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The surge in electric vehicle (EV) adoption prompts companies to prioritize

dependable charging station designs, despite hurdles in maintaining

consistency. A newly proposed design, featuring 36 ports, employs both

uniform and non-uniform arrangements and is subjected to rigorous testing

with systems ranging from 50 to 350 kW. Failure rates are projected through

meticulous assessments based on MILHDBK217F and MILHBK-338B

standards, employing binomial distribution and cost analysis to gauge port

reliability and overall station success rates. This innovative design not only

bolsters voltage stability but also curtails maintenance expenses by enhancing

port reliability. In the realm of robotics and autonomous systems (RAS), Deep

Reinforcement Learning (DRL) demonstrates exceptional prowess but

grapples with the risk of unsafe policies, potentially resulting in perilous

decisions. To address this concern, a novel study introduces a reliability

evaluation framework tailored for DRL-driven systems, leveraging formal

neural network analysis. This framework adopts a two-tiered verification

strategy: firstly, by assessing safety locally using reachability tools, and

secondly, by aggregating local safety metrics across various tasks to evaluate

global safety. Empirical validation confirms the efficacy of this framework in

fortifying the safety of RAS.
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Introduction

Increasing awareness of global warming has sparked a heightened interest in

electric vehicles (EVs) as environmentally friendly substitutes for traditional

automobiles. This shift is primarily motivated by concerns regarding pollution

and the depletion of fossil fuel reserves. Governments are actively encouraging

the installation of EV charging stations through incentives, presenting a

challenge for power system engineers to fulfill demand while upholding grid

stability and voltage control. Complicating factors such as land costs and the

unpredictability of EV usage further add complexity to the placement of these

charging stations. A study [1] evaluates the impact of increasing PEV adoption on

distribution network investments and energy losses, indicating potential

investment increases of up to 15% and energy losses of up to 40% during off-

peak hours with high PEV usage. Probabilistic power flow (PPF) analysis is

suggested for managing the uncertainty in Plug-in Hybrid Electric Vehicles

(PHEVs) charging demands, incorporating a unique charging model and queuing

theory [2][3].

qeios.com doi.org/10.32388/PQUJEL.2 1

mailto:papers@team.qeios.com
https://www.qeios.com/
https://doi.org/10.32388/PQUJEL.2


A multi-objective approach  [4][5]  is proposed for optimizing vehicle-to-grid

(V2G) parking lots as distributed generation (DG), considering infrastructure

reliability, power losses, and costs. A static EV load model is developed to aid

stability analysis, showing that rapid charging impacts grid voltage stability  [6]

[7]. Security and reliability concerns arise from unregulated EV charging,

necessitating intelligent scheduling systems  [8][9]. Various probabilistic

methods  [10][11]  and optimization approaches  [12]  are explored to address these

challenges, including genetic algorithms and particle swarm optimization.

Research [12][13] suggests integrating PEV parking lots to minimize system costs

and optimize profits for distribution firms, accounting for EV growth

projections  [14]. Optimization models  [15][16]  prioritize charging station cost-

efficiency and reliability, analyzing EV owner behaviors.

A scheduling approach  [17]  for EV charging intervals is introduced to optimize

power exchange between parking lots, distribution networks, and EVs. The

research emphasizes the importance of strategic decision-making for charging

station installations, utilizing genetic algorithms  [18]  and optimized staging

plans  [19][20][21]. Despite EVs' environmental and economic benefits, their

integration strains distribution systems with voltage instability, maintenance

costs, and reliability issues. Unregulated charging and the stochastic nature of EV

charging processes pose additional challenges, requiring careful consideration of

location, user concentration, and financial viability for charging station setups.

Deep Reinforcement Learning (DRL) has shown promise in various applications

but faces safety concerns in real-world, safety-critical contexts like autonomous

vehicles and power systems. This work addresses the reliability and robustness

issues of DRL and Deep Neural Networks (DNN) in such applications, proposing a

two-level verification framework. This framework leverages local reachability

analysis and global software reliability engineering principles to ensure the

safety and reliability of DRL algorithms.

Deep Reinforcement Learning (DRL) has shown remarkable progress across

various sectors, particularly in robotics and autonomous systems. As these

technologies permeate our daily lives and critical infrastructures, ensuring their

safety and reliability becomes increasingly crucial. While DRL algorithms excel

at training decision-making agents to optimize long-term performance, real-

world scenarios demand more than just optimal performance; they require

robustness, stability, and safety. Consequently, the field of DRL verification and

testing has evolved to guarantee system properties across an infinite input

space. [22] introduced adversarial attacks tailored for DRL algorithms, enhancing

performance and robustness when trained with these engineered attacks  [5].

