
! 2"#$%&'()*+,--./012345 

The 2nd World Conference on Artificial Consciousness 

!6"#$%&'()*(DIKWP-AC 2024) 

Artificial Consciousness: The Confluence of Intelligence and Consciousness in the 
Interdisciplinary Domain 
 

 

 
Computer Architecture and Chip Design for DIKWP Artificial Consciousness 
 
Kunguang Wu, Yucong Duan, Liang Chen, Yingbo Li, QiQi 

Abstract 

Artificial intelligence systems are often accompanied by risks such as uncontrollability 
and lack of explainability. To mitigate these risks, there is a necessity to develop artificial 
intelligence systems that are explainable, trustworthy, responsible, and demonstrate 
consistency in thought and action, which we term Artificial Consciousness (AC) systems. 
Therefore, grounded in the DIKWP model which integrates fundamental data, 
information, knowledge, wisdom, and purpose along with the principles of conceptual, 

https://doi.org/10.32388/Q5RC1J 



cognitive, and semantic spaces, we propose and define the computer architectures, chips, 
runtime environments, and DIKWP language concepts and their implementations under 
the DIKWP framework. Furthermore, in the construction of AC systems, we have 
surmounted the limitations of traditional programming languages, computer architectures, 
and hardware-software implementations. The hardware-software integrated platform we 
propose will facilitate more convenient construction, development, and operation of 
software systems based on the DIKWP theory. 

I. Introduction 

Despite significant advancements in the fields of computer science and artificial 
intelligence (AI) research and applications [1], the processing details of existing AI 
systems remain opaque, potentially introducing unforeseen risks [2]. To construct an 
explainable, trustworthy, responsible, and consistently acting AI system, termed Artificial 
Consciousness (AC), we integrate the DIKWP (Data, Information, Knowledge, Wisdom, 
Purpose) concept [5] [6] with the world's first semantic-mathematical definition of 
consciousness relativity [4] to propose a definition based on AC-related implementations. 
Furthermore, within the DIKWP architecture, we have defined the DIKWP language in 
the DIKWP runtime environment and attempted to overcome the programming 
complexities associated with implementing DIKWP transformations in traditional 
computer architectures, thereby laying the groundwork for building a DIKWP hardware-
software ecosystem. The DIKWP -based AC computer architecture ensures efficiency 
and controllability. Semantic transformations of DIKWP content [7] coupled with AC 
modeling guarantee consistent verbal and behavioral characteristics within AC systems, 
thus minimizing semantic loss during human-machine interaction. 

Section II primarily reviews the development of software and hardware integration 
and the necessity of constructing AC systems. It introduces the concept of building an 
integrated hardware-software platform and AC systems based on the DIKWP model, 
theoretically addressing the current deficiencies in artificial intelligence systems. Section 
III describes the problem, detailing the complexities of implementing DIKWP -related 
functionalities under the limitations of traditional programming languages, software-
hardware integration, and computer architectures. In section IV, we attempt to convert 
the problems outlined in section three into engineering challenges and propose a series of 
solutions. Our intent is to resolve these engineering issues theoretically. Section V 
concludes the paper. 

II. Related Works 
A. Hardwarelization of software 

Researchers have made significant progress in the hardware implementation of software. 
Ambrogio et al. introduced a chip designed for simulating AI [8], which accelerates 



computations related to speech recognition while providing excellent performance and 
lower power consumption. Jesús and colleagues proposed an FPGA-based acceleration 
circuit [9], which enhances the computation of semantic trees and significantly reduces 
the execution time of parsing algorithms. Chen et al. introduced a fully analog 
optoelectronic chip named ACCEL [10], capable of providing high computational speeds 
and energy efficiency for visual tasks. However, the current manufacturing costs and 
domain-specificity of these chips are relatively high, limiting the universality of the 
transition from software to hardware. 

B. Computer architecture 

In the field of computer architecture, the performance of systems built on the von 
Neumann architecture is significantly influenced by the speed of information exchange 
between the Central Processing Unit (CPU) and shared memory [11]. The storage speed 
within the von Neumann architecture is constrained by factors such as storage 
architecture, access strategies, and materials [19]. Moreover, the von Neumann 
architecture was designed for Turing computation, achieving notable speed and precision 
in numerical processing. However, many phenomena are inherently incomplete, 
inconsistent, imprecise, and unexpressable, making it challenging to directly use 
numerical computation to handle these phenomena. Therefore, automating the processing 
of non-numerical tasks on computers based on the von Neumann architecture is quite 
difficult. To overcome these challenges, there is a need to improve existing computer 
architectures or to redesign them entirely. 

 
Figure 1- DIKWP -AC Financial System - Processing function mapping (partial) 
 

 
Figure 2- A function code of adding ’a’ and ’b’ 

