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Although the proper oscillation frequencies of black holes (quasinormal modes) and the grey-body
factors, which determine the scattering properties of black holes, represent two distinct spectral
problems with different boundary conditions, a recent study has revealed an intrinsic connection
between these quantities. We have shown that the correspondence between grey-body factors and
quasinormal modes, previously established for spherically symmetric and asymptotically flat black
holes, also extends to general parametrized axially symmetric black holes. This correspondence is

limited to non-superradiant waves.
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I. Introduction

In black-hole physics, grey-body factors are essential for understanding the spectrum of radiation that
escapes from a black hole. These factors account for the deviation from perfect blackbody radiation due
to the scattering and absorption effects caused by the black hole’s gravitational potential. Unlike the
idealized blackbody scenario, grey-body factors provide a more realistic description of how various fields
— such as electromagnetic, or gravitational waves — are transmitted through the black hole’s potential

barrier.

Quasinormal modes are the characteristic oscillations of a black hole, defined by complex frequencies

that satisfy specific boundary conditions: purely outgoing waves at infinity and purely ingoing waves at
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the event horizon. Grey-body factors are the transmission coefficients that describe the fraction of
radiation emitted by a black hole that can escape to infinity. They are calculated by solving the wave
equation with boundary conditions of purely ingoing waves at the event horizon and a combination of
incoming and outgoing waves at infinity. Despite different boundary conditions and roles of these two
characteristics, there are links between them, as has been recently discussed inL2IBIAIBI6NT] 1
particular, for spherically symmetric amd asymptotically flat black holes a correspondence has been
established connecting the fundamental quasinormal mode and grey-body factors in the eikonal limit2l.
This correspondence is valid as along as the WKB approach describes the eikonal regime adequately, in a

similar way with the correspondence between between null geodesics and eikonal quasinormal modes!8l

[PI71[01[11]

Here, we aim to take the next step and explore whether the correspondence can be extended to the axially
symmetric case. While in the spherically symmetric scenario, the correspondence can be derived under
relatively general assumptions without specifying the black-hole metric, the axially symmetric case is
more complex. This complexity arises because the separation of variables is necessary to verify the
correspondence. Consequently, we begin with the general Konoplya-Rezzolla-Zhidenko (KRZ)
parameterization for axially symmetric black holesH2UBIM4] anq limit our analysis to spacetimes that

allow for the separation of variables, as described inl2l

We will show that the expression for gqrey-body factors in terms of quasinormal modes which was

derived for spherically symmetric black holes inl2l is valid also for axially symmetric black holes without

modification.

The paper is organized as follows. In Sec. II, we review the axially symmetric and asymptotically flat
black hole spacetime that allows for the separation of variables in the Klein-Gordon equation and the
resultant wave-like equation. Sec. III is dedicated to the accurate numerical methods for calculating the
quantities on both sides of the correspondence: grey-body factors and quasinormal modes. In Sec. IV, we
compute these quantities and compare them to demonstrate that the relationship derived earlier for the
spherically symmetric case also holds for axial symmetry. Finally, in the Conclusion, we summarize the

results obtained and discuss some open questions.

geios.com doi.org/10.32388/QoDX82


https://www.qeios.com/
https://doi.org/10.32388/Q0DX82

II. Parametrized black hole metric and wave equation

The KRZ parametrizationl2l offers a general framework for describing axially symmetric and
asymptotically flat black holes. The KRZ parametrization provides a model-independent and systematic
method for studying deviations from the Kerr metric, which is particularly valuable for testing theories
of gravity beyond general relativity using observational data, such as those from gravitational wave
detectors or X-ray observations of black hole accretion disks. Similar in spirit to the post-Newtonian
parametrized formalism, the KRZ approach is distinct in its validity across the entire space outside the

black hole.

This approach is based on a double expansion: one in the radial direction, represented as a continued
fraction in terms of a compact coordinate, and another around the equatorial plane as a series of cos®.
The continued fraction expansion offers superior convergence, and as demonstrated in previous studies,
only a few coefficients are typically needed to accurately describe the black hole. Given the extensive

application and discussion of this method in numerous works161171181[191[201[21][22][23][24][25][261[27][28
29M151[301131] e will summarize only its main points here.
General axially symmetric black hole metric depends on the five metric functions. The line element can

be written in the following general way[l:

N2%(r,0) — W2(r,0)sin? @
K3(r,0)
— 2W(r,0)rsin® Odtds (1)

d82:_ 2

B%(r,0)
+ K2(r,0)r? sin? 0d¢* + 2(r,0) | ———=dr® + r2d6? | .
(r,0)r" sin” Od¢ (r,0) N (r.6) 4

We will further restrict our analysis to metrics where the variables in the general covariant Klein-Gordon

equation can be separated, as outlined in2l. In this case, there are three independent metric functions,

Ry (r), Rp(r), Rx(r), which are related to the previously mentioned metric functions as follows:

NQ(rv 0) = RN(T)aB(Ta 0) = RB(T)7

S(r,0) = Ry(r) + @
W) = o (Relr) 4 5~ Ba(r). @)
rX(r,0) r2
2 1 @\’ a?sin’f
K (7",0) = Z(r,@) <<R§](T) + 7“_2> - —1"2 RN(T)> .
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Here a is the rotation parameter. The massless scalar field obeys the following general covariant Klein-

Gordon equation

1 — B
Déwn&¢)zvﬁ§m( —%”@@mna¢0_n. (3)

In the background given by the metric (2) after using the following ansatz
®(t,r,0,¢) = e MU (r)S(cos ), (4)

the Klein-Gordon equation is reduced to the following master equation for the radial function ¥(r),

Ry(r) iTZRN(T) d N (r*wRs(r) + a*w — am)?
Rp(r) dr Rp(r) dr 2
—Ry(r)A(w)) ¥(r) = 0. (5)

Using the new variable y = cos 6, the eigenvalues A(w) can be found by solving eigenvalue problem for

the spheroidal wave equation,

d d m2y?
(d—y(l — yz)d—y +w2a2y2 — Y
—(m — wa)? + /\(w)) S(y) =0, (6)

The above equation can be solved numerically and the eigenvalues can be found using the standard

Wolfram Mathematica® built-in function
A(w) = SpheroidalEigenvalue(¢, m,iwa) — 2mwa
for a given integer £ = |m/|,|m| + 1, |m| + 2....

Following@@, we define the event horizon radius ry as the largest solution to the equation

RN(’I“) = 0,
and introduce the compact coordinate
r=1-— Q.
T

Then the metric functions are defined via the infinite continued fractions,

Ry =1 (7)

bgl(l — CU)2
Rp=bp(l—=z)+ W
1 + by

1
+1+.4.
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Ry=z(1-(1—-2)e (9)

2 a011—m2
(- ) — e+ oy 2L
G 1+

apaT
ag3T
1+...

Here the coefficient ¢ relates the event horizon radius 7y and the asymptotic mass M,

1+

2M —
= —— "0, (10)

To
The coefficients agy and by depend on the post-Newtonian parameters and, according to the current

constrains in the weak field regime, must be small, so that in the present paper we assume that
ago = b = 0.

The coefficients ag; , ag2, aos, - - - and by, bgz2, bos, - - - are responsible for the near-horizon deviations of the
geometry from the Kerr limit. Since for the Kerr black hole €y = a? /2, we introduce also the additional
deformation parameter §,;,

a2
0= L+ by, (1)
To

which corresponds to the deviation of the black-hole mass from its Kerr value.
III. Numerical methods

A. Accurate calculation of the quasinormal modes

Quasinormal modes are the solutions to the eigenvalue problem for w defined by Eq. (5). These solutions
represent waves that are purely ingoing at the event horizon and purely outgoing at infinity. To accurately
determine the quasinormal modes, we employ the Leaver method22l which relies on a convergent

process utilizing the Frobenius series expansion. We introduce the new function

L y(r), (12)

] —i(w—m)/2k
U(r)=€e“"(r—mr)* < )

rT—"r
where r; denotes the inner horizon r; < ry, and

ma

Q,, = .
rg+a2

The constant « is defined in such a way that y(r) is regular at » = oo once ¥(r) corresponds to the purely
outgoing wave at spatial infinity, while x > 0 is chosen in order to have the regular y(r) at r = ry once

¥ (r) corresponds to the purely ingoing wave at the horizon.
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We expand the regular function y(r) using the following Frobenius series:

) = (=2 ) (13)

= r—1r
and find that the coefficients a;, satisfy the n-term recurrence relation, which can be reduced to the
three-term recurrence relation via Gaussian elimination (see, for example, 33 for details). Then, using the
coefficients in the recurrence relation, we find an infinite continued fraction equation with respect to w,
which is satisfied when the series (13) converges at r = oo, or, in other words, if ¥(r) satisfies the
quasinormal boundary conditions. In order to obtain the final equation we employ a sequence of positive

real midpoints as described in24l and use the Nollert improvement[3—51, which was generalized inf3¢l for

the recurrence relation of arbitrary number of terms.

