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In this work, the extreme points of real vector variable functions are obtained without the use of the classical
theory that involves the use of partial derivatives. We illustrate with several theorems and examples a new
method that consists of establishing an appropriate link between the function to be optimized, its restrictions
and the result, stating that: given n non-zero real numbers a;, as, - - -, a, € R, then there exists a unique

A € R such that:

This relation is obtained by decomposing the Hilbert space R" as the direct sum of a closed subspace and its
orthogonal complement. Since the dimension of the space R" is finite, this guarantees that any linear
functional defined on the space R" is continuous, and this guarantees that the kernel of said linear functional
is closed in the space R", therefore we have that the space R" breaks down, as the direct sum of the kernel of
the continuous linear functional f and its orthogonal complement, that is: R” — ker f @ [ker f ]l , where the
dimension of ker f — n — 1and the dimension of [ker f]© — 1.

Adding to the link found new definitions about the hierarchy of one variable in relation to another and the fact
that if m% + mg—l—. ..+z% — r?thenthe max{z; + 3 + --- + z,} — r/nand the

min{z; + @3 + -+ + z,} — —r./nwe solve the optimization problem without using classical theory.

Corresponding authors: B. MCerna Maguifia, bcernam@unasam.edu.pe; Dik Dani Lujerio Garcia,

Sabino, vrodriguezs@unasam.edu.pe; Ruben Mario Leiva Bernuy, rleivab@unasam.edu.pe

1. Introduction

In this work, we will find the maxima or minima of real vector variable functions (conditional and

unconditional), these will be found without the need to use partial derivatives. To this end, we note that by
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solving the problem of max(min)f(z,y,z) subject to a condition, there is a hierarchy of one variable over
another, depending on how f is defined and its domain of each variable. For example, if our problem is
max f(z,y,z) = zy?2® withz + y+ 2 =6and 0 < z,0 < y,0 < 2z, we would have to have z > y > z, that is, the
variable with the highest hierarchy is z, and y has a higher hierarchy than z in the given domain. On the other
hand, if we had the problem of max f(z,y,2) = zyz subject to z + y+ 2z =a where 0 <z < a, 0 <y < a,

0 < z < a, it would be clear that x = y = z, that is, these variables have the same hierarchy in the given domain.
In addition, we establish an appropriate link between the optimization problem and the relations

(a1 +az+-+ay) =A(al+ a3+ +a)
max{z1 +za+ -+ x,} =710 ) (1)
min{x; + @2 + -+ zp} = —1ry/N.

where this allows us to obtain desired results. The first relation above was used in other areas of mathematics,

see LU2IBI[4] The verification of these relationships is demonstrated with the following theorems:

n n
Theorem 1.1. Let f : R — R, then the max f(z1,x2,...,%,) = Y ; subject to the condition Y 2? = r? isr\/n.
i=1 i=1

n
Proof. Since > z; = ((@1,%2,...,2s),(1,1,...,1)) = |z| - /0 - cos@ = ry/n, where 0 is the angle formed by the
=1

i=

vectors ¢ = (z1,3,...,2,) and the vector (1,1,...,1). Here, the maximum and minimum are obtained when

0 = 0and 6 =  respectively. (]

Theorem 1.2. Let a4, . . ., a, be any real numbers, then there exists A € R, such that

n n
E a; = A E a?
i=1 i=1

Proof. Let f:R™ — R be defined by f(z1,...,z,) = Y 1, a;%;, be defined by f is a linear and continuous

functional. Therefore
R" = ker f @ (ker f)*. (2)

Thus we have that:
dimR" = dimIm f + dimker f
n =1+ dimker f

Therefore dimker f =n —1

Thus, from (2) we have:

n—1
(1,1,..,1) = ) Nt + Anun (3)
=1

where {u1,...,u, — 1} C ker fand u,, € (ker f)*
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From (3) and taking into account that f is a linear functional, we have
n n
Sa=ay e
i=1 i=1

since u, = (ai,...,a,) € (ker f)*

Using this last relation, which must be linked with the function to be maximized and with the given restrictions.

Below we show several problems that illustrate the given theory. [

2. Results

Using the aforementioned technique we must standardize the resolution of various problems.

