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When referring to modeling, we consider it to involve two steps: 1) identifying relevant data elements

or regions and 2) encoding them effectively. Transformer, leveraging self-attention, can adaptively

identify these elements or regions but rely on absolute position encoding for their representation. In

contrast, Convolution encodes elements or regions in a relative manner, yet their �xed kernel size

limits their ability to adaptively select the relevant regions. We introduce Translution, a new neural

network module that uni�es the adaptive identi�cation capability of Transformer and the relative

encoding advantage of Convolution. However, this integration results in a substantial increase in

parameters and memory consumption, exceeding our available computational resources. Therefore,

we evaluate Translution on small-scale datasets, i.e., MNIST and CIFAR. Experiments demonstrate that

Translution achieves higher accuracy than Transformer. We encourage the community to further

evaluate Translution using larger-scale datasets across more diverse scenarios and to develop

optimized variants for broader applicability.

Corresponding author: Hehe Fan, hehefan@zju.edu.cn

1. Introduction

When employing deep neural networks to model a speci�c type of data (e.g., images or text), it can be

decoupled into two steps: 1) identifying relevant data elements (e.g., patches in images or words in text) or

regions, and 2) encoding these elements into effective representations.
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Figure 1. Comparison of Convolution and Transformer in identifying relevant regions (blue patches) for the

kernel center or query area (yellow patch). 1) Convolution utilizes a �xed kernel size to de�ne a neighborhood

of regions considered relevant, inadvertently including some irrelevant patches or regions, particularly near

object boundaries or within background areas inside the window. 2) Transformer employs a self-attention

mechanism to adaptively and �exibly identify relevant regions, thereby avoiding including noisy or irrelevant

areas.

In Convolution [1][2][3][4][5], as shown in Figure 1(a), the relevant region identi�cation step is handled by

convolutional �lters with a �xed local receptive �eld (kernel). This �xed kernel de�nes a neighborhood

of elements considered relevant. For visual data like images, such local focus is often effective because

spatially adjacent pixels or patches tend to be related (e.g., forming parts of the same object). However, the

rigid nature of a �xed-size kernel makes Convolution inevitably covers some irrelevant pixels or regions

— especially near object boundaries or in background areas that fall inside the window. In contrast, as

shown in Figure  1(b), Transformer  [6][7][8][9][10]  uses a self-attention mechanism to adaptively identify

relevant regions. Instead of being limited to a predetermined locality, self-attention allows the model to

dynamically attend to relevant regions. This means a Transformer can focus on important features

regardless of their distance, potentially ignoring irrelevant context more �exibly than a Convolution’s

�xed receptive �eld, which makes it highly suitable for processing long texts.
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Figure 2. Comparison of Convolution and Transformer in encoding relevant regions: consider the scenario

where Convolution and Transformer are tasked with recognizing a circle. 1) Convolution learns separate

parameters for each offset (direction and distance) from the kernel center, allowing it to effectively encode

relative local structures. Thus, when the circle appears in a different location, it is still readily recognized due

to this relative awareness. 2) Transformer incorporates absolute position information into each token’s

representation and uses a shared set of weights across all tokens for computing Value. While this method

facilitates general processing, the inclusion of absolute position embeddings makes it more challenging to

recognize the circle when it is moved to a different location.

When it comes to encoding the structure from these relevant regions, Convolution and Transformer

employ different strategies. As shown in Figure  2(a), a convolutional kernel learns distinct weights for

each relative position within its receptive �eld. In other words, the �lter has separate parameters for each

offset (direction and distance) from the center. This design enables Convolution to encode local structure

relatively — capturing orientation and distance relationships. On the other hand, as shown in Figure 2(b),

Transformer uses a shared set of weights to process inputs from all positions. The same value-projection

weights are applied universally across positions. Consequently, the Value of Transformer does not encode

whether one patch is to the left or right of another. To introduce positional information, Transformer

incorporates absolute positional embeddings (either �xed sinusoidal or learned positional vectors) into

the input features at the outset. Although these embeddings enable Transformer to infer order or spatial

relationships, they introduce noise into each token’s representation. The absolute position information

becomes part of the input features. Consequently, when the same object moves to a different location,

Transformer may struggle to recognize it. Note that as the dataset scale increases, Transformer will
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become effective because the data might include scenarios where the object appears in different

locations.

In summary, Convolution encodes structure through �xed local �lters with position-speci�c weights,

whereas Transformer relies on adaptive global attention and requires absolute positional encoding to

capture order or spatial patterns. In this article, we introduce Translution, a new neural network module

that combines the adaptive identi�cation capabilities of the Transformer with the relative encoding

advantages of Convolution. Translution retains the self-attention mechanism of Transformer but utilizes

separate parameters to compute Value. This design enables Translution to effectively encode relative

structures. However, this integration leads to a signi�cant increase in the number of parameters and

memory consumption. Speci�cally, for an input with   tokens, Transformer requires only 1 set of shared

parameters to calculate Value, whereas Translution consumes   sets of parameters. This exceeds

our available computational resources for high-resolution datasets. Consequently, we restricted our

evaluation of Translution to low-resolution datasets, speci�cally MNIST and CIFAR. Experiments

demonstrate that Translution outperforms Transformer in terms of accuracy. However, these

experiments are not comprehensive. We encourage the community to further evaluate Translution on

larger-scale datasets in a variety of scenarios and to develop optimized versions for wider applicability.

