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1 Abstract

We consider the interaction between a classical time-varying electric field and
the atomic electrical dipole moment operator of a finite state atom and calculate
approximately the mixed state evolution of the atom with such an interaction
Hamiltonian up to quadratic orders in the external classical electric field using
Schrodinger’s equation for mixed state evolution. From this approximate ex-
pression for the state evolution, we evaluate the average atomic electric dipole
moment as a linear-quadratic function of the electric field. Later on, we also take
into account Brownian motion bath noise that couples to the atomic dynamics,
so that the Schrodinger equation dynamics gets modified to the Lindblad dy-
namics of an open quantum system, i.e., the master equation. From the average
atomic dipole moment, we obtain an expression for the average polarization
field of atoms constituting the medium through which the classical electromag-
netic wave propagates. This average polarization is a linear-quadratic causal
functional of the electric field. The resulting Maxwell equations for wave prop-
agation, taking into account this polarization current density, thus acquire a
quadratic nonlinearity which can be used to explain higher harmonic frequen-
cies at the output of an optical fiber when the input is excited by the electric
field coming from a monochromatic laser. We are then also able to calculate
the mean square fluctuations in the polarization field using the evolving atomic
state, and hence the electric field propagating through the medium of atoms
acquires quantum fluctuations which can be used to explain time-varying ran-
dom shifts in the spectral lines. As mentioned above, we include in this article
an extension of this problem to the case when there is white Gaussian noise
corrupting the state evolution dynamics of the atom and also the case when
there is a pairwise interaction between the spin dipoles of atoms at two different
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locations. In the former case, we derive an approximate formula for the polar-
ization field as well as its temporal statistical correlations, and we show how this
computation can be extended to the latter case too. When there is a pairwise
interaction between the atomic spins, we use a version of the approximate quan-
tum Boltzmann equation to calculate the first and second order marginals of the
atomic states, which is then used to compute the average polarization as well as
its spatio-temporal correlations. Temporal correlations using second marginals
of the atomic states cannot be computed using classical probabilistic methods
owing to Heisenberg uncertainty, so we propose a sequential measurement-based
strategy involving computation of the joint probabilities of the atomic spin com-
ponents at two different times by first measuring one component of the spin,
allowing for state collapse, and then following it up with nonlinear time evolution
from the collapsed two-particle state using the quantum Boltzmann equation,
followed further by measurement of another component of the spin at the second
time.

Keywords: spin 1/2 atoms, spin dipole interaction, classical and quantum
fluctuations in polarization, quantum Boltzmann equation, polarization current
in Maxwell equations, nonlinear wave propagation for the electric field, spin j
particles interacting with electric field, Brownian motion, stochastic differential
equation, Ito correction term, unitary evolution.

2 Problem formulation and approximate solu-
tion

2.1 The case of spin 1/2 atoms

At each point r ∈ R3, there is a two-state atom with upspin state |+ > and
downspin state |− >. These are respectively eigenvectors of σz with eigenvalue
±1. The electric dipole moment vector operator of the atom is given by µ.σ =
µ(σx, σy, σz). Let us fix a point r and let at time t, ρA(t) = ρA(t|r) denote the
mixed state of the atom at time t. Then, its average electric dipole moment at
time t is given by

p(t) = p(t, r) = µ.Tr(σ.ρA(t))] ∈ R3

The atom state evolves according to its interaction Hamiltonian with the electric
field given by

H(t) = −µ(σ,E(t, r))

Thus ρA(t) satisfies

ρ′A(t) = −i[H(t), ρA(t)] = iµ[(σ,E(t, r)), ρA(t)]

Upto quadratic orders in the electric field, the solution is

ρA(t) = ρA(0)− i

∫ t

0

[H(s), ρA(0)]ds−
∫
0<s2<s1<t

[H(s1), [H(s2), ρA(0)]]ds1ds2

2



We also that upto quadratic orders in the electric field,

ρ′A(t) = −i[H(t), ρA(0)]−
∫ t

0

[H(t), [H(s), ρA(0)]]ds

= iµ[(σ,E(t, r)), ρA(0)]− µ2

∫ t

0

[(σ,E(t, r)), [(σ,E(s, r)), ρA(0)]]ds

and hence upto quadratic orders in the electric field, the average rate of increase
of the dipole moment of the atom is given by

