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We analyze two simple models derived from a quantum-mechanical particle on an elliptical path. The
first Hamiltonian operator is non-Hermitian but isomorphic to an Hermitian operator. It appears to
exhibit the same two-fold degeneracy as the particle on a circular path. More precisely,

E, =n?E;,n = 1,2,... (in addition to an exact eigenvalue E, = 0). The second Hamiltonian operator
is Hermitian and does not exhibit such degeneracy. In this case the nth excited energy level splits at

the nth order of perturbation theory.
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1. Introduction

Most textbooks on quantum mechanics and quantum chemistry[11 resort to exactly solvable models in
order to illustrate some of the features of quantum-mechanical systems. Among the simplest models one
finds the particle in a box, the harmonic oscillator and the planar rigid rotator. The latter model is one of
the few cases of one degree of freedom that exhibits degeneracy. It is mathematically similar to a single
particle moving along a circular path. An interesting deformation of this model is the case of a particle

moving along an elliptical path. The purpose of this paper is a simple analysis of the latter model.

In section 2 we derive the Hamiltonian operator for the first model and discuss the possible scalar
product for the states as well as other features. In section 3 we derive an analytical expression for the

spectrum from first-order perturbation theory. In section 4 we obtain accurate eigenvalues by means of

the Rayleigh-Ritz method (RRM)M that yields increasingly accurate upper bounds[2l3l, In section 5 we
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introduce an alternative model and carry out similar calculations. Finally, in section 6 we summarize the

main results of the paper and draw conclusions.

2. The model

We consider a particle of mass m that moves freely on an elliptical path. The Hamiltonian operator is
H=—-— v2a (1)

where V2 is the Laplacian in two dimensions. The particle is restricted to a closed path given by all

points (z, y) that satisfy

where a and b are positive real numbers (the ellipse semi-axes). If we write

T = acos @,y = bsin @, (3)
which satisfy equation (2), we obtain
v? — 1 d 1 d _ 12
Va2 + (02 —a?)cos? ¢ 99 \/a? + (b2 — a?)cos? § 4P )
2 1 d 1 d b’ — a?
VvV = - f = za ’

/1 + Ecos? ¢ Ao ,/1+§c052¢£’ a

where —1 < ¢ < oo. The point £ = —1 is expected to be a singularity because it leads to b = 0.

We can define a dimensionless Hamiltonian operator asil

ﬁ[:

and from now on we will focus on the dimensionless eigenvalue equation

Hpn (@) = Entpn(9), ¥n (9 + 2m) = Pn(9),

The Hamiltonian operator (6) is Hermitian with respect to the scalar product

2T
(ulo) = / u* ($)o(@) /3o, (7)

where _ /g is the Jacobian of the transformation. However, this scalar product exhibits two difficulties.

The first one is that the only variable parameter of the model ¢ appears in it. The second drawback is that
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it makes the calculation of matrix elements more complicated. For these reasons, in what follows we

choose

o) = | " (@)l )dd, ®)

which facilitates the numerical calculation based on Fourier basis sets (although it changes the nature of

the model). As a result, the Hamiltonian operator H is not Hermitian because

H' = - : (9)

S/

a
g do

Sl

4
d¢
However, it follows from

Vagro U4 _ o VAt ol/d g — o144 12 @ g 10
g'"Hg g g H=—g ! 3t (10)

that both H and H' are isomorphic to the Hermitian operator £ and, therefore, share the same real
spectrum. An immediate consequence of the latter property is the straightforward validity of the

Hellmann-Feynman theorem (HFT)2le

This expression is valid even for degenerate states as discussed elsewherelZ..

3. Perturbation theory

When ¢ = 0 the dimensionless Hamiltonian operator becomes H, = — % so that
1 .
Hopl = EV¢V BY = n? ¢V (¢) = —— €™ ,n =0,+1,42,.. .. (12)
V2
By means of perturbation theory we can obtain approximate solutions in terms of power series
By =Y BV = e, (13)
3=0 =0

Note that we have an exact solution given by E, = Eéo) = 0 and v (¢) = 1/;(()0) (¢) for all ¢ that we will

omit from now on.
The perturbation correction of first order can be derived by means the non-Hermitian operator

dH d? . d
= cos® ¢ﬁ — sin (¢)cos (¢) —. (14)

H = — =
A dg

Since
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(WO ) = (w01 ) = 0, (0| [0® ) = (w0 mr ) = -2, (15)
we conclude that
E,=n? (1 - %) + 0 (¢%). (16)

We obtain exactly the same result using H I as expected from the argument given in the preceding

section. Besides, the HFT at £ = 0

Bl  _ (17)

d¢ le—o 2’
predicts that all the eigenvalues have a negative slope at origin.
Since the eigenvalues are expected to be singular when £ = —1 it appears convenient to try the improved
perturbation approximation

O] g1 n’
VIFE

that yields the correct linear term and is singular at £ = —1.

