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Modern, massive digital data requires computer-intensive algorithms (data science) for analysis. However,

small data sets continue to be analyzed with classical, inferential statistical methods. Regrettably, these

methods have been tainted by the abuse, misuse, and misunderstanding of statistical signi�cance.

Understanding statistical signi�cance requires an appreciation of theoretical sampling distributions of

summary statistics under a true null hypothesis. This paper demonstrates a method to teach statistical and

substantive signi�cance with empirical computer-simulated sampling distributions of Pearson’s

correlation coef�cients. Sampling distributions of Pearson’s correlation coef�cients and p-values reveal

that statistical signi�cance with small sample sizes �lters out effect size errors that would otherwise be

considered substantively signi�cant under a true null hypothesis.
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About 45 years ago, Cox[1]  stated that criticism of statistical signi�cance �lls volumes. The p-value debates

continue. For a recent review of the controversy, see https://en.wikipedia.org/wiki/Statistical_hypothesis_test.

This paper does not attempt to unify the three classical statistical theories[2], promote modern data science,

nor call for a paradigm shift to qualitative research methods. This paper has two purposes: (1) to contribute to

the p-value debate with evidence that statistical signi�cance is still a viable tool for a binary decision when

working with small sample sizes, and (2) to teach simple, intuitive, foolproof, and proper understanding of

statistical and substantive signi�cance with empirical sampling distributions.

Greenland et al.[3]  attempted to teach the proper interpretation of statistical signi�cance by cataloging

misinterpretation, misuse, and abuse. Others also attempted education[4] but ultimately decided it was futile

and, among others, banned statistical signi�cance from the scienti�c literature[5][6][7]. This banishment is

regrettable because statistical signi�cance is a viable tool for �ltering out false effect sizes when working with
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small sample sizes. However, appreciating this fact requires understanding theoretical sampling distributions.

Students can interpret histograms of data from samples. However, they most likely do not fully grasp the

concept of sampling distributions of summary statistics because these are derived from complex

mathematical theorems (Central Limit Theorem, Law of Large Numbers). That is a problem. Understanding

sampling distributions of summary statistics is foundational for appreciating both statistical and substantive

signi�cance. A related problem is the common misinterpretation that a null hypothesis can be accepted as

true when the p-value is not statistically signi�cant[6]. This misunderstanding is obviated here as data are

simulated under a known, rather than merely assumed, true null hypothesis. In frequentist theory, the

population parameter, as stated with a null hypothesis, is a speci�c, exact, and �xed value. There is no

probability (uncertainty) associated with the population parameter. The population correlation rho (ρ) is

declared with null hypothesis, and here rho is equal to zero (H0: ρ = ρ0 = 0).

Theoretical Framework

Student[8] described the theory of small-sample sampling distributions: “Any experiment may be regarded as

forming an individual of a ‘population’ of experiments which might be performed under the same conditions.

A series of experiments is a sample drawn from this population” (p. 1). Fisher[9]  echoed the concept: “The

entire result of an extensive experiment may be regarded as but one of a possible population of such

experiments” (p. 2). Moore et al.[10]  present histograms of sampling distributions comprised of many

summary statistics (means and proportions) repeatedly and randomly sampled with replacement from a

human population. However, the human perspective obscures the important fact that sampling distributions

are not physiological, physical, psychological, sociological, or economic phenomena. They are probability

distributions of summary statistics that exist only in dense mathematical theory. This paper does not require

derivations with advanced mathematics, relying instead on graphs and simple counting numbers.

Methodology

Because correlation sampling distributions with small sample sizes are skewed[9], Pearson’s correlation

coef�cients r were converted to zr with the Fisher r to z transformation. These were subtracted from the

population correlation speci�ed under the null hypothesis (zr - ρ0) and the difference was divided by the

standard error,   , which is “practically independent of the value of the correlation in the population

from which the sample is drawn”[9]. The resulting ratio is the z-test   which produces a z-score for a

sample correlation and the corresponding p-value. These calculations were performed 1,000 times for each of

six sample size conditions, with the “Fisher” option in PROC CORR[11] and the data was output for graphing

1/ n − 3− −−−−√

( )
− zr ρ0
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and tabulation. With a 5% alpha level of statistical signi�cance (α = .05), an indicator variable was coded as “1”

when p-value < α, otherwise it was “0”. The count of “1’s” out of 4095 p-values was an empirical estimate of

the theoretical Type 1 error rate. Note because the null hypothesis was true, and all statistically signi�cant p-

values were Type 1 errors (rejections of the true null hypothesis).