∂tp(t, r) = µ.Tr(σ.ρ′A(t)) =

(Tr(σxρ
′
A(t)), T r(σyρ

′
A(t)), T r(σzρ

′
A(t)))

If N(r) denotes the number density of atoms in space, then the polarization
field is given by

P (t, r) = N(r)p(t, r)

and its rate of change, i.e., the polarization current density, is given by

∂tP (t, r) = N(r).∂tp(t, r)

To evaluate this, we require

Tr(σ.[(σ,E(t, r)), ρA(0)]), T r(σ.[(σ,E(t, r)), [(σ,E(s, r)), ρA(0)]])

or equivalently, in terms of components,

Tr(σk.[(σ,E(t, r)), ρA(0)]), T r(σk.[(σ,E(t, r)), [(σ,E(s, r)), ρA(0)]])

k = 1, 2, 3, where
σ1 = σx, σ2 = σy, σ3 = σz

Now,
Tr(σk[(σ,E(t, r)), ρA(0)]) =

3∑
m=1

Em(t, r)Tr(ρA(0)[σk, σm])

= 2i.

3∑
m,s=1

ϵ(kms)Em(t, r)Tr(ρA(0)σs)

where
ϵ(123) = ϵ(231) = ϵ(312) = 1,

ϵ(213) = ϵ(132) = ϵ(321) = −1

and ϵ(kms) = 0 if any two of the three indices k,m, s are equal
Remark: Note the following identities for the Pauli spin matrices:

σkσm = i.
∑
s

ϵ(kms)σs + δ(k,m)I2
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and hence,

[σk, σm] = 2i.
∑
s

ϵ(kms)σs

with summation over the repeated index s = 1, 2, 3 being implied. Thus,

[[σk, σm], σj ] = −4ϵ(kmr)ϵ(rjs)σs

Further, note also

σkσmσs = (iϵ(kmr)σr + δ(k,m)I)σs

= iϵ(kmr)(iϵ(rsj)σj + δ(r, s)I) + δ(k,m)σs

= −ϵ(kmr)ϵ(rsj) + δ(km)σs + iϵ(kmr)δ(rs).I

We now turn to evaluate the quadratic term:

Tr(σk.[(σ,E(t, r)), [(σ,E(s, r)), ρA(0)]])

=

3∑
j,m=1

[Em(t, r)Ej(s, r)Tr(σk(σmσjρA(0) + ρA(0)σjσm − σmρA(0)σj

−σjρA(0)σm))]

=
∑
j,m

Em(t, r)Ej(s, r)Tr[[σk, σm], σj ]ρA(0)]

= −4
∑
jmrs

Em(t, r)Ej(s, r)ϵ(kmr)ϵ(rjs)Tr(ρA(0)σs)

where we have used
[σk, σm] = 2iϵ(kms)σs

with summation over the repeated index s being implied.

In short, we see that the polarization current density up to quadratic orders
in the electric field is given by a formula of the form

JPa(t, r) = ∂tPa(t, r) = N(r)
∑
m

χ(1km)Em(t, r)+
∑

χ(2kmj)Em(t, r)

∫ t

0

Ej(τ, r)dτ

where
χ(1km) = −2µ2.

