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When modeling a given type of data, we consider it to involve two key aspects: 1) identifying relevant

elements (e.g., image pixels or textual words) to a central element, as in a convolutional receptive field,

or to a query element, as in self-attention, and (2) encoding these tokens effectively. Self-attention can

adaptively identify these elements but relies on absolute positional embedding for structural

representation learning. In contrast, convolution encodes elements in a relative manner, yet their

fixed kernel size limits their ability to adaptively select the relevant elements. In this paper, we

introduce Translution, an operation that unifies the adaptive identification capability of self-attention

and the relative encoding advantage of convolution. However, this integration leads to a substantial

increase in the number of parameters, exceeding most currently available computational resources.

Therefore, we propose a lightweight variant of Translution, named  -Translution. Experiments on

computer vision and natural language processing tasks show that Translution (including  -

Translution) achieves superior accuracy compared to self-attention, demonstrating its potential to

build the next generation of deep neural networks. The code is available at

https://github.com/hehefan/Translution.

Corresponding author: Hehe Fan, hehefan@zju.edu.cn

1. Introduction

Recent evidence suggests that directly scaling up deep neural networks, particularly Transformers[1][2][3]

[4], with additional data and parameters is encountering diminishing returns. Leading Artificial

Intelligence (AI) labs have similarly noted slower-than-anticipated improvements in next-generation
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models, despite extensive training efforts. Given the saturation of available data and limitations imposed

by current scaling laws, it is crucial now to reflect on past successes and pursue the design of innovative

neural networks to sustain future progress in deep learning.

When employing deep neural networks to model a specific type of data, the process can be decomposed

into two key aspects: 1) identifying relevant data elements and 2) encoding these elements into effective

representations. When using convolutional neural networks[5][6][7][8][9]  to process images, the basic

element is pixel. When using Transformers, the element is word for natural language processing and

patch for visual tasks.

1.1. Identification of Relevant Elements

In convolution, as shown in Figure  1  (a), the relevant element identification step is handled by

convolutional filters (kernels) with a fixed local receptive field. This fixed kernel defines a neighborhood

that is considered relevant to the center. For visual data like images, such local focus is often effective

because spatially adjacent pixels tend to be related (e.g., forming parts of the same object). However, the

rigid nature of a fixed-size kernel makes convolution inevitably cover irrelevant pixels, especially near

object boundaries or in background areas that fall inside the window.

In contrast, as shown in Figure 1 (b), self-attention[1] can adaptively identify relevant regions. Instead of

being limited to a predetermined locality, it allows the model to dynamically attend to relevant regions.

This means that self-attention can focus on important features regardless of their physical distance. This

capability provides greater flexibility compared to the convolution’s fixed receptive field.
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Figure 1. Difference between convolution and self-attention in identifying relevant elements (blue patches)

for the kernel center or query element (yellow patch). Here, convolution is assumed to operate on image

patches. 1) Convolution utilizes a fixed kernel size to define a neighborhood of elements considered relevant,

inevitably including some irrelevant regions, particularly near object boundaries or within background areas

inside the window. The fixed receptive field in convolution can be interpreted as a special case of attention,

where the attention score is set to 1 within the receptive field and 0 outside it. 2) Self-attention adaptively

identifies relevant elements by assigning greater attention scores to areas with higher relevance, thereby

mitigating the inclusion of noisy or irrelevant information.

1.2. Encoding of Relevant Elements

When it comes to encoding the structure from these relevant elements, convolution and self-attention

employ different strategies. As shown in Figure 2 (a), a convolutional kernel learns distinct parameters 

 for each relative direction and distance within its receptive field. In other words, the filter has

separate parameters    for each offset    from the center. This design enables convolution to

encode local structure relatively — capturing orientation and distance relationships.

In contrast, as shown in Figure 2 (b), self-attention uses three shared sets of parameters  ,   and 

  to process inputs for all positions. Consequently, the query, key and value of self-attention do not

encode whether one patch is to the left or right of another. To introduce positional information,

Transformer incorporates absolute positional embeddings into the input features at the outset. Although

these embeddings enable Transformer to infer order or spatial relationships, they introduce noise into

each token’s representation. The absolute position information becomes part of the input features.

Consequently, when the same object moves to a different location, Transformer may struggle to

recognize it.