Theorem 2.1 Let H:[a,b] > R, T:[c,d — R, G:[a,b] X [c,d] — R and
F(z,y) = H(z) + G(z,y) + T(y) be continuous functions. Then we have that Max F(z,y) = ; for some A > 0,

where
Max H(z) = Max T(y) = MaxG(z,y) = % or
Maz F(z,y) = 0, where Maz H(z) = MaxT (y) = Max G(z,y) =0
Proof. Let
A=H(z), B=G(z,y), C=T(y) (4)
using the relation
A+B+C=)\A"+ B+ (7

we obtain the following

H(z) + G(z,y) + T(y) = A (H*(z) + G*(z,9) + T*(y)] , (5)

where \ = A(z,y).

From the relationship (5) we obtain:

(#e) - ) + (v - 5) + (10~ &) = 1 ©)

From Theorem (1.1) together with the relation (6) we obtain

Max <H(m) + G(z,y) +T(y) — %) = ﬁ (7

From the relationship (6) we obtain
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3
H(z) — 1 _ ibl
22 2N
1 V3
R Sl 8
1 V3
T(y) - DN —2»\‘1)3

where b; = b (z,y), b2 = ba(z,y), bs = b3(z,y), and b? + b2 + b2 = 1. The maximum reached in (7) is when

1 1
by =by =by =+t —.Forb; = by = b3 = — and A > 0, we obtain from (8) the following
V3 V3

For A < 0 we obtain

H(z) = G(z,y) = T(y) = 0 (10)
Similarly for by = — %, by = b3 = ig we obtain from (8) the following:
For A > 0: H(z) = 0,G(z,y) = 1,T(y) = 7.
ForA<0: H(z)= —)1\, G(z,y) =0, T(y)=0.
The other cases are similar and the only relation that satisfies the relation (7) are the relations (9) and (10). O]

Theorem 2.2. Let V = f1(z) f2(y) f3(z), where V is constant and f; > 0, then the minimum of the function
S(z,y,2) = fi(@) f2(y) + 2f1(2) f2(y) + 2f2(y) f3(2)
is given by
Min S = 3v/4v2
Proof. Taking into account the expression of V,

1 2 2
=V Re TR R@l ()

Linking this equality with the relationship

a+b+c=A[a"+b +c (12)

wherea = L b= _2_ = _2 , the following is obtained from the relationship (12):

f3(2)’ )’ fi(z)

<fstz) - %> ’ (ij) - %> i (fja:) - %) - ﬁ (13)

where A > 0, A = A\(z,y, 2).

Parameterizing the relationship (13) we obtain

1 VBh+1 2 B+l 2 B+l

e 2 R 2 R@ 2 (14
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where b3 + b3 + b3 = 1yb; = b(z,y, 2).

According to the Theorem (1.1), applying to the relation (13) we obtain

Max< 1 ,i+ 2 ,i 2 *i>=MaX< 1 + 2 + 2 ,i>:i(15)
f5(2)  2h 0 foly) 24 fi(z) 27 f3(2)  foly)  fu(z)  2A 2

It can be deduced from the relation (14), that the maximum reached in (15) is when b; = by = b3 = %
Therefore, we have in (14) the following:
f3(2) =X foly) =27, fi(z) =2A (16)

Thus we have V' = 43, which implies that A = 2 %. Using this fact and using the relation (16) in (11) we obtain:

, 12 2 6V 3V s
M = | = = =3./4V2
in S V[)\+2)\+2)\] N \ 3v4V

O

Theorem 2.3. Let g : [a,b] — R and F': [a,b] X [¢,d] — R be continuous functions, there exists A € R such that the

maximum of the function H (z,y) = g(x)F(z,y) occurs when

[F(z,y)] =1 and In|g(z)| = ,i or

In|F(z,9)| = 5 and g(z)| = 1
Proof. Let A = In|F(z,y)|, B = —In|g(z)|, using the relation:
A+B=\[A*+ B?]
we obtain

In|F(z,y)| — n|g(z)| = A [In* |F(z,y)| + In* |g(2)]] (17)

where A = A(z, y); from the relation (17) we obtain

<1n|F(m,y) - %)2 4 <1n\g(A)\ + %)2 _ rif (18)

