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We analyze two simple models derived from a quantum-mechanical particle on an elliptical path. The

first Hamiltonian operator is non-Hermitian but isomorphic to an Hermitian operator. It appears to

exhibit the same two-fold degeneracy as the particle on a circular path. More precisely, 

 (in addition to an exact eigenvalue  ). The second Hamiltonian operator

is Hermitian and does not exhibit such degeneracy. In this case the nth excited energy level splits at

the nth order of perturbation theory.
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1. Introduction

Most textbooks on quantum mechanics and quantum chemistry[1]  resort to exactly solvable models in

order to illustrate some of the features of quantum-mechanical systems. Among the simplest models one

finds the particle in a box, the harmonic oscillator and the planar rigid rotator. The latter model is one of

the few cases of one degree of freedom that exhibits degeneracy. It is mathematically similar to a single

particle moving along a circular path. An interesting deformation of this model is the case of a particle

moving along an elliptical path. The purpose of this paper is a simple analysis of the latter model.

In section  2 we derive the Hamiltonian operator for the first model and discuss the possible scalar

product for the states as well as other features. In section  3 we derive an analytical expression for the

spectrum from first-order perturbation theory. In section 4 we obtain accurate eigenvalues by means of

the Rayleigh-Ritz method (RRM)[1]  that yields increasingly accurate upper bounds[2][3]. In section 5 we
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introduce an alternative model and carry out similar calculations. Finally, in section 6 we summarize the

main results of the paper and draw conclusions.

2. The model

We consider a particle of mass   that moves freely on an elliptical path. The Hamiltonian operator is

where    is the Laplacian in two dimensions. The particle is restricted to a closed path given by all

points   that satisfy

where   and   are positive real numbers (the ellipse semi-axes). If we write

which satisfy equation (2), we obtain

where  . The point   is expected to be a singularity because it leads to  .

We can define a dimensionless Hamiltonian operator as[4]

and from now on we will focus on the dimensionless eigenvalue equation

The Hamiltonian operator (6) is Hermitian with respect to the scalar product

where    is the Jacobian of the transformation. However, this scalar product exhibits two difficulties.

The first one is that the only variable parameter of the model   appears in it. The second drawback is that
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it makes the calculation of matrix elements more complicated. For these reasons, in what follows we

choose

which facilitates the numerical calculation based on Fourier basis sets (although it changes the nature of

the model). As a result, the Hamiltonian operator   is not Hermitian because

However, it follows from

that both    and    are isomorphic to the Hermitian operator    and, therefore, share the same real

spectrum. An immediate consequence of the latter property is the straightforward validity of the

Hellmann-Feynman theorem (HFT)[5][6]

This expression is valid even for degenerate states as discussed elsewhere[7].

3. Perturbation theory

When   the dimensionless Hamiltonian operator becomes   so that

By means of perturbation theory we can obtain approximate solutions in terms of power series

Note that we have an exact solution given by   and    for all    that we will

omit from now on.

The perturbation correction of first order can be derived by means the non-Hermitian operator
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we conclude that

We obtain exactly the same result using    as expected from the argument given in the preceding

section. Besides, the HFT at 

predicts that all the eigenvalues have a negative slope at origin.

Since the eigenvalues are expected to be singular when   it appears convenient to try the improved

perturbation approximation

that yields the correct linear term and is singular at  .

4. Rayleigh-Ritz method

The RRM[1] is a well known variational procedure that provides increasingly accurate upper bounds[2][3].

In order to apply this approach we need a suitable basis set.

Since the dimensionless Hamiltonian operator    in equation (6) is invariant under the transformation

given by    it is more convenient to resort to basis sets of even ( ) and odd ( )

functions; for example:

However, our old-fashioned computer-algebra software found it easier to calculate the desired matrix

elements by means of the non-orthogonal basis sets

We followed a brute-force procedure consisting of obtaining the roots of the secular determinant 

 where the elements of the   matrices   and   are given by[1][7]
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For example, for   and even basis functions we have the non-symmetric matrix

Note that the matrix elements ehibit the singularity discussed above.