{ }W ,δx δy

W ,δx δy ,δx δy

Wq Wk

Wv
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Figure 2. Difference between convolution and self-attention in encoding relevant elements: consider the

scenario where convolution and self-attention are capturing the structure of a circle. 1) Convolution learns

separate parameters   for each offset, where  , from the kernel center, allowing it to

effectively encode relative local structures. Thus, when the circle appears in a different location, it is still

readily recognized due to this relative awareness. 2) Self-attention incorporates absolute position into each

token’s representation and uses position-irrelevant parameters   across all tokens for

computing query, key and value, respectively. While this method facilitates general processing, the inclusion

of absolute positional embeddings makes it more challenging to recognize the circle when it is moved to a

different location.

1.3. Unification of Convolution and Transformer

In summary, convolution encodes structure through fixed local filters with position-specific weights,

whereas self-attention relies on adaptive global attention and requires absolute positional encoding to

capture order or spatial structures.

In this paper, we introduce Translution, a new type of operation that unifies the adaptive identification

capability of self-attention with the relative encoding advantage of convolution. Specifically, Translution

employs a convolution-style approach that assigns separate parameters (matrices) to each distance and

direction when computing the query, key and value. This design enables Translution to effectively encode

relative structures.

However, this unification leads to a significant increase in the number of parameters and exceeds most

currently available computational resources. Therefore, we propose a lightweight variant of Translution,

named  -Translution, which significantly reduces the number of parameters. This variant achieves

lower accuracy than the “ideal” (original) Translution but better accuracy than self-attention.

{ }W ,δx δy , ∈ [−1, 1]δx δy

W ∈ { , , }Wq Wk Wv
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As a fundamental operation, we investigate whether Translution can outperform self-attention. We

conduct experiments on two widely-used Transformer architectures: Vision Transformer (ViT)[4]  for

computer vision tasks and Generative Pre-trained Transformer (GPT)[2][10][11]  for natural language

processing tasks. Experiments demonstrate that Translution and  -Translution surpass self-attention in

terms of accuracy.

2. Related Work

Transformer[1][2][3][4][12][13] eschews recurrence (as used in recurrent neural networks) and kernel size (as

used in convolutional neural networks), instead employing self‐attention for relevant region

identification. Because it has no built‐in notion of order, Transformer incorporates explicit absolute

positional embeddings into token embeddings, enabling the model to utilize sequence order. Subsequent

work has explored “relative attention”[14][15][16][17][18][19][20], which integrates relative position

information into self‐attention. They can be categorized into three families: 1) Relative positional vector.

Shaw et al.enhanced Transformer for language modeling by adding learnable relative positional vectors

into the key and value computations, respectively[14]. BoTNet[21] and HaloNet[22] extended this approach

to two dimensions for image processing by adding learnable relative positional vectors into key. 2)

Relative positional scalar. Swin Transformer[12], CoAtNet[20], and ConViT  d’Ascoli et al.[23]  incorporate a

learnable relative positional bias (a scalar) into the attention score. In these methods, the original self-

attention can be regarded as content attention, which measures relationships from the token-feature

perspective, while the additional relative positional bias can be regarded as position attention, which

measures relationships from the token-position perspective. 3) Rotary position embedding.

RoFormer[24]  introduces a rotary position embedding mechanism, which encodes relative positional

information by applying a rotation operation in the Query and Key representation space. Unlike these

existing methods, Translution employs a convolution-style approach that uses relative positional

matrices for query, key and value computation. Section  D provides a formal comparison of these

methods.

Convolutional neural networks[5][6][7][8][9] have been the backbone of deep learning for years. By using

small, shared kernels and pooling, convolutional neural networks efficiently capture local patterns.

Recent architectural developments integrate self-attention with convolution. For instance,

Conformer[25]  combines convolution layers and self-attention layers to capture both local and global
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dependencies in audio sequences. Similarly, CeiT[26] uses convolutions to extract low-level features and

self-attention to model long-range dependencies. Unlike these architectural methods, Translution

operates at the basic module or layer level, blending the advantages of self-attention and convolution into

a unified fundamental operation.

3. Preliminary: Convolution and Self-attention

3.1. Convolution

Suppose   denotes the feature or representation at location   in an image of height   and

width  , where    is the number of the input feature channels. Convolution is designed to capture the

local structure centered at   with a fixed kernel size  ,

where    denotes the learnable parameters corresponding to the displacement  , 

  indicates the output feature dimension, and    denotes matrix multiplication. By assigning a set of

parameters for each offset within the receptive field, convolution is able to discern direction and distance,

and capture the local structure relatively. This means that when the absolute location of an object

changes, it can still capture the same structure. However, convolution employs a rigid method to identify

relevant regions, i.e., using a fixed-size window, making it inevitably include irrelevant pixels or regions

— particularly near object boundaries or in background areas within the window.

