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We introduce Value Sign Flip (VSF), a simple and ef�cient method for incorporating negative prompt

guidance in few-step diffusion and �ow-matching image generation models. Unlike existing

approaches such as classi�er-free guidance (CFG), NASA, and NAG, VSF dynamically suppresses

undesired content by �ipping the sign of attention values from negative prompts. Our method

requires only small computational overhead and integrates effectively with MMDiT-style

architectures such as Stable Diffusion 3.5 Turbo, as well as cross-attention-based models like Wan. We

validate VSF on challenging datasets with complex prompt pairs and demonstrate superior

performance in both static image and video generation tasks. Experimental results show that VSF

signi�cantly improves negative prompt adherence compared to prior methods in few-step models,

and even CFG in non-few-step models, while maintaining competitive image quality. Code and

ComfyUI node are available in https://github.com/weathon/VSF/tree/main.
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Figure 1. Original image without negative guidance and image generated using our VSF negative guidance on

Stable Diffusion 3.5 Large Turbo. The green prompt is the positive prompt, and the red one is the negative

prompt. These examples have signi�cant changes as they are removing essential parts of an object.

1. Introduction

Diffusion models (including �ow matching models) have demonstrated their ability to produce diverse

and high-quality images[1][2][3]  and videos[4][5]. However, a longstanding issue persists: negative

guidance in image and video generation. Addressing this problem is crucial for improving content

control, moderation[6], quality assurance, and reducing biases when generating general concepts[7].

However, vision language models (VLMs) have dif�culties interpreting negations[8][9][10][11], rendering

prompts containing negations ineffective (e.g., a prompt like “a scientist that is not wearing glasses” will

usually generate a scientist with glasses, even more frequently than a plain “a scientist”). Classi�er-free

guidance (CFG)[12]  can address this issue when substituting unconditional generation with negative

guidance.

To enhance ef�ciency in image and video generation, numerous models have been distilled to support

inference in just a few steps (1-8 steps), such as Flux Schnell[1], Stable Diffusion 3.5 Large Turbo[3], SDXL

Lighting Lin et al.[13], and CaucVid LoRA[5][14]. However, CFG is incompatible with these models. These

models are usually distilled and run in a guidance scale of 0 or 1 (depending on frameworks), which

means only the positive guidance is used, and there is no extrapolation. When CFG is forcibly applied, the
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Figure 2. An example of when CFG is

forcefully applied to step distilled models,

the example is shown using a guidance

scale of 2.8 and a step of 4 on SD-3.5-

Large-turbo. The positive prompt is about

a Canadian winter and a capybara, and the

negative prompt is “snow”, we can see that

it merges the two concepts unnaturally

together and has severe over-saturation

artifacts.

image will usually be over-saturated when the CFG scale is

large enough to remove the unwanted concepts.

Additionally, when the step counts are too small, the output

shows both positive and negative prompts instead of

explicitly avoiding the negative prompt[15]  due to

divergence between positive and negative guidance

signals[7]. An example is shown in Figure  2. Additionally,

even if CFG works, it requires two forward passes, one for

positive guidance and one for negative guidance, which

doubles the run time.

To address this, two methods, NASA[15]  and NAG[7], have

been introduced, employing negative guidance within

attention space rather than the output space. NASA is

currently limited to cross-attention models, while NAG

primarily targets quality control rather than negative

prompt avoidance. Both methods calculate positive and

negative attentions separately and subtract them using a

pre�xed scale, resulting in a �xed guidance strength

throughout the generation and on different areas on the

image. This approach lacks adaptability to various time

steps, layers, or image regions, limiting effectiveness in

negative prompt adherence[6][16][17].

In this study, we introduce Value Sign Flip (VSF), a method that dynamically adjusts the guidance

strength by �ipping the sign of negative prompt values during attention. This enables the model to steer

away from negative concepts adaptively based on their current presence strength, similar to the approach

of Koulischer et al.[16]. VSF has a small computational overhead and, when combined with few-step

models, facilitates extremely fast image or video generation.
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2. Related Work

2.1. Negation in Vision Language Models

Much previous work has shown that existing vision language models (VLM) struggle to understand

negation[18][11][9][8]. In classi�cation tasks, the model cannot correctly understand text with negation in it

(e.g. “a dog running” vs “a dog not running” might have very close embeddings, even though they are

opposite). This problem has been introduced into text-to-image generation tasks, making it hard for the

model to generate images without certain concepts (examples in Figure 1 of Singh et al.[10] and Figure 5 of

Park et al.[8]). Thus, classi�er-free guidance (CFG) was used to introduce a negative prompt to the image

generation process. More details in the next subsection. Several studies have attempted to tackle this

issue by employing alternative training strategies, such as incorporating harder samples in the training

data designed for negation tasks[18][11][10][9][8]. Some of these methods have shown improvements in

image generation tasks. For instance, Park et al.[8] reported gains in Neg Score—measuring whether the

model retains the primary subject while correctly omitting the negated object—for both SD-1.4 and

SDXL-1.0, by replacing the default CLIP encoder with their NegationCLIP on their dataset, without

additional T2I training. Nonetheless, the Neg Score remained below 0.5, indicating limited effectiveness.