                  DIKWP artificial consciousness financial system

Transaction 
Management

Market Analysis

……

Risk Control

Decision 
Support

Contract 
Management

Purpose-Driven 
Module

Domain Public 
Resource Database

Personalized Resource 
Database

Storage
 Layer

Application
 Layer

Support 
Layer

DIKWP Semantic 
Encoder-Decoder

DIKWP 
Interpreter

Data 
Collection

Data 
Preparation

Information 
Extraction

 Knowledge 
Integration

Intelligent 
Analysis

Data 
Processing

Information 
Processing

Knowledge 
Processing

Wisdom 
Processing

Purpose 
Processing

DIKWP 
Processing

depend
depend

depend

Resolution of 
Uncertainty

incomplete

consistent

precise

inconsistent

imprecise

complete

DIKWP Conversion

D I

K W

P 



 
Figure 3- Conversion and mapping of natural language to DIKWP 

C. DIKWP-AC 

To construct consistent artificial intelligence systems, it is imperative to establish 
AC systems based on human cognitive modeling and the foundational theories of DIKWP. 
Human cognitive modeling is a method for studying the cognitive processes of humans, 
aimed at explaining and predicting human information processing, knowledge acquisition, 
and decision-making behavior. The DIKWP model offers a novel perspective by 
emphasizing data, information, knowledge, wisdom, and purpose as core elements for 
achieving this goal. Duan et al. [13] utilized the DIKWP framework to extend the concept 
of knowledge graphs to associative data graphs, information graphs, knowledge graphs, 
wisdom graphs, and intent graphs. To address challenges such as large-scale concept 
fusion, semantic representation ambiguity, and semantic content confusion, they based 
their work on the Existence Computing and Reasoning (EXCR) model [14], establishing 
fundamental semantic relationships under the principle that "Relationships Define 
Everything of Semantics" (RDXS) through cross- DIKWP modality fusion. Duan et al. 
used a security protection scenario in edge computing as a research case [15], proposing 
a formalized semantic perception of key DIKWP elements during the conceptualization 
process by constructing a meta-model of the DIKWP framework. Gao et al. [16] proposed 
extending the DIKWP architecture as a resource representation model, providing a 
systematic approach to constructing entity and relationship elements, thereby enhancing 
the optimization of service and resource scheduling in multimedia systems. Li et al. [17] 
expanded upon this work within the DIKWP model, introducing an intent-driven 
differential privacy architecture within the DIKWP framework, and applied it to domains 
such as intelligent form filling [18], emotional communication [19], the digital economy 
[20], biolegal litigation [21], meteorological and depression analysis [22], among others. 
Concerning DIKWP -AC, Duan presented the working principles of the DIKWP -AC 
chip [24], compared it with other chips, and summarized the advantages of the DIKWP -
AC chip [25]. Lake et al. introduced a new method for studying the generalization 
capabilities of human systems, demonstrating the potential of neural and symbolic models 
in achieving human-level generalization capabilities [26]. Duan discussed the role of the 
DIKWP model in consciousness modeling and brain-machine interface (BMI) processing 
[28]. Wang et al. [27] proposed a resource invocation processing method for DIKWP -
AC systems, pointing the way for the system implementation of AC. Overall, the use of 
the DIKWP model could potentially overcome the semantic deficiencies between 
traditional computer architectures, hardware, and programming languages. 

The natural 
language is ……

How ?

DIKWP Model
D I

K W

P 
Input Output

conversionContent Text



 

7 4-DIKWP 89:; 
 

D. Concept Space 

a) Definition of Concept Space 
In Figure 2 on the right, the concept space is depicted as a collection composed of a series 
of related concepts, interconnected through specific attributes and relationships. 
Depending on the symmetry of the relationships among the concepts, this space can be 
represented either as a directed or an undirected graph. Consequently, the concept space 
can be expressed using the following equation< 

𝐺𝑟𝑎𝑝ℎ!"#! =	 (𝑉!"#! , 𝐸!"#!)	 1	 
Where 𝑉!"#!  represents the set of nodes corresponding to concepts, and 𝐸!"#!  is the 
set of edges denoting the relationships between these concepts. 

b) Fundamental Properties 
In the concept space, each concept 𝑣 ∈ 𝑉!"#!  possesses a set of attributes 𝐴(𝑣) and 
relationships 𝑅(𝑣, 𝑣) with other concepts. 
Attributes: 𝐴(𝑣) = {𝑎1(𝑣), 𝑎2(𝑣), … , 𝑎𝑛(𝑣)}=where each 𝑎$(𝑣) is an attribute of 𝑣. 

c) Relation 
𝑅(𝑣, 𝑣′)represents the relationship between concepts 𝑣 and 𝑣′. If the graph is directed, 
then 𝑅(𝑣, 𝑣′) is not equivalent to 𝑅(𝑣, 𝑣)>if the graph is undirected, they denote the 
same relationship. 

d) Operation 
Operations in the concept space involve a series of actions to query, add, or modify 
concepts and their relationships within the concept space. 

l Query Operations: Query operations involve retrieving relevant sets of 
concepts within the concept space based on a query condition 𝑞 (such as 
specific attributes or relationships). The primary expression is as follows: 

Drag to change the width of the text block

Natural 
language DIKWP language

DIKWP Semantic
Stream

Pending Resources

description

semantic
decode

purpose 
driven

DIKWP 
compensation

Processed 
Resources

resource allocation
 for processing

resource
mapping

merge

semantic
decode

User
input

Head

depend

serve

security

DIKWP Processing Node

output

DIKWP 
Processing

D D' I I'

K

K'

W

W'

P
P'

depend
serve

Uncertainty
Processing

P'(DIKWPsource,DIKWPtarget)

Input

DIKWP Control

Output

DIKWP Semantic Graph

Input
Compensation

Data Processing

Information
Processing

Knowledge
Processing

Wisdom
Processing

Purpose
Processing

Input

DRsource

IRsource

KRsource

WRsource

PRsource

Input

Resolution of 
Uncertainty

incomplete

consistent

precise

inconsistent

imprecise

complete

Purpose 
security

Data security Information 
security

knowledge
security

wisdom 
security

Semantic Security

DIKWP uncertainty 
Graph

DIKWP Semantic
Stream

DIKWP 
Conversion

D I

K W

P 



𝑄(𝑉!"#! , 𝐸!"#% , 𝑞) → {𝑣&, 𝑣', … , 𝑣(} 2 
l Addition Operations: We can add a new concept 𝑣 to the concept set 

𝑉% using the equation below: 
𝐴𝑑𝑑(𝑉!"#! , 𝑣) 3 

l Modification Operations: Additionally, we can maintain the relevant 
attributes of existing concepts through Equation 4. 

𝑈𝑝𝑑𝑎𝑡𝑒@𝑉!"#! , 𝑣, 𝐴(𝑣)A 4 

E. Cognitive Space 

Cognitive Space (ConN) provides a framework for describing and analyzing cognitive 
processes, namely how input data or information is transformed into understanding, 
decision-making, or action. This concept is particularly crucial in handling Data, 
Information, Knowledge, Wisdom, and Purpose (DIKWP), as it reveals how individuals 
or systems comprehend and respond to the external world through unique cognitive 
processing. Below is a formalized description of the definition and processing within 
Cognitive Space. 
a) Definition of cognitive space 

Functions set: 𝑅 = {𝑓!"#)! , 𝑓!"#)" , … , 𝑓!"#)#} ,Herein, each function	
𝑓!"#)$:	𝐼𝑛𝑝𝑢𝑡$ → 𝑂𝑢𝑡𝑝𝑢𝑡$  represents a specific cognitive processing process=where 
𝐼𝑛𝑝𝑢𝑡$ denotes input space=and 𝑂𝑢𝑡𝑝𝑢𝑡$ represents the output space. 
b) Input Space and Output Space 

Input Space 𝑰𝒏𝒑𝒖𝒕𝒊  represents the collection of data or information that is 
perceived, which may include observations from the external world, signals received 
from other systems, or data generated internally. 

