This means that neither the �eld nor the space explicitly contains causal relations. The only source of

observed causality arises from the observer, localized in space and interacting with the �eld through the

operational scheme described below.

2.4. Purpose of the Construction

The goal of this section is to de�ne the stage on which all observable physics will emerge. No physical

quantities, events, symmetries, or equations of motion are built into the model a priori. Anything that

may be interpreted as spacetime, matter, or dynamics must arise as the result of the operational

interaction of the observer - a functionally distinguished local structure within the �eld   - with its

global con�guration.

E
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3. Observer and Operational De�nition of Events

3.1. Localization of the Observer

In this model, the observer is not treated as an external agent but is described using the same

construction as all other elements: as a localized structure within the space  , identi�ed within the �eld 

. To this end, we �x a hyperplane 

where   is a �xed unit vector specifying the foliation of space. A local region  , compact in three

directions, is then chosen.

Within this region, the �eld    is orthonormally decomposed with respect to a basis 

  constructed on the hyperplane. The speci�c choice of basis and domain    determines the

speci�c observer: 

The coef�cients   are interpreted as the internal variables of the observer - their collection constitutes

the observer’s body.

3.2. Foliation and Transport Direction

The foliation of Euclidean space  , de�ned in (2), partitions space into a family of three-dimensional

hyperplanes  , orthogonal to the chosen vector    and parametrized by a real scalar  , which is

interpreted as operational time in the observer’s frame. Each hyperplane is interpreted as a moment of

time in the corresponding inertial reference frame (IRF). We will later show that different orientations of

the hyperplanes, with the selected time direction, correspond to different IRFs.

The �xed orientation    determines the “transport” direction between slices, while the choice of

foliation de�nes the structure of local temporal ordering. Thus, the time direction in the model is not

speci�ed a priori but is de�ned operationally by the observer, through the orientation of hyperplanes

used in reconstruction.

E
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Requirement of Causal Reconstruction

Each operational inertial reference frame (IRF) is associated with a speci�c foliation    and time

direction  . In order for the reconstruction of events in a given IRF to be consistent with the principle of

causality, the following conditions must be satis�ed:

i. the modal decomposition of the �eld    with respect to the foliation must be such that the

individual modes   are localized within the hyperplane   and allow for local propagation along 

 with a �nite effective speed  1, as de�ned in the operational reconstruction of events;

ii. the equation satis�ed by the �eld   must admit such local modes and preserve their consistent

evolution along any admissible direction   compatible with the Euclidean structure;

iii. a transition between nearby IRFs (i.e., small rotations of the foliation) must not disrupt the

consistent structure of events: the symmetric difference between the reconstructed event sets 

, i.e., the set of events present in only one of the reconstructed sets, must vanish as  .

These are operational conditions: they are not postulated externally but arise from the requirement of

reproducibility of the event structure and consistency across different foliations. Thus, causality in the

model is not given a priori but emerges as a condition for the admissibility of reconstructions and the

observer’s compliance with limitations on the propagation speed of interactions.

Admissibility of Decompositions and Con�gurations

It is important to note that not every solution of equation (1) allows for a causal reconstruction. The

model imposes an additional constraint: only those solutions are considered that admit a decomposition

with respect to the foliation   into local modes   satisfying causal consistency. These solutions form

the physically admissible subset  , within which:

a. the modes   are localized within a region of the hyperplane  ;

b. interactions between �eld modes and observer modes admit an event-based interpretation;

c. small rotations of the direction   preserve a consistent event reconstruction.

This means that the admissibility of a �eld con�guration is not determined solely by the satisfaction of

the equation, but also by the operational feasibility of a modal decomposition with a causal structure. In

particular, if a con�guration   does not admit any foliation with a consistent modal decomposition, it

is excluded from the physical description.

Σ3

n

Φ(x)

ua Σ3

n v ≤ vmax

Φ(x)

n

△Cn C
n

′ θ → 0

Σ3 { }ua

S ⊂ ker Δ

ua Σ3

n

Φ(x)

qeios.com doi.org/10.32388/PLF0VP 8

https://www.qeios.com/
https://doi.org/10.32388/PLF0VP


Invariance of the Transport Operator

For any foliation direction  , de�ne the coef�cients 

where    is an orthonormal basis of modes on the hyperplane  . The operational

reconstruction within a given IRF postulates a linear transport 

where   depends only on local values of the �eld con�guration  .

Since the original �eld satis�es the linear equation   and is invariant under the full orthogonal

group  , equation  (5) must preserve its functional form under any rotation of the hyperplane 

:

That is, the transport operator    is universal across all IRFs. This universality expresses the

equivalence of operational “laws of physics” for all observers, regardless of foliation orientation.