∑
s

ϵ(kmr).T r(ρA(0)σs)

χ(2kmj) = 4µ3
∑
rs

ϵ(mjr)ϵ(rjs)Tr(ρA(0)σs)

More generally, we can expand ρ′A(t) as an infinite series:

ρ′A(t) = −iad(H(t))(ρA(0))+
∑
n≥1

(−i)n+1

∫
0<tn<...<t1<t

ad(H(t)).ad(H(t1)...ad(H(tn))(ρA(0))dt1...dtn
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= iµ.ad(σ,E(t, r))(ρA(0))

+
∑
n≥1

(iµ)n+1

∫
0<tn<...<t1<t

ad(((σ,E(t, r)))ad((σ,E(t1, r)))...ad((σ,E(tn, r)))(ρA(0))dt1...dtn

= iµ.Em0
(t, r)ad(σm0

)(ρA(0))

+
∑
n≥1

(iµ)n+1ad(σm0
).ad(σm1

)...ad(σmn
)(ρA(0))

∫
0<tn<...<t1<t

Em0
(t, r)Em1

(t1, r)...Emn
(tn, r)dt1...dtn

summation over the repeated indices m0,m1, ...,mn being implied. Note that
all these indices range over 1, 2, 3.

2.2 spin j atoms interacting with the electric field taking
bath noise into account

More generally, we can regard each atom as being described by a 3-vector valued
spin-j operator, i.e., the atomic observables are J = (Jx, Jy, Jz) where Jx, Jy, Jz
are three 2j + 1 × 2j + 1 matrices satisfying the standard angular momentum
commutation relations

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy

The atomic dipole moment is then given by µ.J where µ is a constant, and if
E(t, r) is the electric field at position r at time t, where r is the location of
the atom, then the interaction Hamiltonian between the electric dipole and this
electric field is given by

H0(t) = −µ(E, J) = −µ(JxEx + JyEy + JzEz)

The state of the atom at time t is then ρA(t) = ρA(t|r) and this satisfies the
Schrödinger-Von-Neumann-Liouville equation

dρA(t) = −i[H0(t), ρA(t)]dt

This is the mixed state version of the pure state Schrödinger equation

d|ψ(t) >= −iH0(t)|ψ(t) > dt

However, now we also assume the presence of noise in the dynamics described
by a white Gaussian noise potential of the form

V (t) = V0(t)dB(t)/dt

where B(.) is standard Brownian motion, i.e., a zero-mean Gaussian process
with continuous sample paths and independent increments having variance

E(B(t)−B(s))2 = t− s, t ≥ s
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In order to guarantee unitary evolution of the atomic wave function, we must
introduce an Itö correction term into the Schrödinger dynamics and describe it
by an Itö stochastic differential equation:

d|ψ(t) >= (−(iH0(t) + V0(t)
2/2)dt− iV0(t)dB(t))|ψ(t) >

Remark: It is a trivial exercise in the application of Itö’s formula in the form
(dB(t))2 = dt that

d < ψ(t)|ψ(t) >=< dψ(t)|ψ(t) > + < ψ(t)|dψ(t) > + < dψ(t)|dψ(t) >= 0

guarantees unitary evolution. For mixed states, the corresponding evolution is
now described by

dρA(t) = [−i[H0(t), ρA(t)]− P (t)ρA(t)− ρA(t)P (t) + V0(t)ρA(t)V0(t)]dt

−i(V0(t)ρA(t)− ρA(t)V0(t))dB(t)

where
P (t) = V0(t)

2/2

The aim is to solve this stochastic differential equation approximately up to,
say, quadratic orders in the electric field and quadratic orders in the Brownian
noise process, and hence calculate its expected value and use this expected value
to calculate the expected value of the atomic dipole moment of the atom, and
hence the polarization field, and hence the polarization current density, which
will be used in the Maxwell equations to obtain no.

Using the standard notation of Lie algebra theory,

LXY = XY,RXY = Y X, ad(X)(Y ) = [X,Y ] = XY − Y X = (LX −RX)(Y )

for two operators X,Y in a vector space, we can express the above SDE as

dρA(t) = θ0(t)(ρA(t))dt+ θ1(t)(ρA(t))dB(t)

where
θ0(t) = −i.ad(H0(t))− LP (t) −RP (t) + LV0(t)RV0(t)

and
θ1(t) = −i.ad(V0(t))

We could solve this equation up to quadratic orders in the electric field and
quadratic orders in V0(t)