Output Space 𝑶𝒖𝒕𝒑𝒖𝒕𝒊 represents the collection of understanding or decisions 
formed after processing, which may include the classification of information, the 
formation of concepts, the determination of intentions, or the setting of action plans. 
c) Cognitive Processing Process 

Each cognitive processing function 𝑓!"#)$ can be further refined into a series of 
sub-steps, including data preprocessing, feature extraction, pattern recognition, logical 
reasoning, and decision-making, among others. These sub-steps together constitute the 
complete cognitive pathway from raw data to final output. 

Sub-step Representation: For each 𝑓!"#)$, it can be represented as: 
𝑓!"#)$ = 𝑓!"#)$(&) ○ 𝑓!"#)$(() ○ …○ 𝑓𝐶𝑜𝑛𝑁$(!)

	 = (𝐼𝑛𝑝𝑢𝑡$)  

where 𝑓!"#)$())  represents the processing function, 𝑗 represents 𝑗-th sub-step and 

○ denotes the composition of functions. 
In the DIKWP model, the Cognitive Space transforms data, information, knowledge, 
wisdom, and intention into concrete understanding and action through the unique 
cognitive processes of individuals or systems. By invoking various cognitive processing 
functions, the system can implement the most suitable processing strategies for different 
types of inputs, achieving efficient and precise decision-making. 



F. Semantic Space 

Semantic space is a collection composed of a series of semantic units, which are 
interconnected through specific associations and dependency relationships, collectively 
forming an objectified representation of information and knowledge. The widely 
accepted concepts and linguistic rules within semantic space facilitate the transmission 
and communication of meaning. 

a) Definition 
We represent this using a graph: 

𝐺𝑟𝑎𝑝ℎ,-(. = (𝑉,-(., 𝐸,-(.) 
where 𝑉,-(. represents semantic units (words, sentences, etc.), and 𝐸,-(. represents 
the associations and dependency relationships between semantic units. 

b) Semantic Units and Relations 
In the semantic space, a series of operations correspond to querying, adding, or modifying 
semantic units and their relationships. 
Query Operation< 

𝑄𝑢𝑒𝑟𝑦(𝑉,-(., 𝐸,-(., 𝑞) → {𝑣&, 𝑣', …	, 𝑣(} 
The previous equation returns a set of semantic units that satisfy the query condition 𝑞. 
Add Operation: 𝐴𝑑𝑑(𝑉,-(., 𝑣)=adds a new semantic unit 𝑣 to the set	 𝑉,-(.. 
Update Operation: 𝑈𝑝𝑑𝑎𝑡𝑒(𝐸,-(., 𝑣, 𝑣′, 𝑒)= updates or adds the relationship 𝑒 
between semantic units 𝑣 and 𝑣′. 

c) Operation and Application 
Based on the relevant definitions and concepts of the semantic space, we attempt to 

analyze and address the issues faced by financial firms in executing the legislation 
regarding HFT mapped into the semantic space as discussed in the previous section. Here, 
we focus on analyzing the issue of "inconsistency in execution due to content 
interpretation bias" within the semantic space. 

l We define a semantic unit 𝑣,/(.01234 to represent interpretation bias, 
which belongs, to the legal semantic space: 
𝐺𝑟𝑎𝑝ℎ,-(.012 = (𝑉,-(.012 , 𝐸,-(.512)? 

l We can use query operations to retrieve units of inconsistency in the 
execution process: 
𝑸𝒖𝒆𝒓𝒚(𝑽𝑺𝒆𝒎𝑨, 𝑬𝑺𝒆𝒎𝑨, 𝒒𝒃𝒊𝒂𝒔	) → {𝑣,/(.01234} 𝟓 
where condition q is interpretation bias in law. 

l The addition operation can be utilized to enrich the semantic space of 
legal understanding: 

𝑨𝒅𝒅(𝑉,-(.012 , 𝑣,/(.0123!) 𝟔 
Where 𝑣,/(.0123!  represents semantic units reflecting accurate legal 
comprehension. 

𝑼𝒑𝒅𝒂𝒕𝒆@𝑉,-(.012 , 𝑣,/(.0123! , 𝑣,/(.01234&,𝑒3>$1?A 𝟕 
l Additionally, the semantic space can be refined through update operations, 

as demonstrated in Equation 7. The purpose of this operation is to 
establish new semantic units 𝑣,/(.0123!  that represent understanding 



deviations based on the correct legal understanding 𝑣,/(.01234&? 

 
Table 1- Programming difficulty assessment of DIKWP conversion 

 
Table 2- The expression form of each element in DIKWP language 
 



 
Tables 3- Keywords reserved in DIKWP language 

III. Problem Description 
A. Situation Description 

1) Challenges of Traditional Programming Languages: Drawing upon the methodologies 
outlined in [7] for the fusion, and transformation of DIKWP elements under purpose-
driven conditions, we endeavor to formalize the conversion and processing procedures into 
a deterministic program or algorithm. Programming is carried out under the purpose-
driven, and the program is executed accordingly. In this study, we assume the existence of 
a financial system requiring the construction of AC based on DIKWP. As depicted in 
Figure 1, the Risk Control subsystem comprises five modules, with the execution and 
processing of their functionalities contingent on transformations between DIKWP 
elements. From a developer’s perspective, traditional high-level programming languages 
are employed for programming in this context, with no recourse to machine learning 
algorithms. In Table I, the y-axis represents the elements of DIKWP input, while the x-
axis corresponds to the target type elements for DIKWP conversion. We have defined a 
triad (PD, CC, IU) to represent the results of an evaluation conducted during the 
development of AC systems for the programming difficulty (PD), computational 
complexity (CC), and input uncertainty (IU) assessed as implemented using high-level 
programming languages (such as JavaScript). The first element of the triad represents the 
degree of programming difficulty, which includes three evaluation levels: easy (E), 
moderate (Mo), and difficult (Di). The second element of the triad signifies the 
computational complexity of the program, categorized as low (L), medium (Me), and high 
(H). The third element of the triad represents a set of uncertainties in the input DIKWP 
elements, with elements featuring characteristics of incompleteness (ICP), inconsistency 
(ICS), and imprecision (IPR). When the inputs simultaneously possess precision, 
completeness, and consistency, the third element is an empty set. 