Emergence of Causality

Thus, the principle of causality in each IRF is realized not as a fundamental postulate, but as a condition

of operational consistency: the observer can reconstruct a causal structure only if an appropriate �eld

decomposition exists. This is particularly signi�cant in the context of Euclidean symmetry: despite the

absence of a preferred time direction at the fundamental level, temporal orientation and causality emerge

as operational structures de�ned by the choice of foliation and the feasibility of reconstruction.

3.3. De�nition of an Event

Two key requirements must be met in de�ning an event.

i. Operational origin. An event must arise as a result of the interaction between the observer and the

�eld, not as a pre-existing ontological entity. In the present context, an event is a con�guration of

interaction between the modes of the basic �eld and those of the observer that triggers a discrete

update of the latter’s internal state, which is recorded by the observer and added to its “operational

history”.
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ii. Coherence across descriptive scales. Since a physical observer has �nite extent and a limited

spectral range, its interaction with the �eld is restricted to the projection onto a �nite-dimensional

subspace. The de�nition of an event must remain consistent when transitioning to coarser or �ner

modal decompositions - that is, it must be independent of the speci�c level of “resolution” used by

the observer.

As will be shown in subsequent sections, the operational model admits consistent reconstruction of

event structures when transitioning between IRFs de�ned by different foliation directions. Although

events are de�ned only relative to a given observer in its own IRF, agreement between different IRFs is

ensured through compatibility of reconstructions. Transformations between descriptions of the event

structure are then formally equivalent to Lorentz transformations.

We now state a de�nition of an event satisfying both requirements.

Let observer    �x the orientation of hyperplanes    and a �nite-dimensional subspace 

, along with a set of intrinsic modes    representing its “body”. The

interaction is described by the detector functional 

where   and   are the �eld and observer decomposition coef�cients on the slice  , and   is a

�xed symmetric (in the real case) or Hermitian (in the complex extension) matrix encoding the

observer’s sensitivity to different combinations of interacting modes. The functions    are

assumed to be smooth in  .

An event  is de�ned as a value   such that 

where    is the sensitivity threshold. Once the conditions in (8) are met, an internal “�ag” 

 is discretely switched  , recording the event in the observer’s memory.

The decomposition in (7) de�nes the primary level of event structure, based on the local coincidence of

�eld and observer modes. If the observer later transitions to a coarser description (e.g., by grouping

nearby modes into effective combinations), the functional    can be re-expressed in terms of new

coef�cients without altering the criterion (8). Thus, the de�nition of an event is independent of the level

of detail and remains operationally stable.

O Σs
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Each event is recorded within a single IRF; the model does not assume a global space of events. Causality

is realized as an ordered discrete history   recorded by the observer in its own reference frame.

4. Inertial Frames of Reference and Relative Velocity

4.1. Foliations as Inertial Frames

In the absence of time and dynamics, each foliation direction in  , speci�ed by a unit vector  , de�nes

a local event structure emerging from the observer’s interaction with the �eld. This structure is entirely

determined by the choice of hyperplanes  , orthogonal to  , and the operational interpretation

of   as emergent operational time resulting from this interaction.

In this model, an inertial frame of reference (IFR) is understood as a foliation direction   with respect to

which events, causality, and observable quantities can be consistently de�ned through the localized

decomposition of the �eld and its interaction with the observer’s body. All IFRs in this work are

interpreted in this strictly operational sense.

No IFR is physically distinguished: the model is invariant under the full orthogonal group  , and the

differences between IFRs arise solely from the choice of foliation direction for reconstruction. As will be

shown below, transitions between foliation directions give rise to consistent transformations of

observables that are formally equivalent to Lorentz transformations.

Operational Principle of Inertia

Each physical body in the model is represented as a localized collection of modes of the basic �eld,

de�ned on the hyperplanes of a given foliation. Its motion in a �xed IFR is described as a sequence of

events arising from the interaction of the body with the global con�guration of the �eld  .

If the sequence of events along the parameter   changes its geometry within the hyperplanes   - for

instance, if a shift or curvature of the trajectory is observed - such behavior is interpreted as acceleration.

According to the operational approach, acceleration requires the presence of a cause, i.e., an additional

interaction of the body with �eld modes outside its local decomposition. Such interaction is interpreted

as external to the body and leads to a deviation of the event trajectory from inertial motion.