2, i.e., in the noise coefficients. In other words, we
are assuming that the electric field and noise variance terms are of the same
orders of smallness. This is because linear terms in the noise are proportional
to dB(t)/dt which has infinite variance, or equivalently, dB(t) = O(

√
dt) which

is much larger than the correspondingO(dt) term coming from the electric field.
This gives us the approximate equation

ρA(t) = ρA(0) +

∫ t

0

θ0(s)(ρA(0))ds+

∫ t

0

θ1(s)(ρA(0))dB(s)

6



+

∫
0<s2<s1<t

θ0(s1)(θ0(s2)(ρA(0)))ds1ds2

+

∫
0<s2<s1<t

θ1(s1)(θ1(s2)(ρA(0)))dB(s1)dB(s2)

+

∫
0<s2<s1<t

θ0(s1)(θ1(s2))ds1dB(s2)

+

∫
0,s2<s1<t

θ1(s1)θ0(s2))dB(s1)ds2

The classical expected value of the atomic state ρA(t) up to quadratic orders in
the electric field and quadratic orders in the noise variance is then

E(ρA(t)) = ρA(0) +

∫ t

0

θ0(s)(ρA(0))ds

+

∫
0<s2<s1<t

θ0(s1)(θ0(s2)(ρA(0)))ds1ds2

While the classical autocovariance of ρA(t) is given up to quadratic terms, the
noise variance is given by

CA(t1, t2) = E(ρA(t1)⊗ ρA(t2))− E(ρA(t1))⊗ E(ρA(t2))

=

∫ min(t1,t2)

0

θ1(s)(ρA(0))⊗ θ1(s)(ρA(0))ds

The average dipole moment of the atom is then given by

< p(t) >= µE[Tr(ρA(t)J)] = µ.Tr(E(ρA(t))J) = µ.Tr(MA(t)J)

where
MA(t) = E(ρA(t))

and the autocovariance function of the dipole moment is given by

Cp(t1, t2) =< p(t1)⊗ p(t2) > − < p(t1) > ⊗ < p(t2) >

= E(Tr(ρA(t1)µJ).T r(ρA(t2)µJ))

−E(Tr(ρA(t1)µJ).ETr(ρA(t2)µJ)

= µ2[E(Tr((ρA(t1)⊗ ρA(t2))(J ⊗ J))]− µ2Tr((E(ρA(t1))⊗ E(ρA(t2))(J ⊗ J))

= µ2Tr(CA(t1, t2)(J ⊗ J))

Note that ρA(t),MA(t), CA(t1, t2), < p(t) >,Cp(t1, t2) are all functions of r,
the spatial location of the atom, because the electric field with which the atom
interacts is a function of the spatial location, i.e., ideally we should write ρA(t, r)
for ρA(t) etc. These formulae could readily be generalized to calculate the
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classical statistical correlations between the atomic state at two different space-
time points and the statistical correlations between the atomic dipole moments
at two different space-time points.

When we multiply the quantum-averaged dipole moment µ.Tr(ρA(t)J) by
the number density N(r) of atoms in space, we obtain the random polarization
field P (t, r) and, using the above formulas, we can calculate the mean and
covariance of this polarization field at a given spatial location at any two times
t1, t2 as

EP (t, r) = N(r)µ.Tr(MA(t)J)) = N(r) < p(t) >,

Cov(P (t1, r), P (t2, r)) = E(P (t1, r)⊗ P (t2, r))− E(P (t1, r))⊗ E(P (t2, r))

= µ2N(r)2.T r(CA(t1, t2)(J ⊗ J)) = N(r)2Cp(t1, t2)

We also require to calculate the covariance between the polarization field at two
different points in space and, more generally, at two different space-time points,
i.e., we require

CP (t1, r1, t2, r2) = Cov(P (t1, r1), P (t2, r2)) =

E(P (t1, r1)⊗ P (t2, r2))− EP (t1, r1)⊗ EP (t2, r2)

For this, we assume that the number density of atoms N(r) is a random variable
with meanN0(r) and covariance CN (r1, r2). We also assume the incident electric
field E(t, r) to have a mean value of E0(t, r) and a space-time covariance of
CE(t1, r1, t2, r2). Then, we can use this data to evaluate CP . In this expression,