3.2. Self-attention

Suppose    represents the feature or representation of the  -th patch at location  .

Transformer[1] first incorporates the embedding of absolute position into the input  , as follows,

Then, self-attention performs two separate linear projections on the feature to generate query 

 and key  , where   is the dimension for query or key,

∈fx,y R
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where  . Subsequently, scaled dot-product attention is computed for each query, and a

softmax function is applied to normalize the attention weights for a query across all positions,

where  . Next, self-attention conducts another linear projection on the input feature to

generate value  , as follows,

where  . Finally, the output is computed as a weighted sum of the values, i.e.,

where  . In this way, self-attention can adaptively search for related regions, providing greater

flexibility than methods that use local fixed-size windows. However, unlike convolution, which learns a

feature encoding for every direction and distance, self-attention does not encode the structure in a

relative manner.

3.3. Translution

Translution is designed to integrate the adaptive related region identification capabilities of self-

attention with the relative encoding strengths of convolution. Specifically, as shown in Figure  3,

Translution employs a convolution-style formulation by assigning different parameters to compute

query, key, and value, respectively, as follows:

where  , represent the learnable parameter matrices for the query, key,

and value corresponding to the displacement  .
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Figure 3. Comparison of self-attention and Translution. 1) Self-attention employs three shared sets of

weights, i.e.,  ,  , and  , across all patches to compute query, key, and value, respectively. 2)

Translution uses separate parameters for each offset (direction and distance), i.e.,  ,   and 

, to encode relative structures.

Translution unifies convolution and self-attention

The fixed receptive field in convolution can be interpreted as a special case of attention, where the

attention score is set to 1 within the receptive field and 0 outside it, as shown in Figure 2. The weights 

,  , and   in self-attention serve as shared linear projections that are uniformly applied across all

spatial directions and distances. Consequently, Translution integrates the functionalities of convolution

and self-attention, as follows,

In other words, convolution and self-attention can be viewed as specific instances of Translution, where

convolution simplifies the attention mechanism and self-attention omits the encoding of direction and

distance.
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3.4.  -Translution

Suppose there are    input image patches. The relative encoding method in Translution requires 

  parameters. Specifically, it requires one parameter matrix  , 

  or    for each relative position  , where 

  and  . This approach leads to

excessive parameter demands, making it impractical for most computational devices currently. For

instance, in the ViT/16 architecture[4]  with input resolution  , we have  ,

resulting in   distinct weight matrices for query, key or value. To reduce the

number of parameters, we propose a variant of Translution, i.e.,  -Translution, which decreases both the

input dimension   and the output dimension   of each  ,  , and  , as follows:

where  ,  ,  , and  , 

. Smaller values of   and   will significantly reduce the number of parameters.

However, setting    and    too small may overly compress the query, key and value information,

negatively impacting performance. To preserve the information, we incorporate the query, key and value

computation mechanism of self-attention into  -Translution. Specifically, the updated computation is

defined as follows:

In this way,  -Translution not only possesses relative modeling capability but also reduces the number of

parameters.

4. Experiment

In this section, as a fundamental operation, our primary objective is to compare Translution with self-

attention, rather than to achieve state-of-the-art performance through specialized network architectures
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or extensive training techniques. To this end, we conduct experiments using two widely adopted

Transformer architectures:

Vision Transformer (ViT)[4] for computer vision tasks.

Generative Pre-trained Transformer (GPT)[2][10][11]  for natural language processing tasks. Section  C

demonstrates how to apply Translution to text modeling.

Table 1 provides an overview of various architecture configures. We substitute self-attention in ViT and

GPT with Translution, while maintaining the remaining architecture unchanged.

Architecture Depth (#Layers) Embedding Dim (Hidden size) #Heads MLP Dim (Feedforward)

A 6 192 3 768

B 12 192 3 768

C 12 384 6 1,536

Table 1. Specifics of architecture configures used in this paper.

Due to limited computational resources, our evaluation is primarily conducted on small- and medium-

scale architectures. Large-scale evaluation can be performed when single-GPU memory capacities

approach approximately   TB. All training starts from scratch. The default compression dimensions

for the relative encoding in  -Translution are set as  .