Thus, if a body exhibits uniform and rectilinear motion (in terms of a consistent sequence of events) in an

IFR, this indicates the absence of external in�uence and, therefore, of any cause for change. In this sense,

{ }EO

E
4 nA

= snAx
A nA

s

nA

O(4)

Φ(x)

s Σ3
s
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causality in the model is realized through deviations from inertiality: every acceleration is operationally

linked to an additional interaction.

Consequently, in the absence of external in�uence, the event trajectory of a body remains straight and

uniform in the chosen IFR. This corresponds to an operational formulation of the principle of inertia: if

no cause acts upon a body, its reconstructed behavior in a given IFR remains unchanged. In this way, inertiality

is understood as the stability of the event structure of the body under a �xed �eld con�guration and

chosen foliation direction.

4.2. Transition Between IFRs and De�nition of Relative Velocity

Let two inertial frames of reference (IFRs) be given, corresponding to foliations along directions   and 

. These directions are related by an orthogonal transformation of Euclidean space: 

Each foliation direction   de�nes a family of hyperplanes  , interpreted as “moments of time”

in the given IFR. Events are de�ned as local interactions within these hyperplanes. However, the

projections of the same point    onto the hyperplanes of two different foliations - e.g., 

  and    - generally differ. This leads to an operationally observable shift of events

during sequential transport along the direction  , if   is tilted relative to  .

Such discrepancy in the reconstruction of events is interpreted as the relative velocity between IFRs. Let 

  denote the angle between the directions    and  . Then, at each unit transport step along  , the

observer registers a transverse shift of the hyperplane   by an amount proportional to  . This shift

is interpreted as the observable relative velocity: 

where   is a scaling coef�cient relating the transport step to the unit of observable time (to be �xed in

Section 6).

Thus, the relative velocity between IFRs is determined entirely by the angle between their foliations. In

the limit  , the corresponding spacetimes become locally consistent.

4.3. Consequence: A Multiplicity of Spacetimes

Since foliations   and   lead to different �eld decompositions and, hence, to different sets of events,

each direction    de�nes its own spacetime. There exists no global mapping of events between these

nA

n′
A

= , R ∈ O(4).n′
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R B
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x ∈ E
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spacetimes. The model contains no global event space: only local projections exist, speci�c to each IFR.

The observed velocity arises as the relative displacement of events between these spacetimes under

perpendicular shifts of hyperplanes. In the limit  , the spacetimes become locally consistent, a fact

that will be used in deriving observable transformations formally equivalent to Lorentz transformations.

5. Observable Transformations and the Postulates of Special

Relativity

5.1. Two Types of Transformations

In the absence of a global event space, the transition between different inertial frames of reference (IFRs),

corresponding to foliation directions   and  , can be understood in two distinct ways:

Direct transformations - mathematical mappings of �eld con�gurations and events between

different foliations in  , as if a global event space existed. They re�ect differences in the de�nition of

events and causal relations between IFRs, unconstrained by the information available to the observer.

Observable transformations - operational reconstructions of the event structure by the observer

during the transition from one IFR to another. Since the observer has no access to the �eld outside the

current foliation, the reconstruction in the new IFR is performed solely on the basis of the localized

con�guration of modes retained in the observer’s body. This reconstruction is carried out to ensure a

consistent and continuous description of observable interactions in the new frame.

Unlike direct transformations, observable transformations do not constitute an objective mapping

between two �eld structures. Rather, they implement an internal reconstruction of event structure

consistent with the prior state of operational memory. In this process, events may disappear or emerge,

without compromising the consistency of the observed history.

Since the reconstruction is based only on operationally available information, an observer transitioning

to a new IFR operates with an observationally equivalent event structure. This equivalence does not imply

physical identity of events but only their compatibility with the observer’s limited accessible information.

Thus, observable transformations realize a continuous transition between descriptions without

presupposing the existence of a global event space.

θ → 0

nA n′
A

E
4
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This distinction between the two types of transformations underlies the derivation of the observed

invariance of physical laws and the postulates of special relativity, as will be shown in the next section.

5.2. Operational Equivalence of Events

An observer moving from one IFR to another has no information about events that do not belong to their

current foliation. All memory related to events is retained in the form of a con�guration of �eld modes

localized in the observer’s body. The operational reconstruction of the event structure in the new IFR is

carried out to be consistent with the accessible part of this memory. During this process, some previously

recorded events may become operationally inaccessible, while new events may be added to ensure the

consistency of causal relations in the new IFR. This leads to an agreement between observed events

across IFRs, despite possible discrepancies under direct comparison of �eld con�gurations.

