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The editors of a special issue of The American Statistician stated: “Regardless of whether it was

ever useful, a declaration of “statistical signi�cance” has today become meaningless.” This echoes

the author's view, as “statistical signi�cance” has been con�ated with substantive signi�cance.

However, the author respectfully disagrees with the editors' call for “don’t use it.” With the help of

relatively simple graphs and tables, this author demonstrates that small sample sizes (n < 1000)

require Pearson’s correlation coef�cients to be screened for statistical signi�cance (p <.05) to

reduce the number of effect size errors that would otherwise be considered substantively

signi�cant under a true null hypothesis. It's crucial to note here that the null hypothesis is not

merely assumed to be true but is indeed known to be true.
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The Board of Directors of the American Statistical Association (ASA) published a statement in “non-

technical terms” for “researchers, practitioners, and science writers” who were not statisticians about

the proper use and interpretation of statistical signi�cance[1]. However, the editors, in a subsequent

article, abandoned teaching statistical signi�cance and called for a ban with the slogan “statistically

signi�cant—don’t say it and don’t use it”[2]. [3] noted that “misinterpretation and abuse of statistical

tests, con�dence intervals, and statistical power have been decried for decades, yet remain rampant.

A key problem is that there are no interpretations of these concepts that are at once simple, intuitive,

correct, and foolproof” (p. 1). This author, however, is committed to providing a simple, intuitive, and

proper understanding of statistical signi�cance for students, applied researchers, and science writers

who are not statisticians.

A small sample theory of sampling distributions was explained by  [4]: “Any experiment may be

regarded as forming an individual of a ‘population’ of experiments which might be performed under

the same conditions. A series of experiments is a sample drawn from this population” (p.

1). [5] echoed the idea: “The entire result of an extensive experiment may be regarded as but one of a

possible population of such experiments” (p. 2).  [6]  present a graph of a sampling distribution

comprised of many summary statistics drawn repeatedly with replacement from a human

population. The human perspective obscures that sampling distributions are not physiological,

physical, psychological, sociological, or economic phenomena in the real world. They are theoretical

probability distributions of summary statistics like means and proportions. For example, consider a

two-sided fair coin where, by de�nition, the probability of heads is .50. The probability of seeing two

heads after two �ips is .25, using the multiplication rule of independent events. This mathematical

solution can be simulated with a sampling distribution where the two �ips are independently

simulated 5000 times. The resulting empirical sampling distribution will show approximately 1250

heads, from which the probability (p-value) of seeing two heads on two �ips is 1250/5000 = .25.

Methodology

This paper aims to provide, in “non-technical terms,” for “researchers, practitioners, and science

writers” who are not statisticians, an intuitive understanding of statistical signi�cance and effect

sizes with graphs and a few numbers. [7] provides the theoretical details but used only 435 bivariate

correlations computed with 30 iid random variables and 13 different sample sizes sampled from the
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standard normal distribution [N(0,1)]. The current paper extends the results with much bigger

empirical sampling distributions simulated with SAS onDemand for Academics[8] comprised of 4950

bivariate correlations computed with 100 iid random variables and only �ve instructive sample sizes:

n = 4, 30, 100, 1000, 2000. As in the previous paper, the null hypothesis H0: ρ0 = 0 was tested for

statistical signi�cance (α =.05) with the “Fisher” option in PROC CORR[9]. Type 1 errors (false

rejection of the true null hypothesis) were counted when p < α because the population parameter (ρ),

as speci�ed with the null hypothesis (H0), was known to equal zero (H0: ρ0 = 0) by mathematical

theorem[10].

[11] proposed categories for observed Pearson’s r as effect sizes: |r| <.10 is none, |r| ≥ 0.10 is small, |r|

≥ 0.30 is medium, and |r| ≥ 0.50 is a large effect size. Although Fisher’s r to z transformation (zr) was

used to test ρ0 = 0 for statistical signi�cance, zr was back-transformed to Pearson’s r to evaluate

effect sizes. Because ρ0 = 0, all |r| ≥.10 were effect size errors.