4.1. Image Classification with ViT

4.1.1. Dynamic MNIST

To evaluate the capability of modeling relative structure, we synthesize a dynamic MNIST dataset[27][28],

where digits (originally sized   pixels) move within a   pixel area, as illustrated in Figure 4.

For comparison, we also create a static MNIST dataset of the same size, where digits remain fixed at the

center of each image.

2 ∼ 3

α = = 8C1 C2

28 × 28 84 × 84
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Figure 4. Examples of static and dynamic MNIST. Static MNIST digits are fixed at the center of images,

whereas dynamic MNIST digits are randomly positioned within the images.

Arch. Method #Params Static Static Dynamic Dynamic Static Dynamic

ViT-A/12

Self-attention[1] 2.7 M 98.48 92.64 18.18

-Translution (relative dim = 8) 4.6 M 98.48 97.31 34.90

Translution 116.2 M 98.60 97.35 36.40

ViT-A/7

Self-attention[1] 2.7 M 98.52 93.90 19.94

-Translution (relative dim = 8) 8.3 M 98.81 98.57 40.05

Translution 355.0 M 98.91 98.60 48.07

Table 2. Top-1 accuracy (%) on different MNIST settings with the ViT-A architecture.   denotes that

models are trained on dataset   and evaluated on dataset  .

As shown in Table  2, all models achieve high accuracy when trained and evaluated on static MNIST.

However, when digit locations vary, the self-attention’s accuracy significantly decreases, whereas

Translution (including  -Translution) still maintains high accuracy. This is because absolute positional

embedding makes digit locations part of its representation. Consequently, when digits shift positions,

networks may become confused and fail to recognize digits accurately. In contrast, Translution employs

relative encoding, effectively capturing digit structures independently of their absolute locations. This

significantly reduces sensitivity to location variability, demonstrating Translution’s superior capability in

modeling relative structures. However, when training on static MNIST, the uniformly black image

→ → →

α

α

A → B

A B

α
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background causes some   not to be well trained. As a result, when evaluated on dynamic MNIST,

Translution fails to achieve very high accuracy.

W ,δx δy

qeios.com doi.org/10.32388/Q6KC0C.2 12

https://www.qeios.com/
https://doi.org/10.32388/Q6KC0C.2


Architecture Method #Parameters Top-1 Top-5

ViT-A/56

Self-attention[1] 4.7 M 46.28 71.17

-Translution (relative enc dim = 8) 5.3 M 48.36 73.31

Translution 38.5 M 52.41 76.50

ViT-B/56

Self-attention[1] 7.4 M 53.75 77.59

-Translution (relative enc dim = 8) 8.7 M 55.87 79.16

Translution 75.0 M 59.51 81.97

ViT-C/56

Self-attention[1] 25.3 M 64.15 84.95

-Translution (relative enc dim = 8) 30.5 M 66.54 86.49

Translution 296.0 M 68.05 88.62

Self-attention[1] 3.5 M 57.63 80.96

ViT-A/32 -Translution (relative enc dim = 8) 5.3 M 60.26 83.07

Translution 116.9 M 66.03 86.01

Self-attention[1] 6.1 M 66.13 86.87

ViT-B/32 -Translution (relative enc dim = 8) 9.9 M 67.63 87.96

Translution 223.1 M 70.63 90.10

Translution runs out of memory under the following architectures.

ViT-A/32

Self-attention[1] 22.9 M 73.62 91.12

-Translution (relative enc dim = 8) 38.0 M 74.19 91.52

ViT-A/16

Self-attention[1] 3.0 M 64.71 86.25

-Translution (relative enc dim = 8) 10.7 M 69.28 89.24

ViT-B/16

Self-attention[1] 5.7 M 73.51 91.89

-Translution (relative enc dim = 8) 21.1 M 76.20 93.04

Table 3. Accuracy (%) on the ImageNet-1K dataset with patch sizes of 56 and 32. Training is conducted from

α

α

α

α

α

α

α

α
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scratch without pretraining on external datasets, with a batch size of 256.

4.1.2. ImageNet

ImageNet-1K Deng et al.[29] is a widely used dataset for computer vision research, particularly in the area

of image classification. It contains 1,000 object categories (classes), each with approximately 1,300

training images and 50 validation images, amounting to about 1.28 million training images and 50,000

validation images in total. Images are resized to  . As shown in Table  3, compared to self-

attention[1], Translution and  -Translution effectively improve ImageNet classification.