Thus, despite differences in causal relations and events between IFRs, the observer operates with

operationally equivalent events in different IFRs. This equivalence does not re�ect physical identity: when

comparing �eld decompositions directly, the events may differ. However, since the observer has no

access to events outside their foliation and operates solely on the retained operational memory, the

reconstruction in the new IFR is performed as if the event structure were preserved. A global event space

is not formed.

5.3. Invariance of the Operational Law of Interaction

The Laplace equation is invariant under the rotations of the group  . This implies that the rule of

evolution of the �eld decomposition coef�cients under perpendicular transport (5) is the same for all

foliation directions. Consequently, all observers, regardless of the chosen direction  , use the same

operational scheme for reconstructing the sequence of events.

This corresponds to the �rst postulate of special relativity in its operational formulation:

The operational structure of physical interactions is identical in all inertial frames of

reference.

5.4. Limitation on the Maximum Speed

In this model, causality is de�ned as the operationally consistent reconstruction of events within a single

inertial frame of reference (IFR). From this operational de�nition of causality, a natural limitation arises

O(4)

nA
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on the maximum speed at which observable causal in�uence can propagate without violating

reconstruction consistency.

If such a maximum speed   exists, then the   symmetry of the scalar �eld implies that its value is

the same in all IFRs. It is important to emphasize that   limits the speed of causal connections within

a single IFR; it does not restrict the relative velocities between different IFRs, as such velocities have no

operational meaning for a single observer.

For instance, if the foliations of two IFRs are orthogonal, their relative speed in the reconstructed

spacetime would be formally in�nite. This is acceptable in the model, since causality is de�ned locally -

within each IFR - and does not require global consistency between all foliations.

The maximum speed   is determined by the structure of the observer’s modes and by the constraints

on the consistent projection of the �eld con�guration onto the chosen foliation. It is strictly operational

in nature: the observer cannot interpret two events as causally related if their reconstruction would

require exceeding   within their own coordinate structure.

In the next section,   will be associated with a scaling parameter of temporal normalization, which is

determined by the consistency of reconstructions under small transitions between IFRs. Since

consistency is possible only for a �nite value of this parameter, it follows that   must also be �nite.

Thus,   represents an internal bound of operational causality within a given IFR. It does not depend

on the choice of coordinates, detection procedures, or other observers, and its existence corresponds to

the second postulate of special relativity in the following form:

There exists a �nite maximum speed  , identical for all observers within their

respective inertial frames of reference, which de�nes the highest speed at which causal

interaction can propagate without violating the consistency of operational event

reconstruction.

5.5. Observable Transformations with Lorentz-like Structure

The requirement of preserving event structure under transitions between IFRs implies that observable

transformations must preserve the operationally reproducible structure of event causality. Geometrically,

this is expressed by preserving a form analogous to the invariance of the quadratic quantity 

vmax O(4)

vmax

vmax

vmax

vmax

vmax

vmax

vmax

− = const,s2 v2r2 (11)
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where    is the transport parameter along the foliation direction (the temporal coordinate in the

reconstruction),    is the Euclidean norm of the coordinate in the hyperplane  , and    is the relative

velocity between IFRs in the reconstructed description. These transformations preserve operational

eventhood and realize consistent observable descriptions.

The expression (11) is used in this section as a heuristic representation of event structure preservation; its

rigorous derivation from operational requirements will be provided in the next section.

Thus, the structure of special relativity emerges as a consequence of operationally admissible

transformations between IFRs, ensuring consistent event reconstruction in the absence of a global event

space. This derivation does not require the Minkowski metric or any fundamental time coordinate, and it

is based solely on the operational consistency of observations within a local foliation.

6. Derivation of Lorentz Transformations from the Operational

Structure

6.1. Constraints on the Class of Reconstructions

This section considers only those cases of operational reconstruction for which:

the direction of operational time of the observer is de�ned by a unit vector  ;

the operational space is aligned with the hyperplane  ;

the reconstructed distance between events in   equals the Euclidean length  .

This is a particular but physically meaningful case, which allows for a rigorous derivation of the Lorentz

transformations based on geometry and operational constraints. A more general setting, involving

curvature and nonlinearity, leads to elements of general relativity and is considered separately.

Remark on the Limitation of Causal Connections

In this model, event reconstruction must preserve causal consistency. This requires that two spatially

separated events at distance    can only be interpreted as causally related if at least a time 

  elapses between them, where    is a certain �nite limiting speed of interaction. This

constraint is not postulated but arises as a consequence of the requirement of operational consistency in

the reconstruction of events by the observer.

s

r Σ3 v

n ⊂ R
4

⊥ nΣ3

Σ3 λ = ℓ

λ

t = λ/vmax vmax
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The invariance of the quantity    across all admissible reconstructions follows from the full  -

symmetry of the Laplace equation: since all directions in   are physically equivalent, the limiting speed

of interactions de�ned within a foliation cannot depend on the orientation of the hyperplane.