Using Theorem (1.1) in (18), we obtain:

M (1 (e, )] ~ 5+ lg(o)] + 51 ) = Max(alF(o,)lg(e)]) = T (19)

From the relationship (17) we obtain:

1 2
| Fe, )| — — = Y2,
2% 2N 0)
nlg(@)] + = 24
nlg(z)| + — = —
g 22X 2\

where b% + b% =1, b =b (w,y), by = b2($,y).
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The maximum reached in (19) is obtained when

1
bl - b2 - :l:7§. (21)
Forb; = by = +% and )\ > 0 we obtain the following from (20)
1mF@wn:L% and  Inlg(z)| = 0 (22)
Forb; = by = % and )\ < 0we have from relation (15) that
In|F(z,y)| =0 and In[g(a)| = == (23)
The relations (22) and (23) verify the relation.
For b; = %, by = —% and X\ < 0 we obtain from (20) the following:
1 1
In|F(z,y)| = ~ and In|g(z)| =—~ (24)
A A
For b; = %, by = — % and A < 0, we obtain from (20) the next:
In|F(z,y)] =0 and In|g(z)|=0 (25)

Of the relations (24) and (25) none verify the relation (19). Similar analysis for the other cases [J

Theorem 2.4. Let F(z,y,2) = f(x)g®(y)h?(2) be a continuous function, where f,gand h are real functions of a real
variable. If f(z)+ g(y) + h(z) = a where a >0, f(z) >0, g(y) > 0 and h(z) > 0, then the maximum of the

a8

function F(z,y, z) is Max F(z,y, z) = ol

and is reached when f(z) = %,9(y) = 5 and h(z) = %.
Proof Let A = f(z), B = g(y), C = h(z). Using the relationship A + B + C = A\[A% + B? + C?] we obtain

(@) + 9(y) + h(z) = ALf*(2) + ¢°(v) + h*(2)], (26)
where A > 0, A = A\(z,y, 2) and f(z) < h(z) < g(y) in order to obtain the desired maximum of F.

From the relationship (26) and the problem data we obtain:

a=X[d> - 2f(z)g(y) — 2(a — f(z) — g(v))(f(z) + 9(v))] - (27)
Let
Ulery) = f(z) ;rg(y)’ Vizy) - (y);f(w) (28)

Replacing (28) into (27) we have

a2

==V (@) +3(U(ziy) - 2)2~ (29)

From the relation (26) we obtain

Max A = 5 (30)
a
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From the relation f(z) < h(z) < g(y) and the restriction f(z) + g(y) + h(z) = a we obtain

f(z) < and g(y) >

wl|e

a
3
On the other hand, from (29) we obtain Max V 2(z, y) when

U(z,y) =

wle

Replacing this last equality in (28) we have

f(z) +gly) = %a

and from here together with the relationship f(z) + g(y) + h(z) = a we obtain that

9(y) — 3°3 - f(z)
Using Theorem 2.3 we see that the maximum of the function f(z) [71 +3 f(Zac) } is given by
a
@) =Tor |1+ —~| =
3f(x)
De la relacion (36) se obtiene —1 + % = 1, de esta ultima relacion se obtiene:
a
f(x) = rt
From the relation (35) and (37) we obtain
a
9(y) = 3
Therefore, from the relations (34), (37) and (38) we obtain
3 2 6
Max F(z,y,z) = 2l x4
6 8 9 432
|
Remark 2.1. In (35), note that g(y) — % = L;”) (3 — %) , then we can apply the Theorem 2.3 and thus, the
9y,

w50 55))

occurs when ‘ﬂ{ = 1or‘3 - a
3 9(y)

= 1, obtaining g(y) = 5 The expression T discarded, since g(y) > -

(32)

(33)

(36)

(37)