5 0.6762816118 2.705333163 6.3947862 11.43680246

6 0.6762824936 2.705333163 6.08832183 11.43680246

7 0.6762824936 2.705129814 6.08832183 10.82772904

8 0.6762823438 2.705129814 6.086544511 10.82772904

9 0.6762823438 2.705129367 6.086544511 10.82054064

10 0.6762823414 2.705129367 6.086541072 10.82054064

11 0.6762823414 2.705129365 6.086541072 10.82051747

12 0.6762823414 2.705129365 6.086541072 10.82051747

13 0.6762823414 2.705129365 6.086541072 10.82051746

14 0.6762823414 2.705129365 6.086541072 10.82051746

15 0.6762823414 2.705129365 6.086541072 10.82051746

Table 1. Even RRM eigenvalues   of (6) for 

= ⟨ |H| ⟩, = ⟨ | ⟩ , i, j = 0, 1, … ,N − 1.Hij φi φj Sij φi φj (21)
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5 0.6762824936 2.705333163 6.08832183 11.43680246

6 0.6762824936 2.705129814 6.08832183 10.82772904

7 0.6762823438 2.705129814 6.086544511 10.82772904

8 0.6762823438 2.705129367 6.086544511 10.82054064

9 0.6762823414 2.705129367 6.086541072 10.82054064

10 0.6762823414 2.705129365 6.086541072 10.82051747

11 0.6762823414 2.705129365 6.086541072 10.82051747

12 0.6762823414 2.705129365 6.086541072 10.82051746

13 0.6762823414 2.705129365 6.086541072 10.82051746

14 0.6762823414 2.705129365 6.086541072 10.82051746

15 0.6762823414 2.705129365 6.086541072 10.82051746

Table 2. Odd RRM eigenvalues   of (6) for 

Tables 1 and 2 show the rate of convergence of the RRM eigenvalues for   in terms of the dimension 

 of the secular determinant[1][7]. We appreciate that the even and odd states remain degenerate within

the accuracy of present calculation (10 digits). Besides, the RRM eigenvalues of both tables suggest that

Figure  1 shows the RRM eigenvalues and the PT ones given by equations (16) and (18) with 

  for  . We appreciate that the accuracy of PT decreases with    and that

equation (18) provides a noticeably improvement.
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n = 1, 2, 3, 4 −0.5 ≤ ξ ≤ 0.5 n
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Figure 1. RPM (blue circles), PT (solid red line) and improved PT (dashed red line) eigenvalues with 

 for (6)

We can obtain perturbation corrections of greater order by means of a straightforward procedure. We

substitute the perturbation series (13) and the Taylor expansion of    about    into the secular

determinant and solve for the perturbation coefficients  . In this way we obtain

for both even and odd states. These results confirm the conjecture (23).

5. Alternative model

In this section we explore the model given by the dimensionless Hamiltonian operator

that is Hermitian with the scalar product (8). Note that
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We carry out the same RPM calculation as in the preceding model. In this case the matrices are

symmetric; for example, for   and even states we have

It is worth mentioning that for greater values of   the matrix   is no longer diagonal. In this case the

matrix elements also reflect the singularity at  .

even odd

1

2

3

4

Table 3. Eigenvalues for even and odd states of (25) for 

Table 3 shows the lowest eigenvalues for even and odd states with   for  . We appreciate

that the degeneracy is broken and that   decreases with  . It is worth mentioning that in this

case we also have the exact solution  ,   that is not shown in the table.

In this case we can also resort to the same improved perturbation expression (18). Figure  2 shows the

lowest RPM eigenvalues for even and odd states in the interval    and the perturbation

expression just mentioned. The difference   is almost indistinguishable because of the scale of

the figure and we appreciate that the approximate perturbation expression (18) provides reasonable

results for those values of the parameter  .
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Figure 2. RPM even states (blue circles), RPM odd states (red squares) and improved PT eigenvalues (solid

green line) with   for (25)

By means of the perturbation expansion based on the secular determinant already described above we

obtain

These results suggest that the splitting of the nth level takes place at perturbation order  .

Figure 3 shows accurate RPM results and the PT series for   and   in a scale that clearly reveals the

splitting of the first energy level. We appreciate that the perturbation expansions are reasonably accurate

in this range of values of  .
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Figure 3. RPM even state (blue circles), RPM odd state (red squares) PT even state (solid blue line) and PT odd

state (dashed red line) of (25) for 

6. Conclusions

We have explored two Hamiltonian operators derived from the model of a quantum-mechanical particle

on an elliptical path. The first one is non-Hermitian but it is isomorphic to an Hermitian operator. For

this reason its eigenvalues are real. The most relevant feature of this quantum-mechanical model is that

it appears to exhibit the same two-fold degeneracy as in the case   (particle on a circular path). Both

accurate numerical results and perturbation theory suggest that the eigenvalues follow the expression

shown in equation (23). In addition to it, there is an exact solution given by a constant eigenfunction and 

.

The second example is an Hermitian modification of the previous Hamiltonian operator. In this case the

two-fold degeneracy at   is broken when  . Present low order perturbation expansions suggests

that the splitting of the nth excited level takes place at the nth perturbation order.
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