Table I is evident that the implementation of a financial risk control subsystem is 



feasible without relying on machine learning. However, both the programming 
complexity and computational complexity increase as the level of content abstraction 
rises. Uncertainty is a common issue in the financial domain, necessitating appropriate 
handling methods. In this process, the determinism of inputs and outputs decreases as the 
abstraction level increases, and the computational process may require the inclusion of 
more rules and conditions. Furthermore, we have observed practical difficulties with 
current programming languages when dealing with uncertain inputs and processing. 
Specifically, these languages lack the capability to adapt to uncertainty expressed in 
purpose during runtime. As illustrated in Figure 2, a function for addition is typically 
confined to inputs in the form of Arabic numerals. If inputs are provided in other 
languages or different representations, errors may occur. Addressing changes in purpose 
expression necessitates reprogramming and recompilation for execution. Ensuring 
interpretability of executable processes at the software level is limited to covering inputs 
with finite logical steps, which can only accommodate a partial range of semantic 
expressions. Once inputs are more variations in semantic representations, reprogramming 
becomes the only viable option. Hence, traditional programming languages face 
significant challenges in handling uncertainty expressions within the same semantics. 

2) Challenges of hardwarelization of software: Hardwarelization of software is a design 
methodology that involves the realization of software functionalities or tasks at the 
hardware level. In certain specialized domains, this approach, achieved through circuit 
design, re-implements software functions or tasks on hardware chips to enhance execution 
efficiency [8] [9]. However, this method is not without its limitations, primarily 
manifesting in the following aspects: 
l Hardware Complexity: Mapping software functionalities to hardware typically 

necessitates intricate hardware designs, encompassing specialized processors or 
circuit modules. This can result in a significant escalation of hardware complexity 
and costs. 

l Rigid Design: Hardware is static, and once the design is finalized, it is challenging 
to make modifications. This results in lower flexibility within hardwarelization of 
software, making it difficult to adapt to changing requirements or the addition of new 
functionalities. 

l Manufacturing Cost: Hardware manufacturing costs are relatively high, especially 
in cases of small-batch production or the need for multiple revisions. This makes 
hardware design unsuitable for applications that require rapid iteration and cost-
effective production. 

l Adaptability: Hardware-based systems struggle to adapt to future technological 
changes. As technology advances, new hardware designs may quickly become 
obsolete, whereas software is often more amenable to accommodating these changes. 

l Resource Constraints: Hardware resources are finite, which can impose limitations 
on the implementation of complex functionalities in hardware. 

Therefore, hardwarelization of software has certain constraints in specific domains, 
preventing it from achieving the same level of generality as a CPU. Furthermore, due to 
the semantic boundaries between software and traditional computer architectures, certain 
semantic deficiencies exist between them. 



3) Challenges of Traditional Computer Architectures: The fundamental architectural 
paradigm followed by modern computers is the Von Neumann architecture, characterized 
by the capability to store both program instructions and data within a single memory space, 
accessible for processing by the CPU. Furthermore, data within this structure is internally 
represented and processed in binary form. However, this architecture exhibits a significant 
performance bottleneck stemming from its heavy reliance on memory, where the speed of 
information exchange between the CPU and shared memory becomes a primary factor 
affecting system performance [11]. The enhancement of information exchange speed, in 
turn, is constrained by various factors, including the speed of memory components, 
memory performance, and structural considerations. Furthermore, the Von Neumann 
architecture computers were conceived for Turing computation, which has reached notable 
speeds and precision in numerical processing. However, their progress in non-numerical 
processing applications has been comparatively slow. In reality, many phenomena are 
inherently ambiguous and challenging to express precisely using numerical calculations. 
Moreover, the occurrence, evolution, and outcomes of events are often unpredictable, 
making it considerably difficult to automate the processing of such complex tasks using a 
Von Neumann computer architecture. 

 
Figure 5-DIKWP computer architecture 
 

 
Figure 6-DIKWP hardware architecture 
 

Input Controller Processor

Internal 
Storage

Output

MPU

DIKWP control
stream

DIKWP semantic
stream

DIKWP BUS

DPU

DIKWP 
Control

Security 
Control

IPU KPU WPUPPU

uncertainty
processing unit

SRAM DIKWP 
Processing

D D' I I'

K

K'

W

W'

P
P'

Resolution of 
Uncertainty

incomplete

consistent

precise

DIKWP 
Conversion

D I

K W

P 

Purpose 
security

Data security Information 
security

knowledge
security

wisdom 
security

Semantic Security

inconsistent

imprecise

complete



 
Algorithm 1- The procedure of DIKWP semantic security processing 

B.  DIKWP on Natural Language Processing 

DIKWP model on natural language processing firstly transforms natural language 
into elements of DIKWP by special processing and then abstracts the elements of DIKWP 
into graphs. DIKWP graphs are processed and transformed driven by purposes and their 
logic is verified by formal expressions [2]. But DIKWP model has following problems 
on natural language processing. 

1) No unified paradigm for conversion: Some work has been done on processing and 
conversion between DIKWP content driven by purpose [2] [27]. However, these works 
currently lack a more unified approach or paradigm for the conversion and mapping of 
natural language to DIKWP content, as shown in Fig. 3. In other words, we have no defined 
methodology and process to achieve this transformation through a limited and defined 
number of steps. If an AC system needs to be constructed, we need to ensure 
interpretability in implementation and operation, otherwise the AC system will lack 
interpretability of the processing. 

2) Failing to represent semantic variations: In the processing of DIKWP model, 
interactions and conversion between content and cognition have been demonstrated in 
previous studies [5] [23]. However, they have not adequately reflected the mapping and 
representation of the processing process to semantics. After constructing the mapping and 
representation of the semantic space, changes before and after semantic processing can be 
observed through an observational approach. Therefore, in the existing artificial 
intelligence systems, when there is a semantic shift or inconsistency during the processing 
of content, humans cannot directly observe and detect it. It leads to untrustworthiness in 
the processing process, which contradicts the characteristics of AC systems. In order to 
establish an AI system that exhibits thinking and behavior consistency, it is imperative to 



generate outputs that reflect changes in the semantic space resulting from interactions 
between cognition and content. This transparency in the system’s processing, allowing 
humans to have visibility into the process, is crucial for building trust. 