Theorem 2.5. For z € R®, the extrema of function F(z) = f2(z) + f3(y) + f2(z) where f,(z), f2(y) and f3(z) are

continuous functions, subject to the condition
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A=) Ry £
1A2 + 2B2 + 32 =1, 0<A<B<C

fi(z) + fa(y) = f3(2)

are given by
24%2B% (3C? + 1 2 R2 2
Max F(z) = ( ) , MinF(z) = 264°B°C
4A2B% + B%(C — 1)2 + A2(C + 1)? 16B2C2 + 9A2C? + A2B?
Proof. Let
- filz) - f2(y) - f3(2)
f1($):Taf2(y): B y [s(2) = c (39)
From the expression (39) in the conditions of the problem we have
_ ~2 -2 -2
F(@) = A4 f () + B f5(z) + C*f 3(2) (40)
and the constraints are written as
~2 ~2 ~2 ~ ~ ~
Frl@)+ Fol@) + Fo(2) = Ly Af 1(z) + Bf 5(y) = Cf 4(2). (41)

Let's assume that f1(z), f2(y), f3(z) are positive, from the relation (41) suppose that

Af 1(z) < Bf 5(y) (42)
From the relation (41) and (42) we obtain
Bfy(u) — 55 4(2) = 5 F(2) — Afi(@). (43)

From the relation (43) and using the Theorem 2.3 we have

24f 1(z) = (C—1)f3(2), C # 1. (44)

From the relation (44) and (41) obtenemos

o 7 C+1] 45
Fa0) = F() =55 (45)
From the relation (44) and (45) in (41) we obtain
- 4A2B?
i) = (46)

B2(C — 1) + A2(C +1)2 + A’B?
From the relations (44), (45) and (46) in (40) we obtain

Max F( 2A’B* (3C% +1) ()
@) = e pE e 1 AC )y

Of all the possible variants on the sign of the functions f(z), f ,(y), f 3(z) the following is deduced; for

f1(z) >0, f5(y) <0 and f 5(z) > 0 we have the relation (41)

Af 1(z) = Cf 5(2) — Bf 5(y) (48)
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From the relation (48) assuming that C'f 5(z) < —Bf »(y) we obtain from (48) the next

%fl(w) > Cf 4(2) (49)
From the relation (48) and (49) we have
21@) - Cf o) =~ 2 (@) - BF o), (50)

on the other hand the relation (50) can also be written as follows

Cfy(2) [1 + A’;;E”] = 25 1@) - B ) (1)

Applying Theorem 2.3 to the product C'f 5(z) {71 + A];;C(w)] we get

- 40 -
fil@) = = F5() (52
From the relation (52) and (48) we obtain
- 30 -
Faly) = == £5(2) (53)
Replacing the relations (52), (53) into (41) we obtain
- A?B?
f3(2) = (54)

~ 16B2C? + 9A42C? + A2B?

Finally, using the relations (52), (53) and (54) in (40) gives us

2 P22
Min F(z) = 26045 C .
A2B? +9A42C? + 16B2C?

The other assumption C f ;(2) > —Bf ,(y), does not lead to optimal values of F(z).

Various examples are illustrated below, which are applications of these Theorems. Other problems not related to

these Theorems are solved following the ideas described in these theorems presented.

Remark 2.2. To find the extremes of a function that is not continuous, it is still possible to use the technique shown in the

various theorems and examples. Below we present an example that could be a starting point for such a study.
Example 2.1. Bl Find the maximum of the function f(z,y) = [z] + [y?] + [z] [y?] subject to the condition
2cr+y=6, 1<z O0<uy. (55)
Solution.
Itisclearthat 1 < z < y. Suppose that 2z < y, from here, together the relation (55) we obtain
y—3=3-2z (56)
We use the Theorem in 2.3 in the relation (56)

Max(y — 3) = Max(3 — 2z) (57)
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From the relation (57) we obtain y — 3 = +1, which implies that y = 4 or y = 2. Replacing in (56) we have the

following points P, = (1,4), P, = (2,2). We discard Py, since2 - 2 £ 2.
Another way to writey — 3 in (56) isy —3 =3 (—1 + %), and so on

Max3 (—1+ %) = Max(3 — 2z) (58)
From (58) together with Theorem 2.3, we obtain —1 + % = +1, which implies y = 6, which is false, since x = 0 is not
possible due to the relation (55).

Of all the possible variants we have y = 4 and « = 1. The other assumption is y < 2z, which does not lead to optimal

values of y. Therefore Max f(z,y) = 33.
Example 2.2. Bl Find the extrema of the function Max (f + %) subject to the constraint: £ + y? = 1.
Solution.