Substantive signi�cance was determined by Cohen’s[12]  classi�cation of Pearson’s continuous correlation

coef�cients (r) as categorical effect sizes: |r| < .10 is trivial, |r| ≥ 0.10 is small, |r| ≥ 0.30 is medium, and |r| ≥

0.50 is a large effect size. The absolute value (|r|) conveys that Pearson’s correlations span both negative and

positive values, which are bound between -1.0 and +1.0. Each correlation was coded into one of the four

mutually exclusive effect size categories (0 = trivial, 1 = small, 2 = medium, 3 = large) with a 4-level indicator

variable. Although Fisher’s z was tested for statistical signi�cance, the back-transformed r was evaluated of

substantive signi�cance. Note that the population Cohen’s D = 0.0 (i.e., ρ = 0.0); therefore, all substantively

signi�cant correlations (|r| ≥ .10) were false, spurious, or effect size errors. For additional details about the

methodology see Komaroff[13].

Data Source

SAS onDemand for Academics[14], freely available on the internet from SAS Institute Inc., was used to generate

bivariate Pearson correlation coef�cients. These were computed with PROC CORR[11] using 100 independent,

identically distributed (i.i.d.) random variables drawn from the standard normal population (µ = 0, σ = 1). This

population distribution guaranteed that ρ = 0.0 (for mathematical proof, see [15]). Six separate data sets were

created, each producing 4,950 observed correlations, but with different sample sizes: n = 5, 15, 30, 100, 1000,

and 2000. The six data sets were combined (appended) into one data set for graphing and tabulating by

sample size.

Results

The empirical sampling distribution with n = 5 is far from normally distributed (see Figure 1).
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Figure 1. Six Empirical Sampling Distributions with 4950 Correlation Coef�cients by Sample Size.

There is a discrepancy between the grand mean and the median of the sampling distributions of correlations

(see Table 1).

qeios.com doi.org/10.32388/PS72PK.3 4

https://www.qeios.com/
https://doi.org/10.32388/PS72PK.3


Table 1. Descriptive Summary Statistics of 4950 Correlation Coef�cients by Sample Size

The standard deviation, which is an empirical estimate of the standard error, is 0.4976, indicating the

dispersion of the correlations around the grand center correlation of 0.00199. This is a large spread, as evident

from the range (minimum and maximum), which is very close to the boundary of Pearson’s correlation

coef�cients (-1.0 to +1.0). These data reveal that many correlations computed with small sample sizes seriously

under- or over-estimate ρ. As sample sizes increase, the empirical sampling distributions approximate bell-

shaped (normal) curves, and the standard deviations (empirical standard errors) become smaller. For example,

with n = 2000, the range (-0.09 to +0.07) indicates that the entire sampling distribution is comprised of only

trivial, or ignorable, effect sizes (|r| < .10).

In contrast, the empirical sampling distributions of p-values are relatively uniform regardless of sample size,

with small p-values in the �fth percentile (highlighted in red) being statistically signi�cant (see Figure 2).
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Figure 2. Empirical Sampling Distribution of 4950 P-values by Sample Size.

Unlike the sampling distributions of correlation coef�cients, p-values do not converge on the grand central P-

value (.50), which is evident from the relatively consistent standard deviations and ranges of p-values by

sample size in Table 1.

The vertical bar charts in Figure 3 were created using the same correlations as in Figure 1 but now displayed as

Cohen’s effect sizes (small |r| ≥ 0.10, medium |r| ≥ 0.30, large |r| ≥ 0.50).
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Figure 3. Empirical Sampling Distribution of 4950 Effect Sizes by Sample Size.