This fundamental property is complemented by the operational requirement that when transitioning

between two IFRs, the difference in causal structure must vanish in the limit of vanishing relative

velocity. Together, these conditions guarantee that the reconstructed event structure remains consistent

under in�nitesimal foliation transitions, without the appearance or disappearance of events.

6.2. Operational Derivation of Lorentz Transformations

Let the observer   perform an operational reconstruction of events based on the hyperplane   and the

normal vector  . The temporal parameter is de�ned as: 

where   is the distance along  , and   is the scaling parameter connecting distance and time in the given

reconstruction.

To ensure consistency of the event structure when transitioning to a new IFR (a different foliation  ), the

observer requires that the reconstruction provides continuity and operational consistency of observable

event structure. In this context, it is natural to impose linearity of transformations between coordinates:

while this condition is not directly derived from the fundamental equation of the model, it is necessary

for invertibility and local consistency of reconstruction in the limit of in�nitesimal foliation rotations (

), which is analyzed in the following subsection.

Thus, the reconstruction must satisfy the following:

the transformations are linear, ensuring consistent event matching under small foliation transitions;

the limiting speed    is invariant, de�ning the maximum speed of causal propagation between

events within a single IFR.

These assumptions uniquely yield the Lorentz transformations with parameter  : 

where  .

vmax O(4)

E
4

O Σ3

n

t =
ℓ

vt
(12)

ℓ n vt

n
′

v → 0

vmax

vmax

t′

x′

= γ(t − ) ,
vx

v2
max

= γ(x − vt),

(13)

(14)

γ = 1/ 1 − /v2 v2
max

− −−−−−−−−
√
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Geometric Interpretation

Changing the IFR corresponds to a rotation of the hyperplane   by an angle   in  , such that: 

The maximal permissible value   corresponds to the situation where the normal to one foliation

becomes parallel to another, and reconstruction becomes impossible. However, this limit does not

determine the value of  : the angle between foliations is a geometric property of direct

transformations, whereas   constrains interaction speeds within a single foliation.

Thus, the limiting observable speed of interaction    is not de�ned by the geometry of foliation

rotation, but requires a separate operational analysis presented in the next subsection.

6.3. Time Normalization and Derivation of Maximum Speed

We employ the previously introduced time normalization via the scaling parameter  , equation (12).

This normalization alone does not specify the value of  . However, the requirement of consistency

between reconstructions in closely related IFRs, connected by small foliation rotations, imposes a strict

constraint on admissible values of  .

Limit of Small Velocities

Consider two foliations de�ned by directions   and  , deviating by a small angle  . In the model, this

deviation is approximated by: 

where    is the observable relative velocity between IFRs, emerging from the comparison of

reconstructions.

Since all observable events are projected onto the chosen foliation, operational consistency requires that

as  , i.e., under an in�nitesimal rotation, the event structures in both IFRs become

indistinguishable: 

where    is the causally admissible event structure, and    denotes the symmetric difference of event

sets.

Σ3 θ R
4

tan θ =
v

vt
(15)

θ = π/2

vmax

vmax

vmax

vt

vt

vt

n n
′ θ

θ ≈
v

vt
(16)

v

v → 0

( △ ) = 0lim
v→0

Cn C
n

′ (17)

Cn △
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This is only possible if the time scale    used in the reconstruction matches the maximal admissible

speed of causal interaction  , which, due to the  -symmetry of the model, is the same in all IFRs.

Physical Interpretation

If  , the reconstructed time would be excessive for registering causal connections: the observer

could miss a valid interaction in the event structure. If  , the observer would include

inadmissible connections, inconsistent with reconstructions in other IFRs. In either case, even an

in�nitesimal foliation rotation would lead to inconsistencies in memory and event structure, which is

operationally unacceptable.

Therefore, consistency of reconstructions in the limit   requires: 

6.4. Conclusion

Thus, Lorentz transformations, the two postulates of special relativity, and the existence of a limiting

speed do not follow from a postulated spacetime structure, but from three operational foundations:

the Euclidean symmetry of the fundamental �eld,

the operational de�nition of events via the observer,

the independent application of causality within each IFR.