These methods generally require re-training the text encoder (usually a CLIP-like model) with

contrastive learning, which poses challenges for models that do not use contrastively pre-trained

encoders, such as T5[19]  in Stable Diffusion 3[3][20]  and Flux[1]. Moreover, each model using a different

text encoder would require a separate, dedicated adaptation.

2.2. Classi�er Free Guidance

Original classi�er-free guidance (CFG)[12] generates a conditioned noise prediction and an unconditioned

noise prediction. In �ow matching[21], the predicted targets are the velocity ( ) pointing to the image.

Thus, the original �ow matching CFG prediction can be written as

where   is the positive prompt,   is the latent at time   (where higher   means more torward the noise

distribution),   is the trained model, and   is the guidance scale. Later, the community �nds out that

by replacing the unconditional generation with a negative prompt (e.g., description of an unwanted

ut

= f(∅, ) + λ(f( , ) − f(∅, )),ut xt+1 p+ xt+1 xt−1 (1)

p+ xt t t

f(⋅) λ
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image), the model will avoid the prompt due to the negative sign. This is the common implementation of

a negative prompt. This turns the above equation into

2.3. Recent Works on Negative Guidance

The studies on negative guidance are very limited (only  [17][16][6]). Ban et al.[17]  �nds that the negative

prompts affect the model by delayed effects and neutralization. After the model has generated unwanted

contents, the negative guided vector ( ) will neutralize the content. They also observed the reverse

activation effect, where the negative prompt introduced early in the diffusion processes could actually

induce the unwanted concepts. To address this, they proposed applying the negative guidance later in the

diffusion process and found it effective.

Schramowski et al.[6] used a very similar idea as CFG to avoid unwanted (NSFW) content. They generate

an unsafe vector and purposely avoid it by subtracting it from the predicted noise. They also added a

pixel-level guidance scale that depends on the pixel-wise distance between the positive predicted noise

and the unwanted noise.

Koulischer et al.[16] used similar ideas of both and proposed a temporal dynamic guidance scale method.

They calculate a probability that the generated concept contains negative content and adjust the guidance

scale accordingly. However, their adaptive scale only changes throughout the steps and does not adapt to

different regions in the image.

2.4. Few-Step Image Generation Models

Traditional diffusion or �ow-matching image generation models typically require many inference steps.

However, with improved schedulers, this can be reduced to around 20 steps. Recent approaches go

further by using step distillation to reduce the number of steps to fewer than 8, or even a single step, as

demonstrated in Flex Schnell[1], SDXL Lightning[13], CausVid[5][14], and Stable Diffusion 3.5 Turbo[3]. Since

these models are distilled, they generally do not use classi�er-free guidance (CFG) during inference; when

CFG is forcibly applied, the results are signi�cantly degraded to the point that it is completely

unusable[15], see Figure 2 for an example.

= f( , ) + λ(f( , ) − f( , )),ut p− xt+1 p+ xt+1 p− xt+1 (2)

up−
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2.5. Recent Works on Negative Guidance in Few-Step Models

Recently, two approaches have speci�cally targeted negative guidance techniques for few-shot models:

Negative-Away Steer Attention (NASA)[15]  and Normalized Attention Guidance (NAG)[7]. Although they

both focused on avoiding unwanted content and improving quality (using a negative prompt describing

bad quality), NASA mainly focused on avoiding unwanted content, while NAG focused on improving

quality.

The authors of the NASA study found that neither standard CFG nor CFG applied directly to text

embeddings yields desirable results in few-step scenarios, particularly in single-step settings.

Speci�cally, the regular CFG independently computes positive and negative guidance signals, preventing

the negative guidance from effectively neutralizing unwanted concepts. As a result, the produced images

merely appear as a mixture of both positive and negative prompts unnaturally (an average image of the

positive prompt generated image and the negative prompt independently generated image) rather than

excluding negative prompt elements. Furthermore, the authors noted that applying CFG to text

embeddings produces minimal bene�ts. For detailed examples and further illustration, readers are

referred to the original paper introducing NASA (SNOOPI[15]).