By Theorem 1.2, we have

z+y=A[z?+y°] (59)
Using the condition of the problem, we have
Completing squares in (59) we have
T — L = U (61)
Z2h V2N
1 by
L C 62
Y v =

where b? + b2 = 1.

From the relation (61) and (62), for A > 0 we obtain

z Yy V2bi+1 /2y +1
Z 42 . 63
a + b 2 [ a + b (63)
The relation (63) can be written as
T Y 1 11
-4+ = 2b 1,4/2b 1 64
22 L(wansnvan ey (2.3)) (64

2,y e T
E 7= \/44-2\/_ (b1 + b2) - ——l—ﬁcose (65)

Also from the relation (61) and (62) we obtain:

b1 + b
V2

N_o1=

From the relations (65) and (66) we obtain:
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T Y\ 1 1
Max (2 + 2) = S+ (67)

Example 2.3. % Find the Maxima and Minima of h(z;y) = «? + y2 + 22, subject to the conditions:

2

%+ +—=1 and z+y==

5 5
Solution.

We use Theorem 2.5 with f1(z) = z, fa(y) = vy, f3(2) = 2, A = 2, B = /5, C = 5 with which we have
Max F(z) = 10
Min F(z) = 4.4520547945

75

According to Lagrange's method the max (z* + y* + 2*) = 10 and themin (2* + y* + 2%) = Z2.

Example 2.4. [6l o rectangular box without a lid must have a volume of 32 cubic units, what must be the dimensions so

that the total surface area is minimal?,

Solution.

To solve this problem we follow what is described in Theorem 2.2.
If z,y, z are the edges, we have

(i) Box volume V = zyz = 32

(ii) Box surface S = zy + 2zz + 2yz

Of these relations, we have:
S:V{——i———k—] (68)
In the relation (68) we use the technique
a+b+c:)\[a2+b2+c2}

Inthis casetakea = 1,b = 2, ¢ = 2, therefore we have
z Y T

1 2 2 1 4 4
SR T | S
z Yy zT 2

Completing squares we have

2 2 2
o1y (2 LYy, (2_Ly__3
z 2 y 2\ Tz 2\ 4)2

For this last relation we have that A > 0 and,
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2_1_ £b2 (69)
Yy 2A 2

2 1 _ V3,

z 2x 2"

where
b2+b3+b3 =1

From the relation (69) we have that z,y,z must be minimum, therefore, b ,bs,b3 and must have maximum values

simultaneously. This happens when by = by = b3 = % Then in (69) we have
z=2A, y=2\ z=2\

Substituting these last relations in (i) we have 4\3 = 32, that is, A = 2.

Then the Minimum surface in (ii) is:

Example 2.5. [8 What is the maximum volume of the rectangular parallelepiped that can be inscribed in the ellipsoid
2 y? 2 5

R R IRt

Solution.

The volume of the parallelepiped is:

V = 8xyz (70)
where (z,y, z) belongs to the ellipsoid.
Let
z=3z,y=4y, z=062 (71)
After (70) and (71) we obtain:
V =72 x8zyz (72)

where 72 + 3% + 32 = 1.

Now, using the relationship

is obtained
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So, you have to

o 1 V3b
22 2)
-1 _ V8,
Yo T
- 1 V3
z— — = —Dbs
2) 2A
where
b +b5+b3=1 (73)
,and also

\/§b1+1~7\/§b2+127\/§b3+1
ox YT Tan f T Taa

(74)

=

It is observed that z,y and z sare maximum real values if b;,by and bs are maximum and that happens when