B. Grey-body factors

For the scattering problem we consider the following boundary conditions

U= Az\Ijz(r) + AO\IIO(T)’ T — 00,

14
T = A4,0(r), T = 70, (14)

where ¥;(r) corresponds to the incident wave, ¥,(r) is the transmitted wave falling to the black hole,

and ¥, (r) is the reflected outgoing wave at infinity.

The grey-body factor is defined as

(15)

In order to calculate the grey-body factors precisely, for given value of real w, we numerically integrate
Eq. (5) using the Runge-Kutta method from the point r; > 7, where we impose the initial conditions

obtained from the series expansion of the ingoing wave at the horizon

(r) = (r—ro) @ Mm)/2%(1 + C1(r — 7o) (16)
+ Co(r — 1) + C3(r —m0)* +...).

In the above equations we use the sufficient number of coefficients Cy,Cs,..., in order to obtain

sufficiently accurate initial conditions at r = r;.

Finally we fit the numerical solution for » > 7, by the superposition of the expansions for the ingoing

and outgoing waves,
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U(r > ry) =~ A" (1+—1 += +> (17)
rooor

+ Aje ey (1 + & + G +) ,
r r2

where again we compute the sufficient number of the coefficients Fy, F5,... and G1,Gs,... from the
asymptotic expansion of Eq. (5) in order to obtain the accurate values for the ingoing and outgoing

coefficients, A; and A,, which are used to calculate the grey-body factor (15).

With the above numerical methods allowing us to find quasinormal modes and grey-body factors

precisely, we are ready to study the correspondence between these quantities.

IV. Correspondence between the quasinormal modes and grey-body

factors

I'w)

08
06|

04

0.2

Figure 1. Accurate grey-body factors (black) and the approximations by the
eikonal formula (blue) and the second-order formula (red) for £ = m =1,
a=0.5r,a; = b, =0.Left: 3y = 0.25 (woro = 0.551768 — 0.0760793,
wirg = 0.497689 — 0.2602867), middle: §,; = 0 — Kerr black hole (

wore = 0.645236 — 0.133012i, wire = 0.625177 — 0.40302403), right:

8 = —0.25 (worg = 0.709286 — 0.1984844, w1rg = 0.661855 — 0.6119487).
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Figure 2. Upper panel: Accurate grey-body factors for the non-Kerr black hole
a= 0.87"0, JM = *0.25, a; = 02, a9 = 4, agz = 0, bl = 05, b2 =0for{=2and
(from left to right) m = —2 (blue), m = —1 (green), m = 0 (black), m = 1 (red),

m = 2 (magenta). Lower panel: negative factor due to superradiance for m = 2.
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Figure 3. Difference between the approximate and the accurate values of the
grey-body factors for the non-Kerr black hole a = 0.8rg, §; = —0.25,a; = 0.2,
as =4,a3 =0,b; =0.5,by =0 for £ = 2 and (from left to right) m = —2,

m = —1,m = 0,m = 1, m = 2: eikonal formula (upper panel), first-order
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formula (middle panel), second-order formula (lower panel). The values of the
fundamental mode and the first overtone, which are used in the approximate

formulas, were calculated with the help of the continued fraction method.

m color woTo wiToy

9 blue 0.497498 0.457102
— 0.125396: — 0.3883112
— 0.121536¢ — 0.371840:

0 black 0.684671 0.661595
—0.111143: — 0.334768%

1 red 0.861535 0.860206
— 0.094007: — 0.2811463
— 0.0909921 — 0.2754443

Recently, an analytic formula was derived in{2) that enables the calculation of grey-body factors, given

that the fundamental mode and the first overtone are known. If the effective potential belongs to a class

that can be addressed using the WKB approachB—ﬂ, this formula is exact in the eikonal regime, i.e., as

{ — oo and provides an approximation at smaller ¢. However, by including correction terms beyond the

eikonal order, the formula can achieve sufficient accuracy even at moderate values of £.