Results

[5] said: “The distribution of r is not normal in small samples, and even for large samples, it remains

far from normal for high correlations” (pp. 200-201). Figure 1 shows the shape of the empirical

sampling distribution of 4950 Pearson correlations with n = 4.

Figure 1.

This empirical sampling distribution is far from a symmetric, normal distribution. The empirical

standard error (i.e., the standard deviation of this distribution) is 0.58, indicating a considerable

dispersion around the central value (Grand Mean) of zero in the range from -1.00 to +1.00. It is evident

that many observed correlations are wrong estimates of the actual population correlation coef�cient;

however, the overall mean correlation (Grand Mean) is very close to zero, which is consistent with the

Law of Large Numbers[6]. Figure 2 is the empirical sampling distribution of Fisher’s r   to z

transformation (zr) of the correlations in Figure 1. Despite the small sample size, this empirical

sampling distribution is approximately normal. This was Fisher’s motivation for inventing zr

because now the properties of the well-known standard normal distribution [zr ~ N(0,1)] can be used

to determine statistical signi�cance[5].
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Figure 2.

A two-sided, 5% level of statistical signi�cance corresponds to a |zr| > 1.96, corresponding to

statistically signi�cant p-values. Figure 3 reveals the count.

Figure 3.
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In this empirical sampling distribution of zr under the null hypothesis of ρ0 = 0, there are 208 (4%)

statistically signi�cant p-values (type 1 errors) because p < α and α = .05 set a priori as the level of

statistical signi�cance. Figure 4 displays the empirical sampling distribution of Pearson’s r as

Cohen’s effect sizes.

Figure 4.

Approximately 10% (522) are not effect sizes, leaving 90% to be misinterpreted as substantive or

meaningful effect sizes (small |r| ≥ 0.10, medium |r| ≥ 0.30, large |r| ≥ 0.50) when they are merely

effect size errors under the true null hypothesis: ρ0 = 0. Figure 5 shows that screening for statistical

signi�cance excludes many effect size errors from consideration.
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Figure 5.

Table 1 reveals that 95% (4220) are excluded because they are not statistically signi�cant, leaving

only 5% (208) effect size errors to be misinterpreted as substantive effect sizes. Classical Fisherian

statistical theory predicts a 5% type 1 error under a true null hypothesis. It is essential to recognize

that no statistically signi�cant effect size errors exist. 

Table 1.

Table 2 shows that with n = 4, remarkably high correlations appeared purely by chance but were

nonetheless merely statistically signi�cant effect size errors.
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Table 2.

Figure 6 is the empirical sampling distribution of Pearson correlations with n = 30. This distribution

is approximately normal with an empirical standard error of 0.19, indicating that the correlations'

dispersion is closer to the true ρ = 0 than 0.58 with n = 4.

Figure 6.

Figure 7 is an empirical sampling distribution of zr values corresponding to the observed correlations

in Figure 6.
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Figure 7.

This distribution appears normal with the same standard error = 0.19 as in Figure 6. However, the zr

range is wider, -0.72 to 0.72, compared to -0.66 to 0.63 with n = 4 (Figure 6). Figure 8 shows the

empirical sampling distribution of p-values corresponding to zr values.

Figure 8.
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As predicted by classical Fisherian statistical theory, approximately 5% (249/4950) are type 1 errors

under a true null hypothesis. Figure 9 displays the 4950 Pearson correlations as Cohen’s effect sizes.

Figure 9.

Approximately 40% (1967) can be ignored, leaving about 60% effect size errors that could be easily

misinterpreted as substantive or meaningful effect sizes (small |r| ≥ 0.10, medium |r| ≥ 0.30, large |r|

≥ 0.50) if statistical signi�cance is not considered. Figure 10 demonstrates that a relatively small

percentage would be considered statistically signi�cant. Table 3 shows the counts.
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Figure 10.