E(P (t1, r1)⊗ P (t2, r2)) = N(r1)N(r2)E(Tr(ρA(t1, r1)J).⊗ (Tr(ρA(t2, r2)J))

= N(r1)N(r2)E(Tr(ρA(t1, r1)⊗ ρA(t2, r2))(J ⊗ J))

= EP (t1, r1)⊗ EP (t2, r2)

+N(r1)N(r2)Tr(CA(t1, r1, t2, r2)(J ⊗ J))

where
CA(t1, r1, t2, r2) = Cov(ρA(t1, r1), ρA(t2, r2))

= E(ρA(t1, r1)⊗ ρA(t2, r2))− E(ρA(t1, r1))⊗ E(ρA(t2, r2))

With the expectations being carried out w.r.t. the probability distribution of
the bath Brownian motion noise. We could also assume the electric field to be a
random field and further average the above space-time moments of the density
operator w.r.t. the probability distribution of the electric field. However, these
models implicitly assume that the joint state of an atom at (t1, r1) and another at
(t2, r2) is given by ρA(t1, r1)⊗ρA(t2, r2). A still more general model will involve
assuming that the atoms at two different spatial points interact according to an
interaction potential c.J1.J2, where J1, J2 are the spins of the atoms at these two
spatial locations, and then use something like the quantum Boltzmann equation
to obtain the single atom state by a quantum averaging over the other atoms.
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However, that would make things too complicated, and we refer the interested
reader to the next section and the literature.

Evaluating these terms explicitly gives

MA(t) = ρA(0) +

∫ t

0

Eθ0(s)(ρA(0))ds

+

∫
0<s2<s1<t

E(θ0(s1)(θ0(s2)(ρA(0))))ds1ds2

where
Eθ0(t) = iµ.ad((E0(t, r), J))− LV 2

0
−RV 2

0
+ LV0RV0

and
E[θ0(t1)oθ0(t2)] = E[θ0(t1)]⊗ E[θ0(t2)]

−µ2ad((CE(t1, r, t2, r), J ⊗ J))

Note the notation used:

E0(t, r) = E(E(t, r)), CE(t1, r1, t2, r2) = Cov(E(t1, r1), E(t2, r2)) = E(E(t1, r1)⊗E(t2, r2))−E0(t1, r1)⊗E0(t2, r2)

These equations can be used in the Maxwell equations to get the change in
the electric field caused by interaction with matter:

curl(δE(t, r)) = −µ0∂tδH(t, r), curlδH = ∂tP (t, r) + ϵ0.∂tδE(t, r)

ϵ0.divδE(t, r) + divP (t, r) = 0, divδH(t, r) = 0

By manipulating these equations after taking curl of the first, we easily derive
the wave propagation equation for the change in the electric field caused by
its interaction with matter (Note that we are neglecting the magnetic dipole
moment of matter, i.e., the magnetization):

(∇2 − µ0ϵ0∂
2
t )δE(t, r) = µ0∂

2
t P (t, r)− ϵ−1

0 ∇(divP (t, r))

where P (t, r) is the random classical polarization field discussed above and given
by quantum averaging of the dipole moment per unit volume:

P (t, r) = µ.Tr(ρA(t)J)

where ρA(t) = ρA(t, r) is the state of an atom located at r.
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3 A remark on how the atomic dynamics in an
electric field can get coupled to the noisy bath

Atom in an electric field coupled to a noisy Brownian bath. How does the noise
coupling arise? The atomic dipole moment operator is µ.J where J is a vector of
three angular momentum matrices of size 2j+1×2j+1 satisfying the canonical
angular momentum commutation relations. The electric field operator gener-
ated by this electric dipole is Ed(R) = −∇R(KµJ.(R − r)/|R − r|3) where r is
the location of the atom. The bath consists of charged particles whose veloci-
ties execute Brownian motion (because the random force on them is described
by white noise process and hence their accelerations are also white noise pro-
cesses), and hence the dipole moment of any one bath particle is proportional to∫ t