However, relying solely on adversarial training methods falls short in ensuring

safety during the training phase. Addressing this gap, we developed a safety

layer that computes action corrections per state to maintain safety throughout

the training process. Lyapunov functions are applied to define regions of

attraction for specific policies and applied statistical models to optimize high-

performance DRL policies. Despite advancements in safety during training,

discrepancies between training and testing environments persist. To mitigate

this risk, run-time monitors, such as the shield structure, were introduced to

prohibit agents from executing unsafe actions for each state, thereby ensuring

safety during operations.

DRL verification presents multifaceted challenges distinct from traditional Deep

Learning (DL) verification. The sequential decision-making inherent to DRL,
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where a Deep Neural Network (DNN) is invoked repeatedly for each action

decision, coupled with the often stochastic environments, poses significant

scalability challenges. For applications like autonomous vehicles, ensuring

consistent actions across both perturbed and unperturbed states at each decision

point is essential. To address these challenges, various DRL verification

methodologies have emerged, including abstraction, constraint-based

verification, reachability analysis, and model checking  [12]. Our research

primarily focuses on "Reachability Analysis," encompassing notable algorithms.

Despite these advancements, a knowledge gap persists regarding DRL safety.

Current methods can detect safety violations under extreme conditions but often

fall short in providing a comprehensive understanding of DRL policy safety,

especially when violations occur locally. In the context of charging station

installations, the capacity is determined by available parking spaces, but this

alone isn't sufficient for configuring and installing ports to serve customers

effectively. The installation depends on capital investment and expenditure for

achieving maximum charging port capacity in a given area. Therefore, before

installing a charging station, reliability tests should be conducted on the selected

port configuration to allocate budgets for procuring the required ports. Based on

this understanding, reliability estimation methodologies are developed to ensure

the robustness and effectiveness of the charging infrastructure, aligning with

the broader objective of enhancing DRL safety and reliability.

Methodology

To assess the reliability of the charging port arrangement, we initially focus on

the uncertain plug-in conditions. Both uniform and non-uniform port designs

are examined to accommodate varying plug-in scenarios. Intermediate operating

conditions in electric vehicles (EVs) present challenges, with potentially higher

failure rates in charging stations due to fluctuating loads on charging ports. The

occurrence of failures depends on customer demand, which varies by power

ratings. Persistent port failures can disrupt services, making port replacement

essential to maintain consistent charging. The quality of the replacement port is

crucial and is determined based on material standards aligned with capital

investment benchmarks for port maintenance. Therefore, cost estimation is

essential to allocate a maintenance budget for procuring quality replacements,

enhancing charging facility reliability. Product lifespan is evaluated to verify

quality compliance, adhering to MIL-HDBK217F standards. Using this

methodology, reliability is estimated in terms of failure rates for each port within

the charging arrangement. The charging station's capacity and capabilities hinge

on the port configuration and arrangement. While uniform port layouts are

popular for EV charging stations, they require more installation space.

Ensuring equal parking space for vehicles presents challenges for charging

stations. Despite this, uniform ports typically have simpler and lower

maintenance costs compared to non-uniform ports. Non-uniform ports operate

across a range of power ratings, making them suitable for compact installations,

whereas uniform ports offer longevity, reliability, and easier maintenance.

Considering these factors, we evaluate installation efficiency, failure rates,

reliability, and maintenance costs for both uniform and non-uniform port

configurations. Based on these considerations, we propose a 36-ported charging

station structure that combines both uniform and non-uniform port

arrangements. To assess the combined configuration of uniform and non-

uniform charging ports in the proposed 36-port charging station, we introduce a
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stepwise evaluation approach. The goal is to design a reliable charging station by

selecting the appropriate distribution system for installation area, system

configuration, and probability method. We opt for the binomial distribution to

determine the necessary charging station capacity for 36 ports.

The proposed 36-port station combines both uniform and non-uniform

configurations, accommodating various port populations to optimize charging

facilities based on parking lot capacities. Reliable charging largely hinges on port

reliability in terms of failure rates, which can be influenced by EVs' intermediate

charging patterns. Understanding these failure probabilities requires a

methodology that can address both real and hypothetical scenarios through

statistical validation. To evaluate these hypothetical failure probabilities, we

employ probability statistical methods to assess the reliability of each port in the

charging station. Our approach uses the binomial distribution due to its

applicability to both uniform and non-uniform configurations. The binomial

distribution allows for simultaneous comparisons of two distinct probability

evaluations, offering accurate insights into the probability and reliability of the

proposed 36-port configurations. A charging station with a power range of 50-

350 kW serves as our model for this analysis. We follow the prescribed workflow

for uniform and non-uniform systems, starting with the selection of 36 ports

and incorporating reliability methods. The reliability evaluation considers

random EV charging processes across various repetitive combinations.