Statistical signi�cance excluded approximately 92% (2732) of effect size errors from further

consideration, leaving approximately 8% (251) to be misinterpreted as substantively signi�cant.

Table 3.

Again, it is noteworthy that statistical signi�cance detected only substantive effect sizes (|r| > .10).

Table 4 shows the range of the 251 statistically signi�cant correlations. However, this range does not

have the high correlations seen with n = 4.
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Table 4.

Figure 11 shows the empirical sampling distribution of 4950 Pearson correlations with n = 100. This

distribution is approximately normal, with an empirical standard error of 0.10. This indicates a

smaller dispersion of observed correlations in this sampling distribution, centered at zero compared

to n = 4 or n = 30. In other words, fewer misleading estimates of ρ = 0 appeared in this empirical

sampling distribution with the increase in sample size.

Figure 11.

Figure 12 shows the empirical sampling distribution of zr values corresponding to the observed

correlations with n = 100. This distribution also appears normal with the same empirical standard

error of 0.10 as Figure 11. Perhaps this is why [5].
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Figure 12.

Figure 13 displays the p-values from the signi�cance test of the zr values. Approximately 5% (221) are

statistically signi�cant p-values.

Figure 13.
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Figure 14 displays 4950 Pearson’s correlations categorized as Cohen’s effect sizes (small |r| ≥ 0.10,

medium |r| ≥ 0.30, large |r| ≥ 0.50). However, approximately 69% (3394) can be ignored as non-effect

sizes.

Figure 14.

Figure 15 reveals that relatively few are statistically signi�cant.
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Figure 15.

Table 5 reveals that statistical signi�cance would exclude approximately 86% (1335) of effect size

errors from further consideration, leaving 14% (221) to be misinterpreted as meaningful effect sizes.

Again, it is noteworthy that the type 1 error occurred only with Cohen’s effect sizes |r| > .10.

Table 5.

Table 6 shows that the range of statistically signi�cant correlations is smaller than previously seen

with either n = 4 or 30.
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Table 6.

Figure 16 shows the empirical sampling distribution of 4950 Pearson correlations with n = 1000. This

distribution is approximately normal, with an empirical standard error of 0.03, indicating a much

smaller dispersion around zero than the previous distributions with smaller sample sizes.

Figure 16.

Figure 17 shows the empirical sampling distribution of zr values corresponding to the observed

correlations with n = 1000. This distribution appears normal, with the same empirical standard error

of 0.03 and the same minimum and maximum values as in Figure 16.   In effect, Fisher’s r-to-z

transform is unnecessary, which makes sense because the technique was created to detect the

statistical signi�cance of Pearson’s correlation coef�cients with small sample sizes.

qeios.com doi.org/10.32388/PS72PK.2 14

https://www.qeios.com/
https://doi.org/10.32388/PS72PK.2


Figure 17.

Figure 18 displays the p-values from the signi�cance test of the zr values. Approximately 5% (260)

are statistically signi�cant p-values (type 1 errors).

Figure 18.
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Figure 19 displays 4950 Pearson’s correlations categorized as Cohen’s effect sizes. Approximately

4942 (99.8%) can be ignored, leaving 8 (0.2%) for further consideration.

Figure 19.

Figure 20 reveals the relatively few statistically signi�cant effect size errors.
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Figure 20.

Table 7 reveals only eight effect size errors, but now there are 252 non-effect sizes that are also

statistically signi�cant.

Table 7.

Table 8 reveals that these statistically signi�cant correlations were small effect sizes only.
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Table 8.

Previously, no non-effect sizes were detected as statistically signi�cant. This reveals that with

n=1000, statistical signi�cance is no longer a useful tool under a true null hypothesis. 