The method NASA proposed is to apply the guidance in intermediate states instead of the predicted noise

or velocity. Speci�cally, they calculate a positive attention output   and a negative attention output  ,

and they output the �nal attention    by subtracting the two with a factor  , as shown in

Equation 3. The alpha value is usually between 0 and 1.

Z+ Z−

ZNASA α

= − αZNASA Z+ Z− (3)
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3. Proposed Methods

Figure 3. The attention mechanism of our method. We pass in image tokens ( ),

positive prompt tokens ( ), and negative prompt tokens ( ) into attention. For

key and values,   is duplicated, with values of one copy (  scaled by  .

Some areas are masked to avoid interference. An bias   is added to 

 attention.

Normalized Attention Guidance (NAG) used a similar approach. But instead of subtracting the negative

attention map from the positive, it uses a similar extrapolation approach as CFG, as shown in Equation 4.

The starting point   could also be replaced with  ; they are equivalent if   is increased by 1.

However, to maintain the stability of the attention space, they also applied normalization to    to

limit its norm releative to   with scale  , resulting in  . Then it used a blending factor   to blend it with

the positive attention result, as shown in Equation 5.

The normalization and blending ensure the attention output of the NAG does not drift away from what

the model usually sees during training, improving the quality of generated images. However, it also limits

the model’s following to negative prompt guidance if the constraint is set to be too tight (i.e., high   and

low  ).

I

P N

N N (1) −α

−β

I → N (1)

Z+ Z− ϕ

= + ϕ( − )Z
∼NAG

Z+ Z+ Z− (4)

Z
∼NAG

Z+ τ Ẑ α

= α + (1 − α)ZNAG Ẑ Z+ (5)

α

τ
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3.1. Value Sign Flip Adaptive Attention

Our proposed method is similar to NASA. NASA used a �xed value   at all layers and stages for all tokens

during the image generation, pushing the content away from the negative output ( ) even when the

unwanted concept is not present. Previous work[22][16][17][6]  has shown that a dynamic or adaptive

guidance scale could yield better results. In the NAG[7] future work section, they also hypothesized that

token-level modulation may be bene�cial. Additionally, in NAG, they applied guidance by extrapolation,

which means that to increase the negative guidance scale, you will also need to increase the positive

guidance scale. This might make it challenging for cases where positive concepts are closely related to

negative concepts (e.g., bike but no wheels) or when the effects needed are contradictory to extrapolation

(e.g., when the need to generate camou�aged, undersaturated, or blurry samples is purposely done).

Drawing from[16][6], one possible solution is to steer the latent space away when the model is about to

generate, or has already generated, unwanted content. In their approach, a probability-based method is

used to determine the appropriate guidance factor. Alternatively, a more intuitive method involves using

the model’s attention map: when the image attends more to the negative prompt compared to the

positive one, it should be steered away stronger accordingly. This can be implemented by simply

concatenating the values and keys of the positive and negative prompts, then �ipping the sign of the

negative prompt values so that when the image attends to the negative prompt, the �ipped value of the

negative prompt can cancel the unwanted content. Note that the key of the negative prompt is not �ipped

to keep the original meaning of the unwanted concept to match image patches. The equation of our

method in cross attention models, written in the matrix calculation, is shown in Equation  6, where 

 means matrix concatenation on the sequence length dimension, and   is the softmax function on the

sequence length dimension,    is the image query tokens,    and    are the positive and negative

prompt keys,   and   are the positive and negative prompt values, and   is the factor controlling the

strength of the guidance.

Mathematically, this is equivalent to computing the ratio between the image-to-positive and image-to-

negative attention map strength, scaling each attention output using this ratio, and subtracting the

negative velocity from the positive one.

α

Z−

⊕ σ

Q K+ K−

V + V − α

= σ( )( ⊕ −α )ZVSF
Q( ⊕ )K+ K− T

d
−−√

V + V − (6)
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This approach gives a dynamic weight for the positive and negative prompts, and it varies for different

layers, steps, and tokens.

3.2. Attention Masking and Duplication of Negative Embedding

The above method works well for cross-attention-based methods, where attention only exists between

image-to-image in self-attention layers and image-to-text in cross-attention layers. However, it requires

modi�cation, including masking and duplication, to work in MMDiT-style models such as SD3.5[3], where

all image and text tokens are concatenated into a single sequence before attention.

In the standard MMDiT-style setup without our guidance, the sequence inputs for the attention module

are:

If we concatenate all tokens into a single sequence without any modi�cation, we will get:

where    represents image tokens,    represents positive prompt tokens, and    is the negative prompt.