0
B(s)ds where B(t) is Brownian motion. Thus the total polarization field pro-

duced by the bath particles (i.e., dipole moment per unit volume) has the form

Pb(t, R) =
∑

k fk(R)
∫ t

0
Bk(s)ds and hence the corresponding bath polarization

current density is ∂tPb(t, R) =
∑

k fk(R)Bk(t) with the B′
ks being standard

independent Brownian motion processes. The magnetic vector potential field
generated by this bath polarization current is given by (in the non-relativistic
approximation)

Ab(t, R) =

∫
bath

∂tP (t, r)d
3r/|R−r| =

∑
k

(

∫
bath

fk(r)d
3r/|R−r|)Bk(t) =

∑
k

gk(R)Bk(t)

The corresponding bath electric field is given by

Eb(t, R) = −∂tAb(t, R) = −
∑
k

gk(R)B
′
k(t)

where B′
k(t) = dBk(t)/dt. Thus, the interaction energy between the bath and

the atomic dipole is proportional to the cross term in
∫
|Ed(R) +Eb(t, R)|2d3R

and this cross term is 2
∫
(Ed(R), Eb(t, R))d

3R. It is clear that this interaction
energy between the dipole and the bath the dipole can be expressed as a bilinear
combination of J and the B′

k(t)
′s, ie, this energy has the form

HI(t) =
∑
k

(J, hk(r))B
′
k(t) =

∑
k

Vk(r)dBk(t)/dt

where the h′ks are real 3-vector valued functions of the spatial location of the
atom. If we simplify to the case of just one bath particle, then this expression
for the interaction energy becomes

HI(t) = V0dB(t)/dt

and this results after taking into account the Ito correction term in the stochastic
Schrödinger equation

dU(t) = (−(iH0(t) + V 2
0 /2)dt− iV0dB(t))U(t)

for the unitary evolution operator U(t).
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4 A brief discussion of the quantum Boltzmann
equation for taking into account spin interac-
tions between atoms at two different spatial
points

Let ρA(t, r) denote the mixed state of an atom located at the position r and at
time t.

We use as an approximation to the joint state ρ12(t, r1, r2) of a pair of atoms
located at positions r1 and r2 respectively ρA(t, r1) ⊗ ρA(t, r2). The interac-
tion potential energy between these two atoms is given by the spin coupling
formula a.J1, J2 where a is a constant. Then by taking the partial trace of
the Schrödinger equation over all the remaining N =

∫
N(r)d3r atoms in the

medium, we obtain the following nonlinear Schrödinger equation for a single
atom at r:

∂tρA(t, r) = −i[H0(t), ρA(t, r)]− ia

∫
Tr2[J ⊗ J, ρA(t, r)⊗ ρA(t, r

′)]N(r′)d3r′

If we wish to be more accurate, then we assume that we would write without
any approximations (with ρA(t, r) = ρk(t, r), k = 1, 2, 3 in the sense that these
are all identical copies of the first density marginal but act in the different
component Hilbert spaces)

ρ12(t, r1, r2) = ρ1(t, r1)⊗ ρ2(t, r2) + g12(t, r1, r2)

where ρ2(t, r) = ρ1(t, r) by indistinguishability and g12 is of the first order of
smallness with ρ1, ρ2 being of zeroth order of smallness. Since ρ1(t, r1) and
ρ2(t, r2) are the marginals of ρ12(t, r1, r2), it follows that

Tr1g12(t, r1, r2) = Tr2g12(t, r1, r2) = 0

Likewise, the joint state ρ123(t, r1, r2, r3) would be expressed as

ρ123(t, r1, r2, r3) = ρ1(t, r1)⊗ ρ2(t, r2)⊗ ρ3(t, r3)

+g12(t, r1, r2)⊗ ρ3(t, r3) + ρ1(r1)⊗ g23(t, r2, r3)