4. Rayleigh-Ritz method

The RRMI! is a well known variational procedure that provides increasingly accurate upper bounds213]

In order to apply this approach we need a suitable basis set.

Since the dimensionless Hamiltonian operator H in equation (6) is invariant under the transformation
given by ¢ — —¢ it is more convenient to resort to basis sets of even (ip,,(¢)) and odd (¢,,($))
functions; for example:

;_, lcos (ng),n =1,2,.. } ,

Vam (19)
{oon(¢),n=1,2,...} = {%sin(nqﬁ),n =1,2,.. } .

{pen(9),n =0,1,...} = {

However, our old-fashioned computer-algebra software found it easier to calculate the desired matrix

elements by means of the non-orthogonal basis sets

{¥en(¢) = cos™ (¢),n = 0,1,...},{¢on(4) = sin(¢)cos" ¢,n = 0,1,...}. (20)
We followed a brute-force procedure consisting of obtaining the roots of the secular determinant

|H — WS| where the elements of the N x N matrices H and S are given byl
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For example, for N = 3 and even basis functions we have the non-symmetric matrix

Hij -

<<pi|H‘90j>asij =

0 0
0 %
0 0

(pile;),i,5=0,1,...,N — 1.

2m(2,/TFI-£-2)

&/
0

2 (/EF1-1)
&VET

Note that the matrix elements ehibit the singularity discussed above.

(21)

(22)

N n=1 n=2 n=3 n=4

5 0.6762816118 2.705333163 6.3947862 1143680246
6 0.6762824936 2705333163 6.08832183 11.43680246
7 0.6762824936 2705129814 6.08832183 10.82772904
8 0.6762823438 2.705129814 6.086544511 10.82772904
9 0.6762823438 2.705129367 6.086544511 10.82054064
10 0.6762823414 2705129367 6.086541072 10.82054064
1 0.6762823414 2705129365 6.086541072 10.82051747
12 0.6762823414 2705129365 6.086541072 10.82051747
13 0.6762823414 2705129365 6.086541072 10.82051746
14 0.6762823414 2705129365 6.086541072 10.82051746
15 0.6762823414 2.705129365 6.086541072 10.82051746

Table 1. Even RRM eigenvalues E,, of (6) for { =1
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N n=1 n=2 n=3 n=4

5 0.6762824936 2705333163 6.08832183 11.43680246
6 0.6762824936 2.705129814 6.08832183 10.82772904
7 0.6762823438 2705129814 6.086544511 10.82772904
8 0.6762823438 2705129367 6.086544511 10.82054064
9 0.6762823414 2.705129367 6.086541072 10.82054064
10 0.6762823414 2.705129365 6.086541072 10.82051747
1 0.6762823414 2.705129365 6.086541072 10.82051747
12 0.6762823414 2705129365 6.086541072 10.82051746
13 0.6762823414 2705129365 6.086541072 10.82051746
14 0.6762823414 2705129365 6.086541072 10.82051746
15 0.6762823414 2705129365 6.086541072 10.82051746

Table 2. 0dd RRM eigenvalues E,, of (6) for ¢ =1

Tables 1 and 2 show the rate of convergence of the RRM eigenvalues for £ = 1 in terms of the dimension

N of the secular determinantZ], Wwe appreciate that the even and odd states remain degenerate within

the accuracy of present calculation (10 digits). Besides, the RRM eigenvalues of both tables suggest that

Figure 1 shows the RRM eigenvalues and the PT ones given by equations (16) and (18) with

n=1,2,3,4 for —0.5 < ¢ < 0.5. We appreciate that the accuracy of PT decreases with n and that

E,=n’Ei,n=1,2,....

equation (18) provides a noticeably improvement.
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Figure 1. RPM (blue circles), PT (solid red line) and improved PT (dashed red line) eigenvalues with

n=1,2,3,4 for (6)