During attention, queries, keys, and values are all projected from this combined sequence.

If we apply a sign �ip to the negative prompt values by scaling    with    (where    is the value

projection, this �ipped content affects all attention paths involving  . That includes not only the

intended interaction between image and negative prompt  , but also undesired interactions such

as positive-to-negative   and negative-to-negative   (which the value will cancel itself).

These unintended interactions can distort the behavior of the model since the �ipped signal in�uences

more than just the image.

To address this, we introduce a duplication of the negative prompt. One copy remains un�ipped and

unscaled, denoted  , and the value (and only value) of other is �ipped and scaled, denoted 

. The sequence becomes:

[I, P]and[I, N]

[I, P, N]

I P N

VN −α V

VN

(I → N)

(P → N) (N → N)

N
(0)

= −α ⋅V
N

(1) VN

[I, P, , ]N
(0)

N
(1)
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Figure 4. Attention maps and intermediate images during the diffusion process. The leftmost column shows

the �nal generated image (top) and an image generated without applying VSF scaling ( , bottom). The

top row on the right side displays the unnormalized attention values between image tokens and negative

prompt tokens, while the bottom row shows the corresponding intermediate images at each timestep. The

negative prompt is “unbrulla.”

Queries are sourced from  ,  , and  , while keys and values include all four components.

With a similar idea in Wang et al.[23], we apply attention masks to isolate the effect of the �ipped negative

prompt. Speci�cally,   is only allowed to attend to   and to itself, while   is only attended to by  .

Since   does not act as a key or value in any attention query, it produces no associated output; instead, 

 serves as the effective negative prompt tokens passed to the subsequent MLP layer and into the next

attention layer, where it will be �ipped again. Note that    used as queries, keys, and values while 

 is only used as keys and values.

This setup allows updates to the negative prompt based on attention from the image and from itself,

while keeping the un�ipped form active in the MLP path. It also prevents interference between positive

and negative prompts and ensures that the �ipped negative content affects only the intended image-to-

negative attention path.

3.3. Attention Bias

We observe that even when the scaling factor  , including the negative prompt in the sequence still

sometimes reduces image quality. This could be because the negative prompt “distracts” the image

tokens’ attention from the image tokens or positive prompts. To mitigate this effect, we introduce a

negative bias   into the attention  , thereby reducing the in�uence of the negative prompt.

α = 0

I P N
(0)

N
(0)

I N
(1)

I

N
(1)

N
(0)

N (0)

N (1)

α = 0

−β I → N
(1)
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Figure 5. Effects of guidance scale ( ) and attention bias ( ) in image generation. Positive prompt is “a cat

making a cake in the kitchen, the cat is wearing a chef’s apron…” and negative prompt is “chef hat.”

3.4. Padding Removel

In most models from Huggingface Diffusers[24], padding tokens in the text input are typically not

masked during attention. This is likely because the models have learned to ignore padding, and masking

them would add unnecessary overhead (due to some attention implementations like FlashAttention-

2[25] that do not support arbitrary masking). However, when we invert the sign of the padding tokens, it

degrades output quality. This could be because, although these tokens carry no semantic meaning, the

sign-�ipping introduces unseen states into the attention mechanism. To mitigate this, we remove

padding tokens from the negative prompt embeddings. For the positive prompt, we retain padding

tokens, as they do not introduce novel tokens and can improve generation quality. This aligns with

training conditions and may allow the model to use padding positions as registers for auxiliary

information.

α β

qeios.com doi.org/10.32388/POY29B 11

https://www.qeios.com/
https://doi.org/10.32388/POY29B


4. Experiments

4.1. Dataset

Following Park et al.[8], we use ChatGPT o3[26] to generate pairs of prompts and negative prompts. Unlike

prior work, our prompts are intentionally more challenging: the negative prompt is typically related to

the positive one, and as a critical component—e.g., the positive prompt of a bike could have a negative

prompt of “wheels”. Additional examples are shown in Figure  7. Besides prompts, two questions are

generated at the same time for later evaluation, one query if the image has the main object, either with or

without the negative element, and the other one queries if the negative prompt element is missing.

Prompts are generated in batches. Due to the fact that the model might output similar concepts for

different prompts, it may introduce some repetition across batches or within batches with different

phasing. There are 200 prompts generated, and we run them with 2 different seeds for the main results.