+ρ2(t, r2)⊗ g13(t, r1, r3) + g123(t, r1, r2, r3)

where ρ1(t, r) = ρ2(t, r) = ρ3(t, r), by indistinguishability, and likewise, g12(t, r, r
′) =

g23(t, r, r
′) = g13(t, r, r

′), again by indistinguishability. Since ρ123 has first order
marginals ρ1 = ρ2 = ρ3 and second order marginals ρ12 = ρ23 = ρ13, and the
partial traces of g12 = g23 = g13 are zero, it follows that

Tr3g123(t, r1, r2, r3) = Tr2g123(t, r1, r2, r3) = Tr1g123(t, r1, r2, r3) = 0

It should be mentioned that g123 is of the second order of smallness. Then, we
have the following exact equations obtained by taking partial traces,

∂tρ1(t, r) = −i[H0(t, r), ρ1(t, r)]− i

∫
Tr2[V12(r, r

′), ρ12(t, r, r
′)]d3r′
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= −i[H0(t), ρ1(t, r)]−i
∫
Tr2[V12(r, r

′), ρ1(t, r)⊗ρ1(t, r′)+g12(t, r, r′)]N(r′)d3r′

where

∂ρ12(t, r, r
′) = −i[H0(t, r) +H0(t, r

′) + V12(r, r
′), ρ12(t, r, r

′)]

−i
∫
Tr3[V13(r, r

′′) + V23(r
′, r′′), ρ123(t, r, r

′, r′′)]N(r′′)d3r′′

where
V12(r, r

′) = a.(J1.J2) = a.J ⊗ J

(since J1 = J ⊗ I, J2 = I ⊗ J).
where H0(t, r) = −µ(E(r, r), J) is the interaction Hamiltonian with the ex-

ternal electric field, with explicit dependence of this interaction on the location
r of the atom displayed.

By neglecting g123, these equations result in two first-order, nonlinear matrix
differential equations for ρ1(t, r) and g12(t, r, r

′), and then we reconstruct the
second-order marginals:

ρ12(t, r, r
′) = ρ1(t, r)⊗ ρ1(t, r

′) + g12(t, r, r
′)

Assume that these equations have been solved. Then, we obtain the following
formula for the spatial correlations of the polarization field P (t, r) at the same
time:

< P (t, r) >= N(r)Tr(ρ1(t, r)J),

< P (t, r1)⊗ P (t, r2) >= N(r1)N(r2).T r(ρ12(t, r1, r2)(J ⊗ J))

= N(r1)N(r2).[Tr(ρ1(t, r1)J)⊗ Tr(ρ1(t, r2)J) + Tr(g12(t, r1, r2)(J ⊗ J))

where by J ⊗ J , we mean the 9-vector operator

(Jx ⊗ Jx, Jx ⊗ Jy, Jx ⊗ Jz, Jy ⊗ Jx, Jy ⊗ Jy, Jy ⊗ Jz

, Jz ⊗ Jx, Jz ⊗ Jy, Jz ⊗ Jz)

and by P (t, r1) ⊗ P (t, r2), we mean the standard tensor product between 3-
vectors. Note that if N(r) is a random field, then we have to further average
these expressions w.r.t. the probability distribution of N(.).

We wish to obtain more generally the space-time correlations of the polar-
ization field, i.e.,

Cov(P (t1, r1), P (t2, r2)) = E(P (t1, r1)⊗ P (t2, r2))− E(P (t1, r1))⊗ E(P (t2, r2))

That can be obtained by the following procedure: We start with the joint state
ρ12(t1, r1, r2) at time t1 of the atoms at r1 and r2. We measure the spin compo-

nent (J, n) =
∑3

a=1 Jana of the atom at r1 at time t1, where n = ((na)) is a unit
vector and J1 = Jx, J2 = Jy, J3 = Jz. Let En(a), a = −j,−j + 1, ..., j − 1, j be
the spectral projections of the operator (J, n) corresponding to the eigenvalues
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−j,−j+1, ..., j−1, j respectively. After making this measurement, let a denote
the outcome. The collapsed state is then