We compare Translution with existing positional encoding strategies, which typically represent

positional information by introducing additional positional biases, as scalars Liu et al.[12]; d’Ascoli et al.

[23] or vectors[1][14]. The formal differences between these approaches are detailed in Section D. As shown

in Table 4, compared to existing relative encoding methods, Translution achieves a notable improvement

in accuracy.

Method #Parameters Top-1 Top-5

Self-attention w/o Pos Emb 4.69 M 42.49 67.39

Self-attention w/ Pos Emb[1] 4.69 M 46.28 71.17

Relative key vector[14] 4.74 M 46.39 71.25

Relative value vector[14] 4.74 M 46.35 71.04

Swin Transformer[12] 4.69 M 46.36 71.31

ConViT[23] 4.69 M 46.39 71.44

RoFormer[24] 4.69 M 46.65 71.51

-Translution 5.33 M 48.36 73.31

Translution 38.53 M 52.41 76.50

Table 4. Comparison of different positional encoding strategies. Results are reported on ImageNet-1K with

ViT-A/56, trained from scratch (no external pretraining) using a batch size of 256.

224 × 224

α

α
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4.1.3. Ablation Study

1) Is the improvement of Translution (including  -Translution) caused by the introduction of

additional parameters or the proposed modeling approach based on relative encoding?

Compared to self-attention, which employs three parameter matrices  ,  ,    to compute query,

key and value, Translution uses three groups of parameter matrices  ,  ,    for

relative encoding, thus introducing more parameters.

To investigate whether the improvement arises from the increased parameter count or from the relative

encoding method itself, we conducted the following experiment:

where  ,  , and indices 

  and  . Specifically, for each pair of patches  , a distinct parameter

matrix is employed to calculate query, key or value, rather than using the shared offset-based matrices.

Under this modification, Translution transitions to absolute modeling. Moreover, this adjustment

significantly increases the number of parameter matrices from   to  .

Method Encoding #Parameters Static Static Dynamic Dynamic Static Dynamic

-Translution

relative 4.6 M 98.48 97.31 34.90

absolute 28.7 M 98.42 96.18 25.37

Translution

relative 116.2 M 98.60 97.35 36.24

absolute 1660.9 M 98.55 53.79 11.23

Table 5. Investigation of whether the improvement of Translution arises from the additional parameters or

the proposed relative encoding method ( ,  ,  ). Because the absolute encoding method (

,  ,  ) consumes a large number of parameters, Translation with ViT-A/7 encounters the out-of-

memory issue. Therefore, experiments are conducted using ViT-A/12.

As shown in Table  5, although absolute encoding involves significantly more parameters, it achieves
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lower accuracy than relative encoding. Therefore, simply increasing the number of parameters does not

lead to performance improvements.

2) Impact of relative encoding dimension on the performance of  -Translution.

To reduce parameter usage,  -Translution employs smaller input ( ) and output ( ) dimensions for 

,    and  . In our experiments, we set the relative encoding dimensions as 

. This section investigates the impact of varying   and   on performance. As shown in

Table 6, increasing the relative encoding dimension improves accuracy but results in more parameters.

Therefore, the relative encoding dimension presents a trade-off between efficiency and effectiveness for 

-Translution. (When  , it reduces to self-attention without positional embedding.)

Relative Enc Dim #Params Top-1 Top-5 Relative Enc Dim #Params Top-1 Top-5

4.7 M 42.49 67.39 5.3 M 48.36 73.31

4.8 M 46.10 71.29 7.0 M 48.91 73.65

4.9 M 47.61 72.18 13.8 M 50.07 74.84

Table 6. Impact of relative encoding dimension on the performance of  -Translution with ViT-A/56.

4.2. Natural Language Modeling with GPT

To compare Translution and Transformer for natural language processing, we conduct experiments

using the OpenWebText dataset[30], an openly available reproduction of OpenAI’s proprietary WebText

dataset used for GPT-2[10]. OpenWebText contains 9 billion training tokens and 4 million validation

tokens, with a vocabulary size of 50K. We use perplexity, defined as the exponentiation of the cross-

entropy loss, as the evaluation metric, where a lower perplexity indicates stronger language modeling

performance. Since the most powerful GPU available to us has 80GB memeory, Translution can handle at

most a text sequence of length 160 with the GPT-A architecture. Therefore, we conduct the Translution

experiment with sequences of length 160. As shown in Table  7, Translution achieves lower perplexity

compared to Transformer, demonstrating its effectiveness in natural language modeling.