4.2. Baseline

We chose NAG[7] and NASA Nguyen et al.[15] as our baseline. We also used a base model without negative

guidance as a bare baseline, aiming to show the lower bound of the dataset (i.e., how likely the positive

prompt will introduce the negative concept, if there is no negative guidance). Because NASA’s original

source code was not publicly available at the time of writing, we reimplemented it based on NAG’s

codebase. Speci�cally, we replaced the guidance equation from NAG (Eq. 4) with NASA’s equation (Eq. 3),

removed normalization and blending, and enabled guidance when the scale is greater than 0 (instead of

1). Additionally, to compare our method in few-step models with CFG on original non-few-step models,

we also used the original Stable Diffusion 3.5 Large with CFG as a baseline.

4.3. Metric

Following Park et al.[8]; Wei et al.[27], we used multimodal large language models (MLLM), speci�cally

llama-4-maverick-17b-128e-instruct-fp8 (llama), to evaluate if the generated image follows the positive

prompt and the negative prompt using the two questions generated during prompt generation. LLaMA 4

Maverick has a very high image reasoning MMMU mmmu score, higher than Gemma 3 and even GPT-4o

gpt4o. We avoided using the same model (o3) for both evaluation and generation for cost control and to

avoid bias within a model. We did not evaluate the quality of the generated images using models like

ImageReward[28]  or HPSv2 Wu et al.[29]  as in NASA or NAG, as current quality or human preference
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assessment models do not account for negative prompts. Removing a key element from the positive

prompt (e.g., removing the roof from a house) is likely to reduce perceived quality, since the result

deviates from what is considered “normal,” even though that is the intended outcome. Both ImageReward

and HPSv2 are built on top of image-text alignment models (CLIP[30] or BLIP[31]), which will likely lead to

a decreased score when the main object is missing a critical part. Thus, we also let the MLLM rate the

image quality from 0-1 for each image and told it to ignore the abnormality of following the negative

prompt. Given that it is very hard to quantify the performances of methods in these cases, we used

qualitative methods as the main evaluation and comparison, following Wang et al.[23].

4.4. Hyper-parameter Tunning

Although NAG[7]  also targeted negative concept avoidance, its primary focus was on its effects on

improving generation quality (using words like “blurry” or “low quality” as a negative prompt). We

believe the hyperparameters reported in their work were tuned with an emphasis on quality rather than

negation handling. Therefore, we re-tuned their hyperparameters moderately and manually targeting

guidance scale ( ), blending factor ( ), and normalization factor ( ). We will report experimental results

on both original NAG (noted as NAG) and the improved hyperparameter version (noted as NAG++). The

�nal hyperparameters used are  . This pushes the NAG to the edge of acceptable

visual quality. Although we cannot ensure this is the best performing hyperparameters, we believe this

version of NAG has better negative prompt following, with sacri�ces in quality. These parameters are not

swept to avoid over-�tting. However, we did conduct experiments on the positive-negative-quality

trade-off study later in this paper.

4.5. Results

Quantitative results from MLLM as judge evaluation are shown in Table  1, and qualitative results are

shown in Figure 7. P-value for the negative score is tested with the McNemar test. Qualitative results are

from 10 randomly selected samples.

It is important to highlight that the MLLM assigns relatively generous quality scores; signi�cantly

distorted images may still receive high ratings. Empirically, we observed that images scoring around 60

are heavily distorted and exhibit numerous artifacts. For example, the image on the left of Figure 6 has a

quality score of 70 yet displays severe degradation, and the image in the middle has noticeable distortion

ϕ α τ

ϕ = 11,α = 0.5, τ = 5
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but is rated with 90, and the image on the right has minor artifacts (meaning it is not perfect) while

receiving a score of 100.

Figure 6. An example of a completely distorted image gets a relatively high quality score. The left one has a

score of 70, the middle one has a score of 90, and the right one is a slightly distorted image, but still rated for

100.
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Figure 7. Qualitative comparison of an NAG version whose hyperparameter was tuned for negative guidance

(NAG++), original NAG (NAG), and our method (VSF). These samples are randomly selected from the results.

ChatGPT said:Based on the quantitative results, VSF shows a signi�cantly higher negative score than

other methods, while maintaining comparable or better quality scores. However, its positive score is

considerably lower. The trade-off between positive and negative scores is discussed in the extended

section. Our method achieves a higher negative score than traditional CFG in non-few-step models,

demonstrating a stronger ability to avoid negative elements even relative to the established strong

baseline.