3) How the DIKWP model interacts with humans: The purpose of constructing artificial 
intelligence systems is to serve humans and interact with them in various ways, such as 
through natural language text, images, and sound. However, in the processing of DIKWP, 
everything is abstracted and processed by graph [2] [23] [27]. Graphs are not a convenient 
semantic carrier for humans, which leads to a semantic gap between the output content 
after DIKWP -AC processing and human understanding. Due to the lack of reliable and 
credible processing procedures and related research work in the output and communication 
of DIKWP -AC, we lack effective theoretical support for human interaction in building 
DIKWP -AC systems. Therefore, we need to find a way or method to make the DIKWP -
AC model interact with humans, allowing for better mutual understanding between 
humans and the DIKWP -AC system, ultimately serving humans more effectively. 

IV. Architecture Design 
To seek a solution to the problem described in Section III, we will shift our thinking 

and try to translate academic difficulties into engineering problems. Building upon the 
foundation of the DIKWP theoretical model, this section introduces a hardware 
architecture based on DIKWP, chip design incorporating DIKWP hardwarelization of 
software, and the concept of software-hardware compatibility, which combines hardware 
and software elements while emphasizing the semantic security on chip and the DIKWP 
semantic processing. 

A. DIKWP Computer Architecture 

This section attempts to alleviate the problems in Section III in terms of engineering 
but faces many challenges. we propose a framework for DIKWP-based computer 
architecture and chip design. In order to alleviate the problem of interaction between 
DIKWP models and humans, this section also proposes an internal DIKWP language, 
which relies on the DIKWP runtime environment. The underlying layer of the DIKWP 
language is based on the DIKWP semantic codec, which can encode the content of the 
DIKWP language into DIKWP hardware instructions or decoding and restoring the 
hardware outputs, and the primary logical processes is on the left side of Figure. 4. 
 

B. DIKWP Runtime Environment 

To address the challenges and difficulties posed by traditional programming 
languages, we have introduced a framework model for the DIKWP -based runtime 
environment, based on the DIKWP model theory. The model encompasses the software 



runtime environment under the DIKWP hardware architecture and outlines the general 
processing flow for human-computer interaction. On the left side of Fig. 4, users engage 
in interaction with DIKWP software through natural language. The DIKWP software 
platform, in turn, processes this natural language using a DIKWP language interpreter to 
convert it into DIKWP language. The DIKWP language, serving as a bridge between 
humans and computers, offers a relatively precise, consistent, and comprehensive 
medium for human-computer interaction, thereby minimizing semantic loss in these 
interactions as much as possible. 

To facilitate bidirectional communication between the DIKWP language and 
DIKWP hardware, the DIKWP runtime environment also necessitates a DIKWP semantic 
codec. This codec is responsible for transforming the DIKWP language into a DIKWP 
semantic stream. Semantic streams are categorized into five distinct types, namely, data 
semantic stream, information semantic stream, knowledge semantic stream, wisdom 
semantic stream, and purpose semantic stream, each with its own processing 
methodology. After receiving and processing the semantic stream, it can be represented 
in the form of a semantic graph within the DIKWP semantic space. The processed 
semantic stream, following the DIKWP semantic codec’s operation, represents semantic 
content before any purpose-based manipulation, and the internal transformation process 
unfolds as follows: 

l The first step involves receiving the input DIKWP semantic stream and transforming it 
into a DIKWP semantic graph. Subsequently, the semantic orientation of the DIKWP 
graph is modified, aligning it with the purpose, which is achieved through a purpose 
alignment process. 

l The converted DIKWP semantics are then examined, and the necessary DIKWP semantic 
content for scenarios that meet purpose is generated. 

l The missing DIKWP semantic content is treated as a new purpose with elevated priority. 
Subsequently, the content is merged and output as a new DIKWP semantic stream. 
The semantic stream, after passing through the purpose-driven processing module, 
contains DIKWP semantic content with semantic tendencies. It then proceeds to the 
resource allocation module. The resource mapping module allocates the DIKWP 
semantic stream to the corresponding hardware or processing clusters to ensure efficiency 
when executing various tasks and functions. It serves as the communication bridge 
between software and hardware in the DIKWP architecture. 

C. DIKWP Language 

To address the challenges in processing knowledge, wisdom, and purpose using 
traditional programming languages, we proposed the DIKWP language. As a domain-
specific language (DSL), it is designed for human-computer interaction within the 
DIKWP architecture. The DIKWP language serves as a means of expressing data, 
information, knowledge, wisdom and purpose, with example provided in Table 2. 

In Table II, various elements can be expressed in different forms through the DIKWP 
language. These representations can be obtained within the computer through the process 
of either writing or transformation, resulting in diverse forms of data, information, 



knowledge, wisdom and purpose. 
l Data: Data refers to discrete, semantically ambiguous content, such as numbers, 

characters, or their collections. 
l Information: Information has a certain semantic scope, responsible for defining and 

organizing data to make it meaningful. It has two forms of representation: one is the 
definition of data, and the other is by defining a function or operation-like form to fill in 
data or information. 

l Knowledge: Knowledge is represented through a combination of facts, information, and 
logical expressions. It is the presence of logical expressions that enables the system to 
extract interpretable knowledge rules and form the content from the knowledge. 

l Wisdom: Wisdom, fundamentally, is information manifested in its highest semantic value 
within specific dimensions. For instance, in Table II, the task is to identify the maximum 
element within the array ”aa” and assign it to ”ArrayMax,” while ”Where” signifies the 
value path that, within a specific set of rules, leads to this objective. 

l Purpose: Purpose is the driving force behind DIKWP, representing the execution of 
purpose functions in semantic terms. It both takes input and produces output in the form 
of DIKWP elements. 
To ensure that the DIKWP language can be interpreted for corresponding instructions in 
downstream tasks, it includes specialized keywords, in addition to the conventional 
mathematical and logical operators, which are used for execution and defining semantic 
boundaries, as shown in Table 3. 