The resulting transformations are formally identical to the Lorentz transformations under the

substitution  , and describe the observable event structure in each IFR as emergent, without

invoking an a priori metric or time coordinate.

This demonstrates that special relativity emerges as an operationally consistent structure within a

timeless model governed solely by the Laplace equation.

7. Operational Memory and Event Consistency under IFR

Transitions

7.1. Modal State and Operational Recording of Events

In this model, the observer is not external to the �eld: their body is formed as a localized structure of

modal coef�cients in a chosen foliation of the �eld  . All events are operationally de�ned

vt

vmax O(4)

<vt vmax

>vt vmax

v → 0

=vt vmax (18)

c ↦ vmax

Φ(x)
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coincidences between the observer’s modes and the modes of the �eld, localized on hypersurfaces

orthogonal to the foliation direction, as speci�ed by the de�nition of an event and equation (8).

It is essential to distinguish between:

Local modal state - the set of decomposition coef�cients of the �eld    describing a stable

con�guration of the observer’s body within a �xed foliation. This state represents a physically de�ned

localized structure in  , which does not possess an absolute event interpretation outside the context

of the selected foliation;

Operational recording of events - the set of interactions interpreted by the observer as events, arising

during the reconstruction of causal-event structure based on the modal state with respect to the

chosen foliation. This record depends on the direction of foliation and may change under transitions

between IFRs.

Thus, the observer’s memory is not de�ned as an external global structure but is formed as the result of

interpreting their own modal state in a given operational frame. The operational event record is not

preserved under IFR transitions but must remain consistent with the observer’s modes as reconstructed

in the new foliation. In this sense, events do not possess absolute ontological stability: they are functions

of the operational context of reconstruction.

7.2. Reconstruction of Event Structure under Foliation Transition

Let the observer transition from one inertial frame of reference (IFR), associated with a foliation

direction  , to another IFR with direction  , differing by a �nite angle. While the global �eld 

  remains unchanged, the modal structure of the observer’s body - de�ned via localized

decomposition in the new foliation - is transformed.

Since event reconstruction is based on comparing the body’s modes to those of the surrounding �eld, the

change of basis results in a shift in the set of operationally signi�cant coincidences. This leads to the

following consequences:

Partial disappearance of events: some events reconstructed in the previous IFR no longer satisfy the

coincidence conditions in the new basis;

Appearance of new events: the modal con�guration in the new IFR may yield additional operationally

admissible coincidences that were not previously registered.

Φ(x)

E
4

nA n′
A

Φ(x)
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Hence, a transition between IFRs does not produce a transferable absolute memory but necessitates a

reconstruction of event structure based on the transformation of the localized decomposition. This

reconstruction does not imply any violation of consistency, as it is carried out in accordance with the

internal structure of the �eld and the direction of operational reconstruction.

In general, particularly in the presence of nonlocal correlations or mode aggregation, the reconstruction

may proceed not at the level of individual coef�cients but based on effective modal generalizations. In

such cases, events are de�ned not as isolated points but as structural elements in the space of admissible

coherent �eld projections.

7.3. Conclusion

In this model, operational memory is neither absolute nor invariant. It arises as the local interpretation of

the observer’s internal modal state and is therefore restructured upon foliation change. This re�ects the

fundamental irreducibility of event structure to a global set and emphasizes the emergent character of

causality.

8. From Euclidean to Minkowski Dynamics (Sketch)

8.1.  -Symmetric Averaging and the Effective Action

Based on a single solution of the Laplace equation  , the observer selects a foliation by hypersurfaces 

, orthogonal to a chosen direction  . On each hypersurface  , the �eld is decomposed into an

orthonormal basis of functions: 

where   is a �xed basis on the hypersurface, and   are the corresponding coef�cients.

Operational reconstruction assumes the existence of a transport operator along  , which governs the

evolution of the coef�cients under a shift of the foliation: 

where    is a (generally non-scalar) operator whose effective form depends on the local structure of 

 and the choice of basis. This expresses the local validity of the causality principle: within each IFR,

O(4)

Φ(x)

(s)Σ3
n Σ3

Φ(x) = (s) (x)∣∣Σ3 ∑
n

an un (19)

(x)un (s)an

n

= (s)
d (s)an

ds
Hnmam (20)

Hnm

Φ(x)
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the observer can consistently reconstruct an ordered sequence of events via the change in modal content

under foliation shift.

Similarly, one can introduce an effective action  , governing the dynamics of the coef�cients   in

the transition from Euclidean to Minkowskian structure. Such reconstruction requires a justi�cation of

the transition from a static �eld to parameterized dynamics, which is achieved through coarse-graining.