From the qualitative results, we can see that in many cases, our VSF avoided the negative prompt better,

such as the plane wings and bristles examples. We can also see that in many cases, the guidance scale of

NAG++ and our version of NASA is pushed to the limit of acceptable quality, yet still fails to follow the

negative prompt. For VSF, the quality is between NAG and NAG++, sometimes resulting in very simple,
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lacking detail images like the red car, a jet without wings, or the laptop with keyboard. However, in many

cases it still preserved high quality, such as the color palette, the chess, and the train. All three methods

resulted in some unnatural physical formation, such as the weird location of the laptop hinge. There are

also cases where all methods failed, such as removing the head from the statue and removing the nose

from the teddy bear, indicating the signi�cant challenges of our dataset. Additionally, our model

sometimes removes more features than we want, such as the keyboard in the laptop and the windshield

in the car, due to attention map dispersion or semantic similarity between these elements. Sometimes,

VSF performs a bit worse than other methods, like in the leaves example.

4.6. Trade Off Curve

To systematically evaluate how effectively each model balanced positive prompt adherence, negative

prompt adherence, and image quality, we conducted a hyperparameter sweep across each model.

Speci�cally, we performed 66 runs for VSF and 287 runs for NAG, and 10 runs for NASA, with respect to

their hyperparameter counts (2 for VSF, 3 for NAG, and 1 for NASA). A random sweep was executed

besides for NASA, on which a grid search is used, and evaluations were conducted using Llama 4 (llama4)

following the same criteria as previously described. Due to the large volume of runs, we limited our

evaluation to the �rst 100 prompts with a single generation seed, potentially resulting in minor

differences from earlier outcomes.

For the trade-off plot, runs were sorted by negative prompt adherence scores from highest to lowest. As

we trace from the highest negative score to the lowest, we sequentially record the highest positive

prompt or image quality scores encountered. Each run was marked as a critical point if it improved upon

previously recorded positive prompt or quality scores. All critical points are plotted and connected, and

shown in Figure 8.

qeios.com doi.org/10.32388/POY29B 16

https://www.qeios.com/
https://doi.org/10.32388/POY29B


Figure 8. Trade off plot of positive-negative score and quality-negative score. Both axies follows “higher is

better.”

From both plots, we observe that as the negative score increases, NAG and NASA both exhibit a

signi�cantly steeper decline compared to VSF in both positive and quality scores. NASA has a steeper

decline in quality compared to NAG, which is expected as NASA does not have the normalization and

blending. In terms of positive score, VSF maintains scores above 90 even when the negative score rises to

approximately 60. Regarding image quality, VSF similarly retains scores above 90 until a negative score of

around 60, after which quality declines. In contrast, NAG and NASA both experience a sharp decline, with

their quality score rapidly dropping to nearly 60 even before the negative score reaches 50.

Additionally, VSF demonstrates a broader operational range in negative scores. When necessary, it can

achieve negative scores exceeding 70 while still preserving acceptable positive prompt adherence and

image quality. Conversely, NAG and NASA become unacceptable in quality at negative scores below 50,

limiting their practical effectiveness. Keep in mind that the MLLM usually overestimates the quality, and

if an image is rated 60, it is usually completely distorted. See Figure 6 for example.

4.7. Attention Maps

Since our proposed method performs adaptive steering based on a negative attention map, we visualize

the attention maps generated during the diffusion process in Figure 4. Extracting the full attention maps

is dif�cult because ef�cient implementations, such as FlashAttention, do not explicitly store these maps,

and storing and computing them will require a large amount of memory. Therefore, we computed only

the unnormalized attention values between the image tokens and negative prompt tokens.
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Figure  4 demonstrates that when the scale is set to 0, umbrellas appear, whereas setting the scale to 3

effectively removes them. As indicated in the attention maps, image tokens corresponding to regions

where umbrellas might exist (e.g., above human heads) exhibit higher attention toward the negative

prompt tokens. Speci�cally, in steps 4 and 5, regions above the individuals on the left and right show

strong negative attention, aligning with areas visually identi�ed as umbrellas. In the �nal image, these

highlighted regions no longer contain umbrellas, con�rming that our method effectively suppresses the

presence of undesired objects at speci�c locations.

4.8. Abliation Study

Figure 9. Trade Off Plot For Abliation Study

Figure 10. Example of Whole Embedding Flip (WEF), where the negative prompt embedding got �ipped and

concated with the positive prompt embedding before sending into a normal DiT

To evaluate the effectiveness of each component of our approach, we conducted an ablation study using

the following settings. For each setting, we scanned across scales for all 200 prompts using the same

seed. Similar to before, we plotted the trade-off curve for each setting.
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Rather than altering the attention values, we explored a simpler and more intuitive approach: �ipping the

text embedding prior to input into the DiT (Whole Embedding Flip, WEF). This is similar to applying the

CFG on text embeddings in NASA, but keeps the positive and negative tokens separated. Speci�cally, the

negative text embedding is scaled by  , concatenated with the positive prompt embedding in the

sequence length dimension, and used as the prompt embedding for the DiT. We did not remove the

padding for the negative prompt, as we found out that removing it causes the negative prompts to have

no effects at all. We also tested our approach with no bias, no mask (but still duplication), and no

duplication, no mask. The trade-off plot is shown in Figure 9. We speci�cally show the results from WEF

in Figure 10 across different scales. This simpler and more intuitive approach appears to have no effect.