D. DIKWP Hardwarelization of Software 

The main purpose of hardwarelization of software is to shift the implementation of 
certain software functions to hardware and integrate them onto chips. It is done in order 
to execute repetitive, time-consuming, and inflexible functions more efficiently. The 
DIKWP -AC chip represents an innovative computer architecture designed to achieve AI 
systems with consciousness. Its core concept places the processing of data, information, 
knowledge, wisdom, and purpose at the center, aiming to simulate human cognitive 
processes. The DIKWP microarchitecture is depicted in Figure 6, and this part will 
provide a design and description of different hardware module functionalities. 
1). Processor<The microarchitecture in the DIKWP architecture is mainly a processor 
that contains data, information, knowledge, wisdom, and purpose, but in terms of the 
functional division of processing, since the processing of low level functions is easier to 
implement as compared to the processing of high-level functions, the data processors in 
the DIKWP operator can be abstracted to existing general-purpose processors, i.e., the 
Turing computations that they are capable of performing on the data. And information 
processors are the higher-level operations that can be performed on specific semantic data 
streams, such as encoding and decoding of general video streams and audio streams, 
complex matrix operations, hash coding, and other operations. Whereas knowledge, 
wisdom and purpose are processed as high-level abstractions, the current implementation 
of their based processes at the circuit level needs to be followed by deeper research and 
practice. 



l Data Processing Unit (DPU): DPU is capable of simple computations that can be 
performed on data, such as arithmetic operations, logical operations, displacement 
operations, and other operations. In addition, the DPU transforms the input data into a 
machine-understandable form while searching for common semantics in it to standardize 
it into a single concept, a process that involves techniques such as data cleaning, feature 
extraction and pattern recognition. 

l Information Processing Unit (IPU): IPU provide higher level and more abstract 
computations than DPU, such as encoding, decoding, compression, and other operations, 
similar to the complex instruction’s architecture. The responsibility of its IPU is to classify, 
categories and organize the input information to form a higher level of understanding. 

l Knowledge Processing Unit (KPU): The task of a KPU is to construct complete 
concepts or patterns through observation, learning, and abstraction. the KPU builds a deep 
understanding of a particular domain or issue. This knowledge forms the cognitive 
foundation of the chip and provides support for more advanced intelligence and decision 
making. But currently, stand-alone KPU cannot exist and process knowledge content on 
their own. KPU needs to build understanding and interpretation of the world through other 
levels of content (DIKWP). 

l Wisdom Processing Unit (WPU): The essence of the function of the WPU is information, 
which reflects the results of the judgement of the value system. The WPU incorporates 
individual, ethical and moral factors into the decision-making process while considering 
multiple aspects such as feasibility and sustainability. However, the current hardware 
design for decision making for the fusion of individual cognition and objective rules needs 
to be investigated more deeply in subsequent studies. 

l Purpose Processing Unit (PPU): PPU provides a fine grained reconfigurable circuit 
framework that allows the content of external inputs to be constructed from the content 
of the purpose and executed as the corresponding circuit code. The input to a PPU can be 
abstracted into a function structure and corresponding parameters that need to be input, 
and the result of the processing is the output of the function execution. 

 

7 7-Finite state machine of DIKWP control unit 

2). DIKWP Control Unit: The ability of the DIKWP- AC chip to simulate human 
cognitive processes hinges on its efficient transformation and processing of DIKWP 
resources. The DIKWP Control Unit encompasses the logic for chip circuit control, which 
includes logical judgment and flow control of input content. Furthermore, the Control 
Unit is responsible for managing the transformation process of semantic stream from data, 

S0 S1

S2

S5 S6

Input
DIKWP

DIKWP
Conversion

Pending 
DIKWP

Output 
DIKWP

Processed
DIKWPS3

Uncertainty
Processing

S4 Semantic security
Conversion



information, knowledge, wisdom and purpose units, ensuring smooth transmission and 
conversion between these elements to meet the requirements of various modules and 
processing units. The Finite State Machine (FSM) of the DIKWP Control Unit, as shown 
in Figure 7, illustrates different. 

l S0 represents the initial input of semantic stream, denoting unprocessed resources. 
l S1 state corresponds to the status of parsing and allocation processing units, analogous to 

the decode instruction in CPU. 
l S2 represents the state of uncertainty processing, where the process involves handling 

uncertainty in data, information, knowledge, wisdom, or purpose within the DIKWP, 
aiming to minimize the gap between the actual outcome and the expected outcome under 
uncertain input conditions. 

l S3 is the transformation processing state of DIKWP, which includes intra-type and cross-
type transformations and compensations driven by purpose. 

l S4 signifies the state of semantic security processing, where semantic security 
conversions operate when DIKWP includes secure purposes. The conversion principle is 
to expand the semantic distance between non-stakeholders and the current DIKWP 
without disrupting the original semantics. 

l S5 indicates the status upon completion of the current phase, returning to the control unit. 
The control unit evaluates whether the processed content should be output or continued 
for further processing. If further processing is required, it returns to S1 for reallocation to 
processing units; otherwise, the processing result is output. 

l  S6 represents the completed state, with results output through the DIKWP Control Unit. 
Due to the characteristics of data flow processing, as shown in Figure 7, the control unit 
can only manage the internal scheduling of the processing unit but cannot handle global 
situations. Suppose we have two tasks (Task A and Task B), with Task A having longer 
execution time, and Task B having a shorter time but depending on the processing results 
of Task A. This situation may cause the processing unit for Task B to be in a paused state 
for some time. To mitigate such situations, we require an efficient top-level scheduling 
algorithm, such as out-of-order execution, to enhance the processor’s throughput. 
However, further research is needed to adapt the optimal scheduling algorithm effectively. 

 

Figure 8- Uncertainty Processing in DIKWP-AC 

 



 
Figure 9-A case of warning text 
3). The Uncertainty Processing Unit (UPU): In Figure 8, regarding the handling of 
uncertainty, we need to model it based on human reflex and processing of natural 
language content. We abstract human language processing into two levels: one is the 
second-signal system processing based on conditioned reflexes, represented by the arcs 
in Figure 8, which we define as surface-level processing. This surface-level processing is 
defined as the Cognitive Space on DIKWP. This type of surface processing can be 
abstracted as the direct reflection of specific semantics in natural language by the AC 
system. These reflexes are acquired through postnatal training and communication. 