2. Related Work

Transformer  [6]  eschews recurrence and kernel size, relying on self‐attention for relevant regin

identi�cation. Because it has no built‐in notion of order, Transformer layers add explicit positional

encodings to token embeddings so the model can use sequence order. Transformer employs sinusoidal

(�xed) position vectors and note that learned embeddings produce nearly identical performance, with the

�xed sinusoidal encodings chosen because they may allow better extrapolation to longer sequences.

Subsequent work has explored “relative attention”  [11][12][13][14][15][16][17]. For example, Shaw  et

al.enhanced Transformer by adding learnable relative positional vectors into the key and value

computation for language modeling [11]. Bello et al.expanded this approach to two dimensions for image

processing  [18]. HaloNet employs learnable relative positional vectors to modify the query, making it

aware of relative positions  [19]. CoAtNet  [17]  adds a learnable scalar for each direction and distance into

attention. ConViT also incorporates relative position embedding into the attention mechanism,

employing a more complex strategy  [20]. Unlike these existing relative attention methods, Translution

divides the modeling process into two distinct phases: relevant region identi�cation and relative

N

(2N − 1)2
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structure encoding. In the �rst phase, Translution utilizes attention to only identify related regions. In

the second phase, it employs a convolution-style method that uses separate weights (matrices) for each

relative position within its receptive �eld to encode the relative structure.

Convolutional neural networks (CNNs)  [1][2] have been the backbone of vision and sequence models for

years. By using small, shared kernels and pooling, CNNs ef�ciently capture local spatial or temporal

patterns with translation-invariant �lters. Recent architectural developments increasingly seek to

integrate self-attention with convolution. A prevalent strategy, particularly in vision applications,

involves combining convolutional modules and Transformer-like blocks. For instance, BoTNet

substitutes the spatial convolutions with global self-attention in the �nal three bottleneck blocks of

ResNet  [18], while CeiT combines convolutions for extracting low-level features with Transformers to

manage long-range dependencies  [21]. In contrast to these approaches, Translution functions at the

module or layer level, blending the the advantages of Transformer and Convolution into a fundamental

and uni�ed operation.

3. Proposed Method

3.1. Convolution

Suppose    represents the feature or representation at location    in an image with

dimensions  , where    is the number of feature channels,    is the height, and    is the width.

Convolution is designed to capture the local structure centered at   with a �xed kernel size  , 

where    represents the learnable weights for displacement  ,    represents the

output feature dimension, and   is matrix multiplication.

By assigning a set of weights for each offset within the receptive �eld, Convolution is able to discern

direction and distance, and capture the local structure relatively. This means that when the absolute

location of an object changes, it can still capture the same structure. However, Convolution employs a

rigid method to identify relevant regions, using a �xed-size window, making it inevitably include

irrelevant pixels or regions — particularly near object boundaries or in background areas within the

window.
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3.2. Transformer

Suppose    represents the feature or representation of the  -th patch at location  .

Transformer �rst incorporates the embedding of absolute position into the input  , as follows, 

and then performs two separate linear projections on the feature map to generate queries 

 and keys  , where   is the dimension for queries or keys. Subsequently, scaled

dot-product attention    (where  ) is computed for each query, and a softmax

function is applied to normalize the attention weights for a query across all tokens, 

where  . Next, Transformer conducts another feature encoding on the input feature

map to generate values  , where   is the value dimension. Finally, the output is computed as a

weighted sum of the values, 

where  . With self-attention, Transformer can adaptively search for related

regions, providing greater �exibility than methods that use local �xed-size windows. However, unlike

Convolution, which learns a feature encoding for every direction and distance, Transformer does not

encode the structure in a relative manner.

3.3. Translution

Translution is designed to integrate the adaptive relative region identi�cation capabilities of Transformer

with the relative encoding strengths of Convolution. Speci�cally, Translution maintains the self-

attention mechanism of Transformer but employs distinct parameters to compute Value, 

where   denotes the learnable weights for displacement  .
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Figure 3. Comparison of Transformer and Translution in computing Value. 1) Transformer uses a shared set

of weights, i.e.,  , across all patches for computing Value. 2) Translution employs separate parameters for

each offset (direction and distance), i.e.,  , to encode relative structures.

Suppose there are   tokens, Translution consumes   more parameters than Transformer. This may

be one of the major issues with Translution. However, with the upgrading of computational resources and the

increase in GPU memory, this will not be a problem in the near future.