α
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Architecture      Method #Parameters Perplexity 

GPT-A-160

Self-attention[1] 22.0 M 60.40

-Translution (relative enc dim = 8) 23.7 M 57.97

Translution 127.5 M 56.26

Translution runs out of memory under the following architectures.

GPT-B-160

Self-attention[1] 24.7 M 54.82

-Translution (relative enc dim = 8) 28.2 M 52.72

GPT-C-160

Self-attention[1] 60.0 M 39.88

-Translution (relative enc dim = 8) 74.0 M 39.25

Table 7. Perplexity on OpenWebText using a batch size of 8 and a sequence length of 160.

5. Conclusion

In this paper, we introduce Translution, a new operation that unifies self-attention and convolution for

adaptive and relative modeling. Experiments on computer vision and natural language processing tasks

demonstrate the effectiveness of Translution.

However, due to current limited computational resources, the validation in this paper is preliminary. We

encourage the community to further evaluate Translution using larger-scale frameworks and datasets in

diverse scenarios to verify its broader applicability, particularly when single GPUs equipped with over 

 TB of memory are available.

Given Translution’s substantial parameter consumption, it is worthwhile to explore optimized variants,

such as  -Translution. For instance, certain relative positions may share the same parameter, especially

when the distance between elements is too long. At the same time, extending Translution to 3D, video,

molecule, and other modalities of processing holds significant promise.

As a fundamental operation, Translution can be employed beyond the ViT and GPT architectures. More

effective and efficient architectures for Translution merit further exploration in future.

↓

α

α

α

2 ∼ 3

α
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Appendix A. Default Notation

A scalar A vector

A matrix A tensor

Scalar multiplication Matrix multiplication

Appendix B. General Translution

The calculation of the query, key and value in Translution, i.e., Eq.  (1), assumes that element positions

(e.g., image patches or textual words) are discrete. In this setting, it is feasible to assign a different set of

parameters for each direction and distance. However, if the positions are continuous variables, e.g., in

point clouds, it becomes impractical to assign individual weights for each direction and distance, as there

are infinitely many possible variations in continuous space. In this case, it may be necessary to design

new functions for the relative encoding.

Suppose   denotes the position of the  -th element. For language,   can represent the index of the  -th

word in the text. For images,   corresponds to the row and column indices of the  -th patch. For point

clouds,    refers to the 3D coordinates of the  -th point. A more general version of Translution can be

formulated as follows,

where    denotes the attention score measuring the relevance of the  -th element to the  -th

element, and   is a function that encodes relative positional information into the element

features (  denotes the dimensionality of the position,    is the number of input feature channels, and 

 is the number of output feature channels). When applying Translution to a new type of data, the key is

to develop effective   and   functions.

Appendix C. 1D Translution for Natural Language Processing

In the main text, we demonstrate how to apply Translution for image modeling. That Translution can be

viewed as a 2D operation because the relative encoding involves two spatial directions. However, in

a,

A
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natural language, relative encoding operates along a single dimension, which makes Translution a one-

dimensional model when applied to text.

Figure 5. When modeling text, Translution operates in a 1D setting. For a sequence of length  , it employs

separate parameters for each positional offset (considering both direction and distance), i.e., 

,   and  , to

encode relative language structure.

Suppose   denotes the embedding (or representation) of the  -th token within a text sequence of

length  , where    represents the embedding dimension. As shown in Figure  5, 1D Translution is

designed to integrate adaptive identification of related tokens with relative structural encoding for

language modeling. Specifically, Translution retains the self-attention mechanism of the Transformer

but employs distinct parameters for computing the Query, Key and Value representations, as follows,
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where   denotes the learnable parameters for displacement  .

Causal 1D Translution

For autoregressive tasks, such as language modeling in GPT, a causal variant is typically required to

ensure future tokens remain unseen during inference. In causal 1D Translution, each token attends only

to itself and preceding tokens, guaranteeing that predictions rely exclusively on past context, as follows,

Figure 6. Illustration of causal 1D Translution. For a sequence of length  , it employs   parameter matrices

to encode relative language structure. Compared to the original 1D Translution, the causal variant reduces the

number of parameters required to compute Query, key and Value by half.
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As shown in Figure 6, compared to the original variant, causal 1D Translution reduces by half the number

of parameters needed to compute the query, key and value representations.