by = by = by = % Therefore

R (75)
From the relation (73) and (75) we have that
51
and replacing this in (72) we have that the maximum volume is
Viaw = T2 X 8.)\—13 - 71;38” _H ng‘/g — 644/3u°
Example 2.6. ©] Find the distance from point Py (a, b, c) to the plane of equation P : Az + By+ Cz =D
Solution.
We have to
d(Py,Q) = \/(m —a)’ + (y—b)* + (2 — ¢)*, where Q = (2,y,2) € P. (76)
Defining f : R* — Ras
f(z1,22,23) = (. — a)z1 + (y — b)za + (2 — ¢)z3 (77)
we have that f Defining f : R> — R as
f(z1,22,23) = (. — a)z1 + (y — b)z2 + (2 — ¢)z3 (78)
we have that f is continuous and also
R? = ker f @ [ker f]*. (79)
Since (1,1,1) € R® we have from (77) and (79)
geios.com doi.org/10.32388/PMUDR7
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(1,1,1) = \if 4+ X2 = u+v,u € ker f,v € [ker f]*
F(1,1,1) = f(u) + f(v) = A[(z — @)’ + (y = b)’ + (2 — ¢)’] .
That is
(—a)+@y-b+(z—c)=A[(z—a)+ (y—b)?+(z—c)?].
From the relation (81) we obtain

1 V3

.’E—a—a:mbl
V3
_p— L =¥y

Y N 2] 22
1 _ V3

Z—C= 57 = o708

where b? + b% + b = 1, from the relation (64) is obtained
A V3
Az — aA — D b A

B _ V3

c _ V3
Cz—cC—ﬁ— 2\)\\b30

From the relation (83) we have

V3b1A++/3b:B+ /3b5C + A+ B+ C

Ax+ By+Cz—aA—-bB—cC = X

Thisisif A > 0. Since @ € P, we have
Ax+ By+Cz=D
From (84) and (85) we obtain:

~ A(VBbi+1) + B(v3by +1) + C(v3bs +1)
B 2(D — aA —bB — cC)

From the relations given in (82) we have

36, +1)° 3by +1)° 3by + 1)
(oo gty (st = LD L D) P ()

Therefore of (87) and (76) we obtain

[(\/gbl +1)" + (v3b +1) + (v/3bs + 1)2] v

2A|

d (PU ) Q) =
From the relation (88) and (86) we have

(V361 + 1)+ (v/3bo + 1)° + (V3bs + 1)°] D aa—bB-cC|
d(P07Q) =

|A (v/3bs +1) + B (y/3by + 1) + C (v/3bs + 1)|

Where
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cosd — <(AaB’ C)v(\/gbl +17\/§b2 +17\/§b3 +1)> (90)

VAZ LB+ C2- \/(ﬁbl +1)% + (v3b2 + 1) + (v/3bs +1)°

from the relation (89) and (90) we obtain

a(py,Q) — 204 <O a

- v/ A% + B? 4 C?| cos |

Example 2.7. 1% Find the maximum of zy®2*, siz + y+ 2 =6, 0 < 2,0 < ,0 < z

Solution.

Using the Theorem 2.4 with f(z) = z, g(y) = y, h(z) = z,a = 6 we obtain

6

Max F(z,y,z) = % = 108.

Example 2.8. 21 Find the extremes of the function f(x,y,z) = wyz subject to the conditions z* + y + z*> = 1 and

T+y=2z
Solution.

Using the technique a + b = X [a® + b?| wegeta = z,b =y

:c—|—y:)\[:v2+y2} (92)
From the data and from (92) we obtain
2z =X (1-2%) (93)
From the relation (93) we obtain
1\ 1
~ ) - = =1 94
(z + A) > (94)

From the relation (94) it is easy to see that
Minz—lfl Maxz—flfl A#£0
Y B '
This relation leads to nothing since \ = oo is an absurdity in (92). Using the relation

z+y+z=A[z" -y’ +7° (95)

we get from the data 3z = \, which implies that z = % Then we have

22 +y?=1- X
Yoo (96)
T+y= =5
From the relation (96) we obtain:
2
Ma,x(m—&—y):\/l—%w/g:% (97)
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Solving we get A = 4+/3.