An increase in sample size to 2000 revealed only non-effect sizes materializing by chance under a

true null hypothesis: ρ0 = 0. Figure 21 shows the sampling distribution of Pearson correlations, with a

range of -.08 to +.08, below Cohen’s threshold of |r| ≥.10.

Figure 21.

Figure 22 shows the empirical sampling distribution of zr, which has the same descriptive statistics

as Figure 21.
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Figure 22.

Figure 23 has the empirical sampling distribution of p-values.

Figure 23.
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Approximately 5% (234) of the p-values were statistically signi�cant. Figure 24 conveys the same

information as Figure 21, revealing that all correlations are non-effect sizes (|r| <.10).

Figure 24.

Figure 25 indicates that relatively few non-effect sizes were statistically signi�cant; none �t Cohen’s

criteria (small |r| ≥ 0.10, medium |r| ≥ 0.30, large |r| ≥ 0.50).
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Figure 25.

Table 9 reveals that approximately 5% were statistically signi�cant non-effect sizes. 

Table 9.

Table 10 con�rms that the statistically signi�cant correlation range is 0.08 to +0.08.
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Table 10.

Conclusion

There are assumptions underlying the signi�cance test of a population correlation, namely bivariate

normality, linearity, and no overly in�uential coordinates. If the assumptions are satis�ed, under a

true null hypothesis, p-values follow a uniform sampling distribution[12]. If the population parameter

declared with the null hypothesis is true, any p-value in the open interval from 0.0 to 1.0 can

materialize regardless of sample size. More importantly, the percentage of type 1 errors under a true

null hypothesis is the constant alpha (e.g., 5%) independent of sample size. In contrast, the

percentage of effect size errors under a true null hypothesis is not constant because it decreases with

sample size. 

Discussion

Provided all assumptions are satis�ed, alpha is the 5th percentile value of a uniform sampling

distribution of p-values under a true null hypothesis[12]. This phenomenon was demonstrated here

with empirical sampling distributions. However, to this author’s knowledge, no statistical theory

predicts the percentage of effect size errors to expect under a true null hypothesis. Incidentally, the

parameter speci�ed with the null hypothesis does not have to be zero. Any reasonable value

excluding 0.0 and |1.0| can be postulated for the null parameter. However, when the parameter is not

zero, the statistical test requires a Fisher r to z transformation to get the proper p-value because the

sampling distribution of correlations is not a symmetric, bell-shaped, normal curve[5]. 

Imagine a researcher submitting an article to Basic and Applied Social Psychology, which banned

statistical signi�cance[13]  and relied only on Cohen’s effect size criteria to interpret the observed

correlation coef�cient. With a relatively small sample size and a true null hypothesis, there is a high

probability that an effect size error would be misinterpreted as a substantively signi�cant effect size.

This scenario is realistic.  [14]  reviewed 31 quantitative research articles published by BASP after the

ban on statistical signi�cance and ”found multiple instances of authors overstating conclusions

beyond what the data would support if statistical signi�cance had been considered” (p. 374) 

[3]  stated: “Every method of statistical inference depends on a complex web of assumptions about

how data were collected and analyzed, and how the analysis results were selected for presentation”

(p. 338)  [1]  warned against a naïve and single-minded obsession with a statistically signi�cant p-

value.“ Researchers should bring many contextual factors into play to derive scienti�c inferences,

including the design of a study, the quality of the measurements, the external evidence for the

phenomenon under study, and the validity of assumptions that underlie the data analysis” (p. 9).

Indeed, ignoring these considerations invalidates p-values and, thereby, statistical signi�cance. Still,

as stated by [15]: “Decisions are �nal while the state of opinion derived from a test of signi�cance is

provisional and capable, not only of con�rmation but of revision” (p. 103). Statistical signi�cance has

been blamed for the replication crisis[16]. Ironically, the solution is not a ban on statistical

signi�cance but replications of statistical signi�cance with fresh new data[17].
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