Appendix D. Memory-Efficient Implementation of  -Translution:

Optimizing Runtime Memory Usage

Recall that  -Transformer is defined as follows,

where  ,  ,  ,  , and  ,  . Although

this variant significantly reduces the number of parameters, it still demands considerable runtime

memory. Specifically, as shown in Figure  3, the resulting value tensor of Translution is  ,

which is considerably larger than the Transformer’s value matrix  . To address this issue, we

implement  -Translution as follows,

This reformulation reduces the peak runtime memory usage from    to 

, where  , thus significantly alleviating memory demands during

computation.

Appendix E. Comparison with Existing Position Modeling Methods

Existing methods typically encode positional information by introducing additional positional biases

(either scalars or vectors). In this paper, inspired by convolution, we propose an alternative approach that

employs offset-based matrices for relative encoding. In this section, we provide a detailed comparison

between these approaches. Suppose   represents the feature or representation of the  -th patch,

located at   in an image composed of   patches.

1. Baseline (Self-attention w/o Positional Embedding)

We consider the self-attention without position embedding as the baseline, formulated as follows:
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2. Transformer (Self-attention with Positional Embedding)

Most Transformers, including the original Transformer[1], employ position embedding to incorporate

positional information. Specifically, they integrate absolute positions into element representations,

formulated as follows:

3. Relative Key Vector

Shaw et al.[14]  enhanced Transformer for language modeling by adding learnable relative positional

vectors into the key computations. BoTNet[21] and HaloNet[22] extended this approach to two dimensions

for image processing by adding learnable relative positional vectors into the key computation. This can

be formulated as follows,
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where  .

4. Relative Value Vector

Shaw et al.[14] also extended the above relative vector method to the value computations, as follows:

5. Relative Positional Scalar

Swin Transformer[12]  and CoAtNet[20]  incorporate a learnable relative positional bias (a scalar) into the

attention score. In these methods, the original self-attention can be regarded as content attention, which

measures relationships from the token-feature perspective, while the additional relative positional bias

can be regarded as position attention, which measures relationships from the token-position perspective.

Formally, this can be expressed as follows:

∈r ,δx δy R
1×C ′
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where  . ConViT[23] introduces Gated Positional Self-Attention (GPSA), a variant of self-attention

that incorporates a positional inductive bias. Moreover, a learnable gating parameter in each attention

head controls the balance between positional and content-based attention, as follows,

where   is a trainable vector for embedding,   is the relative positional encoding,   is a learnable gate

and   is the Sigmoid function.

6. Rotary Position Embedding

Unlike the above vector- and scalar-based methods, RoFormer[24]  proposes a rotation-based positional

encoding method that is applied directly to queries and keys. As a result, attention scores depend solely

on relative distances, eliminating the need to explicitly store a positional vector or scalar, as follows,

∈ Rb ,δx δy

w r∥δ∥ λ

σ
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where   is a rotary position embedding function.

7. Relative Positional Matrix (Translution)

Inspired by convolution, we propose Translution that performs matrix multiplication to produce a vector

output that encodes displacement or offset information, defined as follows:

Table 8 provides a summary of various positional encoding strategies.

rotary(⋅)
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Method

w/o Pos Emb Baseline

w/ Pos Emb Transformer[1]

Relative Positional Vector

Key Shaw et al.[14], BoTNet[21], HaloNet[22], etc

Value Shaw et al.[14]

Relative Positional Scalar

w/o gating Swin Transformer[12], CoAtNet[20], etc

w/   gating ConViT[23]

Rotary Position Embedding RoFormer[24]

Relative Positional Matrix

-Translution

Translution

Table 8. Summary of different position encoding strategies.

Appendix F. Translution with Input Positional Embedding

In this section, we examine whether incorporating the input positional embedding method from

Transformer can further improve Translution. To this end, we implement Translution as follows:

=fi xi

fi
= xi

+ Embed( , )xi yi

α
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As shown in Table  9, incorporating the Transformer’s absolute positional embedding does not yield a

clear performance gain for Translution in the static-to-static setting, leads to a slight drop in the

dynamic-to-dynamic setting, and results in a substantial drop in the static-to-dynamic setting.