The formulas were derived for the spherically symmetric and asymptotically flat black holes via the WKB

expression for the grey-body factors,

where, within the eikonal approximation(2),

L w? — Re(wp)? 1
ik = Re(wo)m(wg) © (z) ‘

The first-order beyond eikonal correction is given by

w? — Re(wp)? Re(wp) — Re(w1)

ik = 4Re(wp)Im(wy) - 16Im(wp)
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A more accurate formula including the second-order correction beyond the eikonal limit is

iK =

w’ —Re(wp)* (Re(wp)—Re(wy)? 3Im(w0)*1m(w1)> _ Re(w)—Re(w1)
4Re(wp)Im(wp) 32Im(w0)2 24Im(wy) 16Im(wp)

(@A Re(up)?’ (1 N Re(wo)(Re(wo)Re(wl))) N (w? ~Re(wy)?)’ (1 | Belen) (Re(in) Rel@))

16Re(wp) Im(wp) 4Im(wy)? 32Re(wp ) *Im(wy) 4Im(wy)?
2 ( (Re(wp)—Re(w))>  3Im(wg)—Im(w;) 1
+Re(wy) ( prym— T2tmln] )) +0 ( 5 ) . (21)

Here wy and w; are, respectively, the dominant mode and the first overtone.

Since the above formulas depend solely on the quasinormal modes and not explicitly on the multipole
number ¢, one might conjecture that this approximate relationship between quasinormal modes and
grey-body factors is valid for arbitrary, or at least a broad class of, black hole spacetimes. This holds if the

WKB approach is valid, i.e. if the turning points are sufficiently close.

From Fig. 1, we observe that the eikonal formula provides a good approximation for the grey-body factors
for both Kerr and non-Kerr black holes. The second-order correction further improves accuracy, reducing

the difference between the approximate formula and the exact grey-body factor values to less than 0.015.

It is important to note that the derived formula does not account for superradiance, as it inherently yields
only positive values for the grey-body factors. Consequently, this correspondence cannot be used to

analyze superradiance.

In order to test the correspondence we compare the grey-body factors obtained via the approximate
formula (21), where the quasinormal modes are found precisely with the help of the Frobenius method
with the precise values of the grey-body factors found by numerically integrating the wave-like equation

(5). For illustrations we choose rotating Kerr and non-Kerr black holes (see Fig. 1).

We also consider the grey-body factors for various values of the multipole number for the rapidly rotating
non-Kerr black hole, whose geometry significantly differs from the Kerr one with the same rotation

parameter (see Fig. 2). From Fig. 3 we observe that:

1. The approximate formulas can be applied to the rapidly rotating black holes and provide a good
approximation.

2. The eikonal formula works generally better for positive m, when | Re(wq)| > |Im(wp)|.

3. The formula including beyond eikonal corrections provides improved accuracy, although the best
approximation is obtained for m = 0.

4. For £ = m = 2 the convergence is the slowest, partially due to the significant contribution from the

superradiance, which cannot be reproduced by the correspondence.
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In the eikonal regime, where { — oo, the relation (19) becomes exact for the considered class of axially
symmetric black holes. This can be observed by choosing a large £ > 1 and comparing the grey-body

factor obtained via (19) with the precise values.

V. Conclusions

The relation between grey-body factors and quasinormal modes was recently derived for spherically
symmetric and asymptotically flat black holes2l Considering recent observations that, unlike
quasinormal modes, grey-body factors are significantly more stable to small deformations of the
spacetime geometry —- such as those caused by astrophysical environments—grey-body factors[2l

El} may become a useful characteristic not only in studying Hawking radiation but also in classical

radiation phenomena.

However, whether this relation between grey-body factors and quasinormal modes can be applied to
realistic black hole configurations depends on whether it can be extended to the case of rotating, and
even rapidly rotating, black holes. This extension is constrained by the separability of variables in the
perturbation equations. For illustration, we consider the case where variables can be separated in the
Klein-Gordon equation. Our systematic approach to the black hole spacetimes under consideration is
guided by the general KRZ parametrization for axially symmetric and asymptotically flat black holes in
arbitrary metric theories of gravity@. Several examples used for illustration demonstrate that the
relation connecting grey-body factors and quasinormal modes, both in the eikonal regime and beyond,

also holds for rotating black holes.

Nevertheless, this relation does not account for the effect of superradiance, as corrections beyond the
eikonal regime —- though providing a better approximation than the eikonal formula —- do not
guarantee quick convergence to the precise result. This limitation is related to the WKB origin of the
correspondence: the WKB series converges only asymptotically and does not guarantee convergence at
every subsequent order. This raises the main open question regarding the observed link between grey-
body factors and quasinormal modes: Is there a more general correspondence, beyond and independent
of the WKB arguments we used? Regardless of the answer, the discovered relation can serve as a reliable

approximation in many cases.
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