We define the process of direct reflection as a function, denoted as 𝑓%@(𝐷𝐼𝐾𝑊𝑃!A)=
which represents the corresponding results of mapping DIKWP ’s content directly to the 
cognitive and semantic space: 

𝐷𝐼𝐾𝑊𝑃B3A = 𝑓%@(𝐷𝐼𝐾𝑊𝑃!A) 8 
For example, as depicted in Figure 9, when humans see a warning sign that reads 
"Slippery ground", they naturally become alert. Another factor is that since the input 
language content is incomplete, inconsistent, or imprecise, no specific reflexes are formed 
in the Cognitive Space, or multiple reflexes occur, resulting in either a null set or a set 
containing multiple DIKWP elements: 

𝑓%@(𝐷𝐼𝐾𝑊𝑃3)) = g ∅
{𝐷𝐼𝐾𝑊𝑃C#&, 𝐷𝐼𝐾𝑊𝑃C#', …	}

9 

According to equation 10, we define the thought function 𝑇(𝐷𝐼𝐾𝑊𝑃3))=which 
encompasses two processing steps. One step involves compensating for the uncertainty 
in the output of 𝑓%@ = (𝐷𝐼𝐾𝑊𝑃!A) , and the other involves the fusion and conversion of 
DIKWP elements under the influence of purpose-driven: 

{𝐷𝐼𝐾𝑊𝑃3)&, 𝐷𝐼𝐾𝑊𝑃3)', … } = 𝑇 k𝑓%@(𝐷𝐼𝐾𝑊𝑃3))l 10 

 For instance, humans exhibit conditioned reflexes when faced with mathematical 
problems, automatically generating simple calculation methods in their minds. However, 
more complex computations require deeper thinking, a process that occurs in the semantic 
space. Through the uncertainty handling of DIKWP, conceptual content is mapped to 
cognition, completing the transformation from conceptual space to cognitive space in the 
semantic space. Through specific training, even deep-level thinking and reasoning can 
become conditioned reflexes. For example, after systematic mathematical training, 
multiplication tables and derivative formulas become conditioned reflexes, eliminating 
the need for deeper reasoning and calculation. Therefore, the UPU, acting as the central 
controller for uncertainty handling, is responsible for processing incomplete, inconsistent, 
or imprecise inputs. It then utilizes existing DIKWP elements for evolution and inference, 
ultimately producing results. This process is a collaborative operation involving the UPU, 

Slippery
Ground

Slippery

Ground

Careful
Walk

Slowly

Avoid
Slippery

Area

Cognitive space

Information 
Node

Purpose Node



DIKWP control units, and DIKWP processing units. 
4). The Security Control Unit (SCU): The SCU primarily handles whether the output 
of the transformation process under the influence of purpose fulfills its security purpose. 
The hardware implementation of the SCU aims to prevent code tampering, thereby 
ensuring computational security, reliability, and efficiency. The primary function of the 
SCU is to guarantee semantic security for data, information, knowledge, wisdom, and 
purpose. It accomplishes this by establishing relationships that extend beyond closely 
related elements. The primary processing procedure of SCU is illustrated in Algorithm 1. 
When there is a secure purpose in the semantic stream, the SCU will expand the input 
semantic stream. The SCU computes the difference in the DIKWP semantic space before 
and after the expansion through uncertainty processing, denoted as 𝐷𝐼𝐾𝑊𝑃($??$#D in 
the algorithm. If 𝐷𝐼𝐾𝑊𝑃($??$#D is not an empty set, the expanded DIKWP semantic 
stream is output as DIKWP@ABCDE𝐷𝐼𝐾𝑊𝑃,!,E,?For example, in the DIKWP 
language, an information is represented as follows: 

𝐼- = 𝑀𝑒𝑡(𝐶𝑙𝑎𝑠𝑠𝑚𝑎𝑡𝑒𝑠(𝑁𝑎𝑚𝑒𝑠
= {F𝐿𝑒𝑒F,F𝑊𝑎𝑛𝑔F,F 𝑆𝑢𝑛F}), 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(′𝐻𝑎𝑖𝑘𝑜𝑢′))					11 

In equation 11, 𝐼- originates from the natural language statement: "Li, Wang, and Zhang 
are classmates; they meet in Haikou." If these three individuals do not wish others to 
know their exact meeting location, but still need to include the semantic information 
"Haikou" in their communication, the result after processing by the SCU is as follows: 

𝐼′- = 𝑀𝑒𝑡(𝐶𝑙𝑎𝑠𝑠𝑚𝑎𝑡𝑒𝑠(𝑁𝑎𝑚𝑒𝑠
= {F𝐿𝑒𝑒F,F𝑊𝑎𝑛𝑔F,F 𝑆𝑢𝑛F}), 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(′𝐻𝑎𝑖𝑛𝑎𝑛′))					12 

In equation 12, the semantics of "Hainan" include "Haikou," but in their cognitive space, 
it refers to Hainan. After processing by the SCU, their primary intent is not directly 
understood by third parties, thereby expanding the semantic space and increasing the 
difficulty of searching for the location. The DIKWP -AC platform alleviates some of the 
challenges faced when implementing DIKWP with traditional programming languages 
and narrows the cognitive gap in human-machine interactions. In future work, we will 
delve into the specific details of chip implementation and evaluate the adaptability of the 
software platform. Our proposed DIKWP integrated hardware-software platform will 
make the construction and operation of DIKWP -AC systems more convenient, reliable, 
and efficient. 

V. Conclusion 

Our research, based on the DIKWP -AC theory, has analyzed the current constraints 
and challenges in the implementation of DIKWP -AC systems in both hardware and 
software. Consequently, we propose the DIKWP hardware architecture and the integrated 
DIKWP chip encompassing storage, computation, and transmission. Within the DIKWP 
chip, we introduce the microarchitecture of DIKWP processing unit, UPU, and SCU 
based on DIKWP semantic communication. Furthermore, to enhance the versatility of 
the DIKWP chip, we present the DIKWP language and its associated runtime 
environment, creating a software and hardware ecosystem for DIKWP. This platform, to 



some extent, mitigates the challenges associated with implementing DIKWP using 
traditional programming languages and reduces the cognitive gap in human-computer 
interaction. In future work, we will delve into the specific details of chip implementation 
and assess the adaptability of the software platform. We present DIKWP software-
hardware integrated platform will make the construction and operation of DIKWP -AC 
systems more accessible, reliable, and efficient. 