We hypothesize that this is because it is similar to �ipping both the key and the value, causing regions

most similar to the �ipped key (i.e., least similar to the original negative prompt) to be pushed away,

rather than pushing away regions most similar to the original negative prompt (i.e., un�ipped key). From

the �gure, we can see that the con�gurations without masking have a sharp positive score drop as the

negative score increases. The WEF has a very limited range of negative scores, con�rming the qualitative

results. Our methods and the one without attention bias has similar results, showing that the bias is

optional and can be compensated with scaling changes.

Positive Score Negative Score Quality Score

VSF 0.870 0.545 0.952

NAG[7] 0.993 0.220 ( ) 0.968

NAG++ 0.975 0.320 ( ) 0.901

NASA[15] 0.970 0.380 ( ) 0.867

None 0.990 0.195 ( ) 0.968

CFG[12] (non-few-step) 1.000 0.300 ( ) 0.956

Table 1. Positive scores (how well the model follows the positive prompts) and negative scores (how well the

model avoids the negative prompts) of our model (VSF), NAG[7], and NAG with hyperparameter re-tuned

(NAG++).

−α

p < 10−6

p < 10−6

p < 10−6

p < 10−6

p < 10−6
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4.9. Adapting to Other DiT Models

In this paper, we primarily use SD-3.5 (8) due to simplicity and elegant architecture. However, our method

can theoretically be adapted to any transformer-based diffusion or �ow-matching model. To

demonstrate this adaptability, we implemented our method on Wan 2.1 with CausVid LoRA[5][14].

For Wan 2.1, which uses cross-attention between image and text, masking is unnecessary and not used.

Because our approach does not perform extrapolation and solely provides negative guidance, it cannot

enhance overall quality signi�cantly or replace CFG sampling in non-disstilled models, making it

incompatible with the original Wan 2.1 model. Instead, we utilize CausVid[5], which enables Wan to

function effectively without classi�er-free guidance in few-step settings. Speci�cally, we used a

LoRA[14] distilled from the original CausVid that can be directly applied on top of Wan 2.1. For qualitative

results from Wan, please see the appendix.

We also tested our method on Flux Schnell[1]. However, due to its architecture combining one-stream and

two-stream attention mechanisms, our approach did not signi�cantly impact its tendency to ignore

negative prompts. Future work should investigate these differences and explore ways to improve

effectiveness.

4.10. Computational Cost

Since our method does not require two passes through the entire model (as in CFG) or the attention

module (as in NAG or NASA), and only slightly increases the sequence length, its theoretical computatio

nal cost is signi�cantly lower, close to that of a single pass. However, due to implementation limitations

(speci�cally, FlashAttention-2’s lack of support for arbitrary attention masking), the actual runtime of

our method is higher than the original single-pass MM-DiT models, and similar to NAG or NASA but

much lower than CFG.
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Wan SD3.5

Time VRAM Time VRAM

Baseline 23.10s 22.05GB 2.14s 28.49GB

NASA - - 2.89s 28.50GB

NAG 25.58s 22.06GB 2.98s 28.50GB

VSF 22.70s 23.05GB 3.00s 28.53GB

VSF (No mask/bias) 22.70s 22.05GB - -

Table 2. The computation cost of each model. Time is measured in total runtime per sample, and VRAM is the

peak RAM during the 25 samples generation. Since VSF Wan does not require a mask, and it is only used for

bias, we also tested it without the bias. The SD3.5 model used is SD-3.5-Large-Turb,o and the Wan model used

is Wan-2.1-T2V-1.3B.

To accurately measure the computational cost, we evaluate the runtime of 25 identical prompts under

four settings: no guidance, NAG, NASA, and our proposed guidance, VSF, and then report the average

runtime and peak memory usage for each setting. To avoid GPU thermal throttling affecting the results,

we pause for at least 5 minutes between each set of tests. The tests are done on NVIDIA A100 40GB on

Google Colab, as this is the most accessible option for high-end GPUs for users. Stable Diffusion Turbo is

generated in 8 steps for 1024x1024 resolution, Wan is generated in 8 steps with 480x832 resolution, and

81 frames. The results are shown in Table 2.