The charging station features a dual-batch system for parking lot convenience.

The uniform system comprises 20 ports, with 2 being susceptible to

vulnerabilities. Meanwhile, the non-uniform system offers 16 ports, and we

employ a repeatability method to assess product reliability. Repeatability occurs

when a random configuration is selected, culminating in a comprehensive

assessment of the charging station's failure rates. Ultimately, the system's failure

rate is evaluated based on MILHBK-338B standards, incorporating both uniform

and non-uniform configurations to ensure a thorough and reliable analysis.

Review of Results

Evaluating the reliability and economics of Electric Vehicle (EV) charging

configurations is crucial as the adoption of EVs continues to grow globally.

Reliable charging infrastructure is essential to support the widespread use of EVs

and to address concerns about range anxiety among consumers. Various factors

contribute to the reliability of EV charging systems, including the design of

charging ports, the distribution of charging stations, and the maintenance

protocols in place. Economic considerations are equally important, as the cost-

effectiveness of charging configurations impacts both consumers and service

providers. Evaluating these aspects helps to optimize the design and operation of

EV charging infrastructure, ensuring its long-term sustainability and

affordability.

Deep Reinforcement Learning (DRL) has emerged as a powerful tool in the fields

of robotics and autonomous systems, offering promising advancements in

decision-making and control algorithms. DRL algorithms enable agents to learn

optimal strategies through trial and error, improving performance over time. In

robotics and autonomy, the reliability of DRL algorithms is paramount, as

incorrect decisions can lead to system failures or safety hazards. Evaluating the

reliability of DRL algorithms involves rigorous testing and validation processes

to ensure their robustness across various scenarios and environments.

Additionally, understanding the economic implications of implementing DRL in
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robotics and autonomy is crucial for cost-effective system development and

deployment. Integrating DRL into EV charging configurations presents new

opportunities and challenges. DRL algorithms can optimize charging schedules,

manage energy storage, and enhance grid integration, leading to more efficient

and reliable charging systems. However, implementing DRL in this context

requires careful evaluation of its reliability and economic feasibility. Ensuring

that DRL algorithms operate safely and efficiently within the complex and

dynamic environment of EV charging infrastructure is essential. Moreover,

understanding the economic costs and benefits of integrating DRL into EV

charging systems helps stakeholders make informed decisions about

investment, development, and deployment strategies.

Significance of Results

Evaluating the reliability and economics of EV charging configurations and DRL

in robotics and autonomy is essential for advancing these technologies and

ensuring their successful integration into modern transportation and energy

systems. Comprehensive assessments that consider both technical and economic

factors enable stakeholders to make informed decisions, optimize system

designs, and address challenges effectively. As EV adoption and automation

continue to accelerate, ongoing research and evaluation efforts will play a critical

role in driving innovation, enhancing reliability, and achieving sustainable and

cost-effective solutions for future mobility and energy infrastructure.

Conclusion

This study underscores the importance of reliable charging station designs in

meeting the growing demand for Electric Vehicles (EVs). The proposed 36-ported

design, integrating both uniform and non-uniform port arrangements, offers a

promising solution to enhance port reliability and reduce maintenance costs,

particularly for systems ranging from 50-350 kW. By leveraging established

standards like MILHDBK217F and MILHBK-338B, along with binomial

distribution and cost analysis, the design demonstrates improved voltage

stability and a more sustainable charging infrastructure. Furthermore, in the

realm of robotics and autonomous systems (RAS), the study addresses critical

challenges associated with the deployment of Deep Reinforcement Learning

(DRL) algorithms. While DRL has shown significant promise in enhancing RAS

performance, concerns about safety and reliability persist due to potential

hazardous decisions stemming from unsafe policies. This research introduces a

comprehensive reliability assessment framework for DRL-controlled systems,

leveraging formal neural network analysis and a two-level verification approach.

By assessing safety both locally and globally, the framework offers a robust

methodology to evaluate and enhance the safety of DRL-driven RAS.

Overall, the findings from this study provide valuable insights and

methodologies for advancing both EV charging infrastructure and DRL-

controlled RAS. By focusing on reliability, safety, and cost-effectiveness, the

research contributes to the development of more resilient and efficient systems,

addressing key challenges and paving the way for broader adoption of EVs and

autonomous technologies in the future.
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