Refrence： 

[1] C. Thon, B. Finke, A. Kwade, et al. Artificial intelligence in process engineering. 
Advanced Intelligent Systems, vol. 3, no. 6, pp. 2000261, 2021.  
[2] W. Liang, G. A. Tadesse, D. Ho, et al. Advances, challenges and opportunities in 
creating data for trustworthy ai. Nature Machine Intelligence, vol. 4, no. 8, pp. 669–677, 
2022.  
[3] Y. Duan, Beyond Attention: Attention is NOT all you need. September 2023, 
DOI:10.13140/RG.2.2.10379.05920.  
[4] Y. Duan. Relativity of Consciousness and DIKWP. August 2023, 
DOI:10.13140/RG.2.2.36142.89922. 
[5] Y. Duan, L. Shao, G. Hu, et al. Specifying architecture of knowledge graph with data 
graph, information graph, knowledge graph and wisdom graph. SERA 2017, pp. 327–
332, IEEE, 2017. 
[6] Y. Duan, Trans-modal, trans-scale, and meso-scale subjective cognitive semantic 
modeling and analysis for data, information, and knowledge overload, April 2020, 
DOI:10.13140/RG.2.2.31481.01125.  
[7] Y. Huang and Y. Duan. Towards purpose driven content interaction modeling and 
processing based on dikw. SERVICES 2021, pp. 27–32, IEEE, 2021.  
[8] S. Ambrogio, P. Narayanan, A. Okazaki, et al. An analog-ai chip for energyefficient 
speech recognition and transcription. Nature, vol. 620, no. 7975, pp. 768775, 2023.  
[9] J. Barba, M. J. Santofimia, J. Dondo, et al. Fpga acceleration of semantic tree 
reasoning algorithms. Journal of Systems Architecture, vol. 61, no. 3-4, pp. 185196, 2015.  
[10] Y. Chen, M. Nazhamaiti, H. Xu, et al. All-analog photoelectronic chip for highspeed 
vision tasks. Nature, 2023, DOI:10.1038/s41586-023-06558-8.  
[11] H. Thimbleby. Modes, wysiwyg and the von neumann bottleneck. IEE Colloquium 
on Formal Methods and Human-Computer Interaction: II, pp. 4–1, IET, 1988.  
[12] Migliato Marega G, Zhao Y, Avsar A, et al. Logic-in-memory based on an atomically 
thin semiconductor. Nature, 587(7832): 72-77, 2020.  
[13] Y. Duan, L. Shao, and G. Hu. Specifying knowledge graph with data graph, 
information graph, knowledge graph, and wisdom graph. IJSI 2018, vol. 6, no. 2, pp. 10–
25, 2018.  
[14] Y. Duan. Existence Computation and Reasoning (EXCR) and Essence Computation 
and Reasoning (ESCR) based revelation of the semantics of point, line and plane. 
February 2022, DOI: 10.13140/RG.2.2.32383.89767.  
[15] Y. Duan, X. Sun, H. Che, et al. Modeling Data, Information and Knowledge for 
Security Protection of Hybrid IoT and Edge Resources. IEEE Access, vol. 7, pp. 99161-



99176, 2019.  
[16] H. Gao, Y. Duan, L. Shao. et al. Transformation-based processing of typed resources 
for multimedia sources in the IoT environment. Wireless Netw 27, 33773393 2021.  
[17] Y. Li, Y. Duan, Z. Maamar, et al. Swarm differential privacy for purpose-driven data-
information-knowledge-wisdom architecture. Mobile Information Systems, vol. 2021, pp. 
1–15, 2021.  
[18] Y. Huang, Y. Duan. Fairness Modelling, Checking and Adjustment for Purpose 
Driven Content Filling over DIKW. HPCC/DSS/SmartCity/DependSys 2021, pp. 2316-
2321, IEEE, 2021.  
[19] T. Hu and Y. Duan. Modeling and measuring for emotion communication based on 
dikw. SERVICES 2021, pp. 21-26, IEEE, 2021.  
[20] Y. Duan, V.T. Pham, M. Song, et al. Ultimate of Digital Economy: From Asymmetric 
Data Economy to Symmetric Knowledge and Wisdom Economy. SoMeT, pp. 85-96, 
2023.  
[21] Y. Mei, Y. Duan, L. Yu, et al. Purpose Driven Biological Lawsuit Modeling and 
Analysis Based on DIKWP. CollaborateCom 2022, pp. 250-267, Springer, 2022.  
[22] Z. Guo, Y. Duan, L. Chen, et al. Purpose Driven DIKW Modeling and Analysis of 
Meteorology and Depression. HPCC/DSS/SmartCity/DependSys 2022, pp. 21262133, 
IEEE, 2022.  
[23] Y. Mei, Y. Duan, L. Chen, et al. Purpose Driven Disputation Modeling, Analysis and 
Resolution Based on DIKWP Graphs. HPCC/DSS/SmartCity/DependSys 2022, pp. 
2118-2125, IEEE, 2022. 
[24] Y. Duan. The Operating Principles of the DIKWP Artificial Consciousness Chip. 
September 2023, DOI: 10.13140/RG.2.2.24718.33602.  
[25] Y. Duan. DIKWP Chip vs. Pulse Chip vs. Quantum Chip: The Future Path of 
Artificial Consciousness Computing. September 2023, DOI: 
10.13140/RG.2.2.27234.91846.  
[26] B.M. Lake, M. Baroni, Human-like systematic generalization through a 
metalearning neural network. Nature, 2023, DOI: 10.1038/s41586-023-06668-3.  
[27] Y. Wang, Y. Duan, M. Wang, et al. Resource Adjustment Processing on the DIKWP 
Artificial Consciousness Diagnostic System. DIKW 2023, 2023.  
[28] Y. Duan. DIKWP-AC Artificial Consciousness: Fusing Physiology and Mathematics. 
July 2023, DOI:10.13140/RG.2.2.26720.87040. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
FG<DIKWP 团队HIJKLMN 
意图OPQ数据K信息K知识K智慧RSTUVWXY<DIKWP-TRIZ 
 
LMNZ[ 

l DIKWP-AC%&'(\]^_`aTb% 
l AGI-AIGC-GPTcd DIKWP\]^_efgVhi 
l #$%&'()*Tb%\ArtificialConsciousness2023,AC2023,AC2024) 
l jklmKnoKp(Kqr)*Tb%\IEEEDIKW2021K2022K2023_ 
l stu]^0vwxy“z,wx{|}~��”\��no��_���� 
l ��%&q���TU����]j�\H��%&q��_��i 
l �jV�XY)����\����a_������i 
l ���TU� \no����_[¡¢�£i 
l ]j¤¥V�¦§)�����¨©��i 
l ]j%&q�ª«¬­V�®¯��������¨©��i 
l ������°±"w�²1³´¢Tµ)* 100¶· 
l ����¸w�&¹i\º��]j»�%_ 
l ±"�j°AI+·V�V¥)��¼V'� 