. = 3 = L = L = L = L
IfA=++/3wegetz = 5 T= 5 Y= \/E.Thereforemax{zyz} =33
- _.J3 — _ L - L - _ L i ——
o IfA=—+/3 wegetz = 5 Y= P Therefore min{zyz} = R
Example 2.9. Bl Find the highest point on the surface
z= §ac3—|—4y3 —ac4—y4.
3
Solution.
To solve this problem we use Theorem 2.3.
It is observed that
3 (8 3
z= (g -z)+y(4-y) (98)
Since z and y are independent variables we have from (98)
8
0<z<g y 0<y<d (99)
Applying the technique, we have
Iny® + In(4 — y) = A [(1ny3)2 +In(4— y)] (100)
From the relation (100) we obtain
1) 1\ 1
Iny— — Ind—y)— — | = —. 101
<ny 2,\> +(n( v) 2/\> 222 (101)
From the relation (101) for A > 0 we obtain
1 V2b;
Iny® — — = 102
TN T T (102)
and so
2b
In(4 —y) — % = %, where b2 + b2 = 1,A = A(y) (103)

The maximum value of Iny3 + In(4 — y) = In(4 — y)y?3 is obtained when b; = by = i%. Of the four possibilities we

obtain b, = — % b1 = % This is true, since y® and y must have different hierarchiesiny € (0,4].

Therefore,In(4 — y) = 0 < 4 — y = 1 & y = 3. For the variable x we have

ln$3+ln<§ —m> :T[(lnw3)2+ln2<§ —xﬂ (104)

From the relation (104) we have for + > 0

geios.com doi.org/10.32388/PMUDR?7
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Inz” — 2 = 3
T T - 105
8 1 V/2by (105)
Inl-—-2|—-—=
3 2T 2T
The maximum value of In z® + In (% — :c) is obtained when
By = by = £
V2
Forb; = %, by = —% we get % — & = 1, which implies that z = % Therefore, in (98) we get
max z = %75 <§ - g) +27(4 — 3) = 27 + 4.62962 = 31.629 (106)

The maximum applying the superior calculus theory, we obtain:
Max z = 32.333

The error that is made is 0.7

Remark 2.3. If instead of the equation (104) we put the following expression:

In gms' +ln<4f ;m> =T [ln2 §w3 +In® (47 %m)] .

From this relationship, similar to what was done in (104) is obtained x = 2. So we have

maz{z} = % +27 =32.333
Example 2.10. 51 petermine the absolute maximum and minimum of the function

z =sinz + siny + sin(z + y)
where0 < z < 7/2, 0<y<7/2
Solution.
Following what is described in Theorem 2.1 we have:
Using the relationship

A+B+C=\[A"+B*+ (] (107)

where A =senz, B =seny,C =sen(z +y), = \(z,y). After replacing these values in the relation (107) we

have
sinz + seny + sen(z +y) = A [sin’ z + sin® y + sen’(z + )] (108)

From the relation (108) we have

geios.com doi.org/10.32388/PMUDR?7
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iy — - 109
i 2A 2X (109)
1 v/3b3
sin(z +y) — > o
where A > 0y b} + b3 + b5 = 1.
Then
Max(Senz + Seny + Sen(z + y)) = Max Coz;;\—‘—?) = ; (110)
and this value is reached when by = by = b3 = %, therefore from the relation (109) we have
1 1
Senz = N Seny = 3 Cosy+ Cosz =1 (111)
From the relation(111) we obtain
VA1 /21
=1. 112
Tt (112)
Solving the relation obtained in (112) we have
A2 (113)
V3
From the relation (110) y (113) we have that mazz = # Since z € [0,7/2],y € [0,7/2], for A < 0, we have that

mazz = 0,sincesenz > 0,seny > 0,sen(z +y) > 0.

Note: The maximum given in (110) is correct, since z and y have the same hierarchy in the interval [0, /2]
Example 2.11. Bl Find the Maxima and Minima of the function z = 2% + y® — 3zy, 0<z <2, -1<y<2
Solution.

We use Theorem 2.3 as indicated below. It is had that z = z* + y (y? — 3z)

Then we will use the following

Inly + Infy? — 32 = A i}y + 1n2[y? — 3a]

1)’ 1Y)’ 1
_ 2 _ _ —_—
<ln|y\ X ) + <ln'y 3:L" 2N ) T (114)

(115)

where b? + b2 = 1. Of the relation (115) In|y| |y> — 3z| = Iny (y* — 3z) = In|y| + In|y? — 3z|, and so we have

Max Iny (y2 —3z) = % (116)
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The maximums or minimums reached are at the points by = by = + %,

the relation (115) we have:
1n2’y2 — 39:' = % = In|1 — 3z
From this last equality
Max % =Inb
So we have (118) and (116)
Max Iny (y2 — 3x) =1Inb
In addition Min In|y| (y> — 3z) |= Ooccurswheny = —1,[y* — 3z| =1, =z =0.