Assume the observer is insensitive to the full modal structure of the �eld, and interacts only with a

restricted subset  , where  . Then the effective dynamics is given by integrating out the

suppressed modes, leading to the action: 

Thus,    de�nes the operationally observable evolution and speci�es the structure of interactions

between modes within the reconstructed dynamics.

8.2. OS-Positivity and Wick Rotation

Due to the linearity of the Laplace equation and the   symmetry of the model (see Appendix 12 for

details), the correlation functions of the effective decomposition coef�cients possess re�ection

symmetry and positive de�niteness. These properties correspond to the conditions of Osterwalder–

Schrader (OS) positivity[13], necessary for a valid Wick rotation and the emergence of unitary Minkowski

dynamics.

Under these conditions, the transformation 

enables the reconstruction of dynamical equations where the parameter   serves as the physical time in

the reconstructed Minkowskian structure.

8.3. Emergence of the Light Cone and the Scale 

The constraint on the maximal operational interaction speed    sets the scale of the

reconstructed causal cone, analogous to the light cone under the assumption  . Within this limit,

one can de�ne an analog of the constant-time hypersurface and the structure of the causal cone: 

Seff (s)an

{ }an n ∈ Neff

= ∫ D δ(Φ − [a, ]) .e− [a]Seff Φ⊥ Φfull Φ⊥ e− ∫(∇Φ x)2d4
(21)

Seff

O(4)

s ↦ it (22)

t

vt

=vt vmax

= cvmax

(x − − (t − = 0x′)2 v2
t t′)2 (23)
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which determines the observable boundary between causally connected and disconnected events in the

reconstructed dynamics.

The emergence of    as an operationally distinguished scale in the reconstruction allows the

reconstructed equations of motion to be compatible with Lorentz invariance.

Therefore, even in the absence of fundamental time and Minkowski metric, the model permits emergent

dynamics locally described by Minkowskian effective �eld equations.

8.4. Gravitational Reconstruction and the Equivalence Principles

In this model, spacetime arises as an emergent structure de�ned by operational foliation and spectral

averaging of the underlying scalar �eld  , satisfying the Laplace equation in  . Earlier sections

demonstrated how an effective metric emerges, consistent with Lorentz transformations and locally

described by Minkowski structure.

The model can be generalized to the case where �at hypersurfaces are replaced by curved ones. This

leads to curvature in the reconstructed emergent metric  , which is operationally interpreted as a

gravitational �eld. Since all physical objects are represented as localized con�gurations of  , their

event structure depends solely on the local geometry of the foliation. Hence, the weak equivalence

principle holds: the trajectories of all objects are determined exclusively by the geometry of  , regardless

of their internal structure.

Gravitational effects in the model arise as a consequence of operational description from an accelerated

observer’s perspective. A change in foliation corresponding to acceleration leads to curvature in the

reconstructed metric without any change in the fundamental �eld  , thus ensuring the equivalence of

gravity and acceleration.

The transfer operator   (5), which describes the local evolution of modes in event reconstruction,

retains its universality under foliation curvature, as it depends only on the con�guration  . This

enables, in each suf�ciently small region, the selection of a foliation that renders the metric locally

Minkowskian and preserves operational laws. In this way, the strong equivalence principle is realized: local

physical laws in a freely falling frame are indistinguishable from those in an inertial frame without

gravity.

Finally, in the case of nonlinear reconstruction, involving mode aggregates and foliation variations, the

effective action may include terms dependent on the emergent curvature  . This opens perspectives for

vt

Φ(x) E
4

gμν

Φ(x)

gμν

Φ(x)

[Φ]Aαβ

Φ(x)

R
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studying Einstein’s equations within a geometric reconstruction framework, which requires further

analysis.

9. Limitations and Discussion

9.1. Finite Memory and Modi�cation of Event Structure

In the present model, the observer’s memory is not represented as an absolute list of events, but rather as

a spectrally localized con�guration of the �eld modes constituting the observer’s body. When

transitioning between IFRs - that is, between foliations - the mode decomposition coef�cients 

 and the basis functions   transform. Consequently, the event structure interpreted by the

observer also undergoes transformation.

In particular:

Some events disappear if the corresponding mode combination is no longer projected onto a

structure that quali�es as an event in the new IFR;

New events emerge if the new foliation gives rise to con�gurations interpreted as detector-like

signatures, which had no counterpart in the previous structure.

This is an inevitable consequence of the �niteness of the observer’s operational sensitivity: the observer

can reconstruct only a limited number of modes with �nite spectral support. As the foliation is rotated,

the geometry of projection changes, and event reconstruction must be realigned with the new basis.