ρ̃12(t1, r1, r2|a, n) = (En(a)⊗I).ρ12(t1, r1, r2)(En(a)⊗I)/Tr(ρ12(t1, r1, r2)(En(a)⊗I))

= (En(a)⊗ I).ρ12(t1, r1, r2)(En(a)⊗ I)/Tr(ρ1(t1, r1)En(a))

Let Tt,s denote the nonlinear evolution operator of the quantum Boltzmann
equation, as explained above. Then, the joint state at time t2 > t1 after making
the above measurement is given by

Tt2,t1(ρ̃12(t1, r1, r2|a, n))

and hence the joint probability of obtaining the outcome a for the measurement
of (J, n) at time t1 on the atom at r1 followed by the outcome b for the mea-
surement of the spin component (J,m) (m = ((ma))) on the the atom at r2 at
time t2, taking into account state collapse after the first measurement, is given
by

Pr(a, t1, n; b, t2,m) = Tr(Tt2,t1(ρ̃12(t1, r1, r2|a))(I ⊗ Em(b)))

and this probability can be used to evaluate the correlation between the nth and
mth components of the polarization field at (t1, r1) and (t2, r2) as

< (n, P (t1, r1)).(m,P (t2, r2) >=< n⊗m,P (t1, r1)⊗ P (t2, r2) >=

j∑
a,b=−j

ab.Pr(a, t1, n; b, t2,m)

We can further average this correlation w.r.t. the probability distribution of the
random electric field to obtain the space-time correlations of the polarization
field.

5 Conclusions

In this paper, we have derived approximate equations for the polarization field
and its first two space-time statistical moments based on a quantum mechanical
model for a finite state atom described by its spin interacting with an external
electric field. We have explained how bath noise is to be taken into account
in these equations and have also considered nonlinear effects when the atomic
spins of two atoms at two different spatial locations interact with each other,
leading thus to a nonlinear quantum Boltzmann equation for the evolution of
the first two marginals of the quantum mixed state of a large collection of
atoms. This work has applications in nonlinear quantum optics because the
averaged atomic dipole moment, and hence the polarization field, as well as their
space-time correlations obtained by solving the Schrödinger/master equation
perturbatively for the atomic states and then calculating the averaged dipole
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moment of the atom in such a state, are nonlinear functionals of the electric field.
When Maxwell’s equations for the perturbation in the electric field caused by
such a polarization field coming from light interacting with matter are set up,
these equations are therefore highly nonlinear in the incident electric field and
thus lead to phenomena such as the generation of higher harmonic frequencies
in the scattered radiation pattern. In short, such higher harmonics can thus
be attributed to quantum mechanical effects. Using the quantum Boltzmann
equation for two-particle states, we are then able to calculate the correlation
in the polarization field at two different space-time points based on sequential
measurements of atomic spin components, taking into account state collapse,
thus overcoming the difficulty in defining temporal correlations owing to the
impossibility of simultaneous measurement of an observable at two different
times, or equivalently, the difficulty in defining the joint state of two atoms at
two different times, namely Heisenberg uncertainty. This paper also contains
an account of how one can compute the Lindblad noise bath coupling operator
to the atomic dynamics when the bath noise is produced by charged particles
executing Brownian motion.

Acknowledgements: The author would like to thank Prof. Monika Aggarwal,
CARE, IITD, for getting him involved in a project on quantum computation and
quantum communication funded by the Department of Science and Technology,
which motivated him to write this article. He would also like to thank the Vice
Chancellor of NSUT, Prof. Anand Srivastava, for getting him involved in a
project on quantum information and for encouraging him to give a course on
quantum information theory.

6 References

[1] K.R.Parthasarathy, ”An introduction to quantum stochastic calculus, Birkhauser,
1992.

[2] Mandel and Wolf, ”Optical coherence and quantum optics”, Cambridge
University Press.

[3] M.Hayashi, ”Quantum Information Theory”, Springer.
[4] Harish Parthasarathy, ”Stochastic processes in classical and quantum

field theory, Taylor and Francis.

14