Method #Parameters Static Static Dynamic Dynamic Static Dynamic

-Translution

✗ 4.6 M 98.48 97.31 34.90

✓ 4.6 M 98.72 96.81 17.20

Translution

✗ 116.2 M 98.60 97.35 36.24

✓ 116.2 M 98.47 96.31 16.50

Table 9. Accuracy (%) of Translution w/o and w/ the absolute positional embedding method from

Transformer. Results are reported on Static and Dynamic MNIST with ViT-A/12.

Appendix G. Impact of  ,   and   on  -Translution

Recall that: To reduce the number of parameters, we propose  -Translution, which decreases both the

input dimension   and the output dimension   of each  ,  , and  . However, setting 

 and    too small can overly compress the query, key, and value representations, thereby degrading

performance. To address this issue, we integrate the  ,  , and    of Transformer into  -

Translution to better preserve essential information.

In this section, we analyze the impact of  ,  , and   by systematically removing them from Eq. (2)

as follows:
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As shown in Table  10, incorporating  ,  , and    significantly enhances the performance of  -

Translution, particularly when    and    are small. As    and    grow larger, the improvement

decreases because the information is no longer overly compressed. In this case,  ,  , and 

 become less critical.

Relative Encoding Dimension ,  ,  #Parameters Top-1 Top-5

✓ 4.68 M 42.49 67.39

✗ 4.08 M 31.77 56.66

✓ 4.75 M 46.10 71.29

✗ 4.21 M 37.46 62.72

✓ 4.89 M 47.61 72.18

✗ 4.67 M 41.81 67.23

✓ 5.33 M 48.36 73.31

✗ 6.40 M 44.87 69.91

✓ 7.06 M 48.91 73.65

✗ 13.09 M 47.27 72.20

✓ 13.75 M 50.07 74.84

Table 10. Impact of  ,   and   on  -Transformer. Results are reported on ImageNet-1K with ViT-A/56,

trained from scratch (no external pretraining) using a batch size of 256.

Appendix H. Relative CLS Token

For classification tasks, besides the image tokens, there is an additional   token (classification token)

that serves as a global representation of the input image. Usually, the    token is a learnable

embedding appended at the beginning of the input token sequence fed into Transformer. To apply the

strategy of relative encoding to the    token, we introduce additional parameters:  ,  , 

,  ,  ,  , and  ,  ,  , corresponding to the query, key,

and value, respectively.
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Figure 7. Illustration of relative encoding for the   token. For  , there are three encoding

directions: in, in-place, and out. Correspondingly, three sets of weights, i.e.,  ,  , and 

, are introduced for relative encoding in each respective direction.

As shown in Figure 7,   is utilized when gathering information from the image tokens to update

the    token;    is applied when updating the    token based on its own information; and 

  is employed when image tokens gather information from the    token to update

themselves.

Appendix I. Training Details

I.1. Dynamic MNIST

The training is conducted with an input image size of 84 for 10 epochs using a batch size of 24.

Optimization employs the AdamW optimizer with an initial learning rate of   and a weight decay

of 0.05. The learning rate is scheduled with CosineAnnealingLR over the training epochs. The input data

is preprocessed using a transformation pipeline consisting of Normalize(0.1307,0.3081).

I.2. ImageNet

The model is trained over 300 epochs, using an input image size of 224 and a batch size of 256.

Optimization is carried out using the AdamW optimizer, with an initial learning rate of   and a

weight decay of 0.05. The learning rate follows a CosineAnnealingLR schedule, which gradually decreases

it according to a smooth cosine curve throughout training to aid in stable convergence. Data

CLS CLS

WCLS_in WCLS

WCLS_out
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augmentation includes RandomResizedCrop (224), RandomHorizontalFlip, and RandAugment (with two

random operations and magnitude 9), providing automated, robust augmentation policies that enhance

generalization. The input data is preprocessed using a transformation pipeline consisting of

Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]). Additionally, CutMix ( ) and

MixUp ( ) are applied in a batch-level “random choice” manner for strong regularization—CutMix

pastes patches between images while proportionally mixing labels; MixUp blends images and labels to

improve generalization and training stability.

I.3. OpenWebText

The training runs for 9.6 million iterations with a mini-batch size of 8. Optimization is performed using

the AdamW optimizer with an initial learning rate of   and a weight decay of 0.05. The learning

rate is scheduled by CosineAnnealingLR over every 3.2k iterations. Gradient clipping is applied with a

maximum norm of 1.0.
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