Thus:

When the observer transitions to a new foliation (i.e., changes IFR), the list of events is modi�ed:

memory is not preserved in an absolute sense but is reconstructed in accordance with the new

operational structure.

This mechanism enables operationally continuous event reconstruction despite the absence of a global

event space. The model supports a strictly operational de�nition of causality within each IFR but

excludes the existence of a universal event structure shared among all observers.

{ (x)}aα { (x)}ϕα
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10. Conclusion and Outlook

This work considered a model in which the fundamental structure is a real scalar �eld   satisfying

the Laplace equation in four-dimensional Euclidean space  , with no time, no distinguished directions,

and no dynamics. From an analysis of the operational interaction between an observer and this �eld, the

following main results were obtained:

It was shown that spatial foliation by the observer and modal decomposition of the �eld give rise to a

structure interpretable as an inertial reference frame (IRF), equipped with its own notions of events,

causality, and inertia.

Two types of transformations between IRFs were distinguished: direct transformations (mapping

global �eld con�gurations) and observable transformations (performed by the observer based on

their own memory).

It was demonstrated that both postulates of special relativity can be operationally recovered from

Euclidean geometry and the reconstruction of events:

the equivalence of all IRFs as observational foliations;

the existence of a maximal relative velocity  , invariant for all observers.

Observable transformations between IRFs preserving the operationally de�ned event structure were

derived and shown to take the form of Lorentz transformations.

It was established that observer memory in the model is not absolute: when transitioning between

IRFs, events may disappear or appear, and reconstruction is performed to maintain operational

consistency.

A sketch of an emergent Minkowskian dynamics was constructed.

Certain elements of general relativity were recovered, including a derivation - rather than a

postulation - of the weak and strong equivalence principles.

Thus, starting solely from Euclidean geometry and a linear �eld equation, the model yields an observable

spacetime structure of Minkowski type, consistent causality, the foundations of dynamics, and elements

of general relativity.

The results demonstrate that models without fundamental time can be made strictly consistent with

observable spacetime structures and may be incorporated into contemporary theoretical physics

discourse as coherent and promising frameworks. This opens the possibility for further development of

Φ(x)

E
4

vmax
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timeless models in a broader context, including the reconstruction of dynamics, metrics, and interactions

solely from geometric and operational principles.

Appendix A. Absence of Bijection Between Individual Slices

Consider two foliation directions in  , de�ned by unit vectors    and  , which determine level

hypersurfaces   and  , respectively.

Let   be a �xed solution of the Laplace equation: 

Decompose   on the hypersurfaces   and   using orthonormal bases   and  : 

If  , the bases   and   correspond to different coordinate subspaces, and in general, there

exists no bijective mapping between the coef�cients   and  .

The reasons are as follows:

Different foliations induce different spectra of projection operators. Even with complete knowledge of 

, the projection onto   cannot be recovered without access to the global con�guration  .

An orthogonal rotation of the hypersurface corresponds to a non-local transformation between bases

in  ; no �nite-dimensional or local operator implements such a mapping.

For a generic �eld  , the values on one hypersurface do not determine the values on another

unless they belong to the same foliation. This is characteristic of elliptic equations.

Consequently, there exists neither a bijection nor a surjection between modal decompositions across

different foliations. This makes the transfer of information between IRFs in terms of event matching

impossible and motivates the necessity of observable transformations, which operate solely on

operationally accessible coef�cients.

Appendix B. OS Positivity for the Linear Laplace Field

To construct a Minkowskian effective theory from the Euclidean model, it is necessary that the

correlation functions obtained from the functional integral with the Euclidean action satisfy the

E
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Osterwalder–Schrader (OS) positivity conditions  [13], which permit analytic continuation to causal

Minkowski functions.

Consider the action 

which corresponds to a solution of the Laplace equation: 

The correlation functions, de�ned as functional integrals 

exist because the action is positive-de�nite and Gaussian. This ensures:

the well-de�nedness of the functional measure;

exponential decay of correlators at large distances;

satisfaction of the OS-positivity conditions for all linear observables.

It follows that the �eld-theoretic object obtained as a result of coarse-graining from   admits analytic

continuation to Minkowski space via a standard Wick rotation.

Thus, the linearity of the Laplace equation and the positivity of the Euclidean action provide a

fundamental justi�cation for the transition to an effective Minkowskian dynamics.

Footnotes

1 Here,   is the maximum interaction speed in the reconstructed spacetime, de�ned in Section 6.
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