With small sample sizes, only the largest effect sizes were statistically signi�cant (see also Tables 2 and 3).
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Table 2. Intersections of Type 1 Errors and Effect Size Errors by Sample Size

Table 3. Summary of Intersection of Statistical and Substantive Signi�cance from Table 2.

As sample size increased, smaller effect sizes became statistically signi�cant. Finally, only trivial or ignorable

effect sizes materialized with n = 2000, where 5.1% were statistically signi�cant.
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Table 3 reveals the bene�t of screening for statistical signi�cance before interpreting substantive signi�cance.

For example, with n = 5, there were 87.1% (4313/4950) substantive effect sizes; however, in reality, all were false

or effect size errors. Statistical signi�cance reduced the number to only 5.7% (245/4313), with the remaining

94.3% (4068/4313) excluded from consideration. Recall that the null hypothesis is true (H0: ρ = ρ0 = 0.0);

therefore, Cohen’s D = 0.0 is also true, so any sampled effect size other than zero is an effect size error. In any

case, it would be unwise to draw a �rm conclusion about a correlation based on such a small sample size.

Therefore, consider a more realistic study with n = 30. More than half (60.6%) were non-trivial effect sizes, but

this number is reduced to 7.9% when statistical signi�cance is considered. An interesting and instructive

phenomenon occurred with n = 1000. Here, only a tenth of a percent would be considered substantively

signi�cant, but there were 5.2% (255) statistically signi�cant p-values. Of these, three were small effect sizes,

and the remaining were trivial or ignorable. Small-sample statistical signi�cance theory is not useful in this

case. Finally, with n = 2000, it became useless because 250 (5.1%) statistically signi�cant p-values were not

substantively signi�cant effect sizes.

Conclusion and Discussion

There are assumptions underlying the statistical test of a population correlation as speci�ed with the null

hypothesis: bivariate normality, linearity, and the absence of outliers. If these assumptions are satis�ed, the

sampling distribution of p-values is uniform under a true null hypothesis[16]. Therefore, any p-value in the

open interval from 0.0 to 1.0 materializes by chance regardless of sample size under a true null hypothesis.

This reveals an underappreciated fact about power calculations. When the null hypothesis is true, increasing

the sample size does not increase power (produce more statistically signi�cant p-values). Increasing sample

size increases power only when the null hypothesis is false.

Greenland et al.[3]  stated: “Every method of statistical inference depends on a complex web of assumptions

about how data were collected and analyzed, and how the analysis results were selected for presentation” (p.

338) Wasserstein and Lazar[4]  warned against a naïve and single-minded obsession with a statistically

signi�cant p-value: “Researchers should bring many contextual factors into play to derive scienti�c

inferences, including the design of a study, the quality of the measurements, the external evidence for the

phenomenon under study, and the validity of assumptions that underlie the data analysis” (p. 9). Indeed,

ignoring such considerations distorts or skews the shape of the p-value sampling distribution under a true

null hypothesis, thereby invalidating α that was declared a priori. Incidentally, α does not have to be 5% (2-

sigma), for example, a 5-sigma is used in theoretical physics and engineering.
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Student[8] and Fisher[9] developed a small-sample statistical theory that relies on statistical signi�cance for

decision-making. In his later writings, Fisher[17]  viewed statistical signi�cance as a guide or milestone and

not the end of the research project: “Decisions are �nal while the state of opinion derived from a test of

signi�cance is provisional and capable, not only of con�rmation but of revision” (p. 103). Nonetheless,

statistical signi�cance has been criticized for contributing to the replication crisis[18]. Ironically, the solution

is not a ban on statistical signi�cance, but replication of statistical signi�cance with fresh, new data[19]. With

small sample sizes, large effect sizes can occur by chance under a true null hypothesis of ρ = 0, thus

warranting replication even if statistically signi�cant. With large sample sizes, a substantively signi�cant

correlation is unusual under a true null hypothesis with ρ = 0; therefore, the study also merits replication

regardless of statistical signi�cance. For a similar conclusion involving differences in means or Cohen’s effect

size d under a true null hypothesis, see Komaroff[20].
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