We can obtain perturbation corrections of greater order by means of a straightforward procedure. We
substitute the perturbation series (13) and the Taylor expansion of g—1/2 about ¢ = 0 into the secular

determinant and solve for the perturbation coefficients E,(Ij ). In this way we obtain

9

_ _l 2_&3 4
B =1- 26+ 08— 28 + 0 (&),

32
9 11
By =4-26+ 28" — =€ +0(¢),
o s1, ' og (24)
Fa—g9_ 2 S e Lo,
s it 358 — 56 o)
9 11
E; =16 — 8¢ + 552 - 753 +0(¢Y),
for both even and odd states. These results confirm the conjecture (23).
5. Alternative model
In this section we explore the model given by the dimensionless Hamiltonian operator
d _,d
H=—-——g — 25
i3’ @ (25)

that is Hermitian with the scalar product (8). Note that
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H(6) - H(25) = - L2 (26)

We carry out the same RPM calculation as in the preceding model. In this case the matrices are

symmetric; for example, for N = 3 and even states we have

00 0
2n(/TFI-1)
H=|0 —F— 0 . (27)
0 0 _ An(2y/EFT-¢-2)

52

It is worth mentioning that for greater values of NV the matrix H is no longer diagonal. In this case the

matrix elements also reflect the singularity at { = —1.
n even odd
1 0.7959412608 0.5700037793
2 2.642467139 2.79431927
3 6.135514729 6.062735007
4 10.81697747 10.84750548

Table 3. Eigenvalues for even and odd states of (25) for £ = 1

Table 3 shows the lowest eigenvalues for even and odd states with n = 1,2, 3,4 for £ = 1. We appreciate

that the degeneracy is broken and that | E,,, — E,, | decreases with n. It is worth mentioning that in this

L

= that is not shown in the table.

case we also have the exact solution Ey = 0, (¢$) =

In this case we can also resort to the same improved perturbation expression (18). Figure 2 shows the
lowest RPM eigenvalues for even and odd states in the interval —0.5 < £ < 0.5 and the perturbation
expression just mentioned. The difference | E.,, — E.,,| is almost indistinguishable because of the scale of
the figure and we appreciate that the approximate perturbation expression (18) provides reasonable

results for those values of the parameter &.
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Figure 2. RPM even states (blue circles), RPM odd states (red squares) and improved PT eigenvalues (solid

green line) with n = 1, 2, 3, 4 for (25)

By means of the perturbation expansion based on the secular determinant already described above we

obtain

Ba=1- 26+ & &10(
el 4 128 4096 ’
.3 , 1655

Ea =1 4£+128€ 2006 +O(¢),

E62:472£+—£ §3+(’)(§)

Ep=4- 2£+17£ £3+O(£) o)
.9 657 _5823 .

Bes =9 25“L 2566 40965 +O(E),
_g_ 9., 657,228 4 4

By =9 - 56+ 2565 4096€+ (€9,

E. =16 — 8§+(15§£ —£3+(’)(§4),

B, =16 — 85+6§£ §3+0(£4)

These results suggest that the splitting of the nth level takes place at perturbation order n.

Figure 3 shows accurate RPM results and the PT series for E.; and E,; in a scale that clearly reveals the
splitting of the first energy level. We appreciate that the perturbation expansions are reasonably accurate

in this range of values of &.
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Figure 3. RPM even state (blue circles), RPM odd state (red squares) PT even state (solid blue line) and PT odd

state (dashed red line) of (25) forn = 1

6. Conclusions

We have explored two Hamiltonian operators derived from the model of a quantum-mechanical particle
on an elliptical path. The first one is non-Hermitian but it is isomorphic to an Hermitian operator. For
this reason its eigenvalues are real. The most relevant feature of this quantum-mechanical model is that
it appears to exhibit the same two-fold degeneracy as in the case £ = 0 (particle on a circular path). Both
accurate numerical results and perturbation theory suggest that the eigenvalues follow the expression
shown in equation (23). In addition to it, there is an exact solution given by a constant eigenfunction and
Ey, =0.

The second example is an Hermitian modification of the previous Hamiltonian operator. In this case the
two-fold degeneracy at £ = 0 is broken when £ # 0. Present low order perturbation expansions suggests

that the splitting of the nth excited level takes place at the nth perturbation order.
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