Discussion

1. Translution uni�es Transformer and Convolution

The �xed receptive �eld in Convolution can be viewed as a form of attention, where the weight is set to 1

within the receptive �eld and 0 elsewhere. The weights   for computing Value in Transformer act as a

shared linear projection across all directions and distances. Consequently, Translution represents an

operation that integrates the functionalities of Convolution and Transformer, as follows, 

In other words, Convolution and Transformer can be viewed as speci�c instances of Translution, where

Convolution simpli�es the attention mechanism and Transformer omits the encoding of direction and

distance.
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2. Why not integrate relative encoding into self-attention rather than into the computation of Value?

The attention weight   between two tokens is a scalar ranging from 0 to 1. As a scalar, it cannot convey

extensive information such as displacement. However, being a scalar within the (0,1) range, it effectively

re�ects relationships. If two tokens are highly related, the attention weight tends towards 1. Conversely, if

two tokens are unrelated, the attention weight approaches 0. In contrast, the computation of Value

involves vectors, which can encapsulate suf�cient information to represent direction and distance. This

aligns with the motivation to decouple modeling into identi�cation and encoding of relevant regions.

Here, self-attention is responsible for identifying relevant regions, while the computation of Value

handles the encoding of these regions.

3. General Translution: a more general version of Translution.

The calculation of the Value in Translution, i.e., Eq. (5), assumes that positions in the data (e.g., images or

text) are discrete. In this setting, it is feasible to assign a different set of weights for each direction and

distance. However, if the positions are continuous variables, e.g., in point clouds, it becomes impractical

to assign individual weights for each direction and distance, as there are in�nitely many possible

variations in continuous space. In this case, it may be necessary to design new functions for the relative

encoding of relevant regions.

Suppose   denotes the position of the  -th token. For language,   can represent the index of the  -th

word in the text. For images,   corresponds to the row and column indices of the  -th patch. For point

clouds,    refers to the 3D coordinates of the  -th point. A more general version of Translution can be

formulated as follows,

where    denotes the attention weight measuring the relevance of the  -th token to the  -th

token, and    is a function that encodes relative positional information into the token

features (  denotes the dimensionality of the position,    is the number of input feature channels, and 

 is the number of output feature channels). When applying Translution to a new type of data, the key is

to develop an effective attention mechanism   and structure encoding function  . Point Spatio-Temporal

Transformer  [22]  can be viewed as a speci�c instance of general Translution, which has been

demonstrated to be effective for 3D point cloud video classi�cation tasks, particularly on small-scale

datasets.
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4. Experiment

We compare Translution and Transformer using the same Vision Transformer (ViT)1 [9] architecture. For

our method, we substitute the Transformer component in ViT with Translution, while maintaining the

remaining architecture unchanged.

4.1. MNIST, CIFAR-10 and CIFAR-100

For MNIST images of size  , we set the patch size to 7, resulting in   input tokens

(the ‘1’ represents the additional CLS token). For CIFAR images of size  , we set the patch size to 8,

also yielding    input tokens. The dimension of the embedding vectors is set to 64, the

MLP hidden layer dimension is set to 128, the number of head is set to 1 and the head dimension is 64. All

training starts from scratch.

As shown in Figure  4, Translution outperforms Transformer in terms of accuracy. Moreover, the

advantage is more pronounced in shallower networks, e.g., at a depth of 1. As the network depth

increases, the differences diminish. This may indicate that as the network becomes deeper, the in�uence

of absolute positioning embedding decreases because it is only used once at the initial input stage.

28 × 28 × + 1 = 1728
7

28
7

32 × 32

× + 1 = 1732
8

32
8
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Figure 4. Accuracy on MNIST, CIFAR-10, and CIFAR-100 with different depths, respectively
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Figure 5. Moving MNIST

4.2. Moving MNIST

The location of digits in MNIST and objects in CIFAR is typically centered within the images. To assess

the capability of modeling relative structures, we synthesize a Moving MNIST dataset  [23][24]  featuring

MNIST digits that move within a   area, as shown in Figure 5a. We set the patch size to 8, resulting

in   input tokens.

As shown in Figure 5b, the relative modeling of Translution effectively improves accuracy on the Moving

MNIST dataset. Furthermore, comparing Figure 4a with Figure 5b, it is evident that changes in absolute

location in Moving MNIST signi�cantly affect Transformer. In contrast, when the depth of the network

increases, it does not signi�cantly impact Translution.

5. Conclusion

In this article, we propose Translution, a novel neural network module that integrates the adaptive

identi�cation capabilities of Transformer with the advantageous relative encoding properties of

Convolution. Preliminary experimental results demonstrate the effectiveness of the method.

Nevertheless, further validation using larger-scale datasets across diverse scenarios is required to

comprehensively assess its performance. Additionally, the increasing number of parameters involved in

64 × 64

× + 1 = 6564
8

64
8
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the relative Value computation poses potential learning challenges, suggesting that optimized variants

should be explored in future work.

Footnotes

1 https://github.com/lucidrains/vit-pytorch
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