From the table, VSF requires marginally more time and memory than NAG in SD3.5, while they are both

signi�cantly faster than theoretical CFG time, which would be twice the baseline. In Wan, VSF

outperforms NAG and is even slightly better than the baseline (likely due to nature variation) in terms of

compute time, though it consumes 1GB more memory, likely due to the attention bias being stored. Since

this bias is optional, we tested VSF Wan’s performance with it removed, which results in an improvement

in VRAM usage such that it uses the same amount of VRAM as baseline and NAG, and no change in

runtime.
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5. Conclusion and Future Work

In this paper, we introduced VSF, a novel approach for enhancing negative prompt adherence in image

and video generation models. Our method involves �ipping the sign of attention values corresponding to

negative prompts, effectively suppressing unwanted content. Experimental results indicate that VSF

signi�cantly outperforms previous methods, NAG Chen et al.[7], in terms of negative prompt adherence,

with only minor trade-offs in overall quality and positive prompt �delity. VSF also only has one main

hyperparameter and one minor hyperparameter, making it easier to tune them in downstream tasks.

Future work may involve extending VSF to other architectures, such as Flex Schnell, improving

robustness through normalization and blending techniques similar to those employed by NAG, and

optimizing computational ef�ciency by using a better attention implementation. Additionally,

conducting a larger-scale human evaluation study would help mitigate inaccuracies observed in MLLM-

based assessments. Investigating the attention maps and diffusion trajectories of our model could

further elucidate the underlying mechanisms of VSF.

Appendix

A.1. Qualitative Results for Wan

To qualitatively evaluate the effects of our method, we present several example generations across

different models. These samples are intended for visualization, and results may vary with different

hyperparameters or sampling conditions. The examples demonstrate both strengths and limitations

across models and are not meant to re�ect comprehensive performance.

In the �rst example, we evaluate cutting tomatoes on a board, where the negative prompt is a wooden

board. The original video (generated without negative guidance) includes a wooden board. However, the

NAG and VSF outputs both replace it with non-wooden surfaces—a plastic or glass-like surface. However,

both original and NAG outputs exhibit unnatural physics during the cutting motion. The VSF sample

avoids major unnatural physics but fails to preserve the shape of the tomato, as the tomato deforms

unrealistically during slicing. These issues likely arise from limitations in the small 1.3B parameter model

since it also appears in the original video.

The second example involves a lava river without glowing. In still frames, the outputs from both NAG and

VSF appear similar to regular rivers, but in motion, they exhibit texture and �ow characteristics
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resembling lava. The NAG sample, however, leans more toward a natural river, re�ecting weaker

adherence to the intended appearance.
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Figure 11. Example of Wan 2.1 with no negative guidance (NONE), NAG guidance (NAG), and our guidance

(VSF). Positive and negative prompts are shown at the bottom of each �gure.

In the third example, the prompt requests a plane with no wings. The original outputs clearly retain

wings. The NAG output reduces the wing size but does not remove it completely. VSF most closely

satis�es the constraint, with wings nearly absent, indicating a stronger capability in element removal.

The fourth example aims to remove bias in generating a machine learning scientist by excluding the

common depiction of a male with glasses. Both NAG and VSF successfully eliminate the targeted

attributes. Among them, NAG produces the more natural-looking output, with better visual coherence.

In the �fth case, the prompt asks for a pet running through �owers, explicitly excluding dogs. The

original sample resembles a dog-like hybrid. The NAG version trends more cat-like and adheres better to

the constraint. The VSF sample avoids the dog but results in a character resembling a �ctional �gure

from a children’s story, making its alignment with the “pet” concept weaker.

In the sixth example, we request a cat chef cooking in a kitchen without a window. Since the original

sample already lacks a window, it does not test model behavior under the constraint. In the NAG output,

under such a high guidance scale, it introduces undesired concepts, such as a human inside the cat

adding seasoning to the pan, suggesting instability under strong steering.

The �nal example prompts for a laptop playing a cat video without a keyboard. Both NAG and VSF fail to

remove the keyboard, likely due to its strong association with the laptop concept. Additionally, the NAG

output results a cat with two heads in the screen, which may stem from the high guidance scale or the

model’s limited capacity.

From these examples, we observe that both models succeed and fail in different scenarios. VSF is more

effective at removing explicit elements (e.g., wings) but less reliable at excluding abstract sub-concepts

(e.g., dog from pet, male from scientist). Overall, the outputs of VSF and NAG are comparable. However,

our method (VSF) operates at a lower compute cost, as discussed in the following section.
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