Therefore, Min z = —1.

then we have In|y| = 0, therefore y = +1.In

(117)

(118)

(119)

2
Example 2.12. Bl A what point of the ellipse Z—; + Z—z = 1, the line tangent to this line forms the triangle of minor area?

Solution.

We know that the tangent line to a circle of equation x?>+y? =1 at the point P = (xo,y0) is given by

Ly :siny = — ;—Sm + B;where the slope is —:—8 .As (z9,y0) € L we obtain B, that is to say

2 2
z Yot
Lr: y:——0$+ 2 0
Yo Yo

Por lo tanto, la recta tangente a la elipse en el punto Q = (zo, yo) puede ser hallado usando la transformacion

z=az, y=>by
Therefore, using the transformation (121) we obtain the circumference:
P4yt =1
From the relation (120) and (121) we obtain that the equation of the tangent line to the ellipse is given by
—o - n 5 + Ut

:l} = =
Yo Yo

Aszy = azg, Yo = by, we obtain from (122) the following

—xob z b
24

Y
b ayo a yTO

and from the equation (123)

b2 T b2
y=———z+ —
a Yo Yo

So from the equation (124) we have that the area limited by the tangent line and the coordinate axes is
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a’b?

2z0Y0

5(370,210) =

Using the described technique, we obtain that

A+ B=X[A*+B?].

Let's put
a=2p- %
a b

From the relation (126) and (127) we have

To | Yo

— 4+ ==X

a b
From (128) we obtain squaring 1 + ~=%% — X2, which implies that

2b
b
ToYo = % ()\2 — 1)

From the relation (126) and (127) we obtain

Zg 1 v/2b

LT Y

2 2\ o 0
Yo 1 V2
N _ - N,
b 2\ 2\

where b2 + b2 = 1. From the relation (130) and (128) we have

1 V2

Ao ==Y+
3 2 (b2 + 1)

From the relation (131) we obtain
Max (A —1) =1
From the relation (132) and (129) we obtain

b
Max ToYo = %

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

Example 2.13. Bl The courses of two Rivers (within the limits of a determined region) represent approximately a

parabola, y = z2, and a straight line,  — y — 2 = 0. It is necessary to unite these rivers by means of a rectilinear

channel that has the shortest possible length. For what points will it be necessary to draw them?

Solution.

Let P = (x,y) be a point on the parabola and Q = (Z,w) be a point on the line. The distance from P to Q) is given by

d(P,Q) = \/(z — 2" + (y —w)*.
Therefore, the function to Mainimize is the one given by the equation (133) subject to the condition

y=2> 1 z—w—-2=0
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Leta = z—x, b=y — w,usingthe relation

a+b=X[a®+b?]

we obtain
2+2 —z=A[(z—-2) + (y—w)?].
Also
+ 2 _ -2
min\/(z—$)2+(y—w)2 = min %

From the relation (134) we have

From the relation (138) we have that

where b3 + b2 = 1. From the relations in (139) we obtain

2+\/§(b1 +b2)

2+2’ —z=
+ T )
After the relations (138) and (140) we obtain
2 2 (2 +a? - m) V2
Min\/(yfa:) + (y — w)” = Min
\/ 2+ /2 (b1 + by)
. . i _ 1 _ 1
The minimum in (141) is given when b; = E,b2 =5 Therefore

Solving this equation we get z.
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(139)

(140)

(141)

(142)

(143)
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3. Conclusions

The different theorems obtained and illustrated examples show that the relationship
(a1 +az+---+an) =A(a?+ a3 +---+ak). where a1,az,--,a, € R and is valid for some X € R. Linking
this relationship with the problem under study and using the Theorem 1., it is possible to obtain the desired
results, taking into account the hierarchy of a variable over the other variables. It should be noted that the

hierarchy of a variable depends on the correspondence rule of the function and its given domain.
We believe that the Theorems and examples shown are a starting point to create a general theory that allows us

to find the conditional maxima and minima of real functions of a vector variable without said functions being

differentiable and without placing emphasis on the given domain.
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