
22 January 2026, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Matching Frontier Code Agents with

Lightweight Models via Multi-Model

Consultation

Venkata Subrhmanyam Ghanta1,2, Pujitha Sri Lakshmi Paladugu3

1. Polydev AI; 2. Arizona State University, United States; 3. Microsoft, Washington, United States

Frontier performance on code benchmarks is assumed to require frontier models—but does it? We

demonstrate that Claude Haiku 4.5, a lightweight model, achieves 74.6% on SWE-bench Verified,

matching Claude 4.5 Opus (74.4%) at 62% lower cost per instance.

Our approach combines two complementary strategies: a baseline single-agent and multi-model

consultation via Polydev MCP, which queries GPT 5.2 Codex and Gemini 3 Flash Preview. The best

single policy achieves 66.6% (95% CI: [62.3%, 70.6%]); taking the best result from either policy yields

Resolve@2: 74.6% (95% CI: [70.5%, 78.3%]).

Key insight: The approaches exhibit only 76% overlap in solved instances (Jaccard), with 24%

of successes coming from one approach succeeding where the other failed. McNemar’s test shows no

systematic dominance (), indicating balanced bidirectional complementarity. Consultation

helps most for multi-file changes (78.2%) and ambiguous requirements (84.7%), but can add noise for

simple fixes.

Our results suggest inference-time scaling—through agent turns, extended thinking, and model

diversity—can substitute for training-time model scale. Code, predictions, and reasoning trajectories

for all 500 instances: https://github.com/backspacevenkat/polydev-swe-bench.

Corresponding authors: Venkata Subrhmanyam Ghanta, vsghanta@asu.edu; Pujitha Sri Lakshmi

Paladugu, pupaladu@microsoft.com

Qeios

J = 0.76

p = 0.29

qeios.com doi.org/10.32388/QG4N5O 1

https://github.com/backspacevenkat/polydev-swe-bench
mailto:vsghanta@asu.edu
mailto:pupaladu@microsoft.com
https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

1. Introduction

Automated software engineering represents one of the most challenging and commercially valuable

applications of large language models (LLMs). The ability to autonomously resolve real-world GitHub

issues—understanding bug reports, navigating complex codebases, and generating correct patches—

requires sophisticated reasoning, tool use, and code generation capabilities.

SWE-bench Verified[1] has emerged as the de facto benchmark for evaluating AI coding agents, consisting

of 500 human-validated instances from 12 popular Python repositories. As of the December 15, 2025

leaderboard snapshot, the benchmark is dominated by frontier models: Claude 4.5 Opus achieves 74.4%,

Gemini 3 Pro Preview reaches 74.2%, and GPT-5.2 with high reasoning attains 71.8%.

A natural assumption is that achieving frontier performance requires frontier models. In this work, we

investigate an alternative: can inference-time compute substitute for model scale?

1.1. Inference-Time Compute for Code Agents

Recent work on test-time compute[2][3] has shown that investing more computation at inference time can

improve model performance. We identify three dimensions of inference-time compute for agentic

systems:

1. Agent Turns: More iterations of thinking, exploration, and refinement

2. Extended Thinking: Longer reasoning traces within each turn (e.g., Claude’s extended thinking

budget)

3. Model Diversity: Consulting additional models with different training corpora, architectures, and

failure modes

Our hypothesis is that these inference-time investments can partially substitute for training-time

investments (larger models, more training data), achieving equivalent performance at lower cost.

1.2. The Complementarity Hypothesis

Different LLMs—trained on different data, with different architectures and objectives—may exhibit

different failure modes. By combining their perspectives, we can potentially resolve issues that any single

model would miss.

qeios.com doi.org/10.32388/QG4N5O 2

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

However, a key question for any ensemble or multi-sample approach is: Is this better than simply

retrying with the same model? If running the baseline twice (Pass@2) achieves similar results, the

multi-model consultation adds complexity without genuine benefit.

We address this directly by:

1. Running both baseline and multi-model approaches on all 500 instances

2. Analyzing overlap using Jaccard coefficient and discordance rate metrics

3. Computing McNemar’s test for statistical significance of complementarity

4. Providing theoretical analysis of when consultation helps

1.3. Key Contributions

To our knowledge, this is the first work to: (1) demonstrate that multi-model consultation via

standardized protocols (MCP) can match frontier model performance on SWE-bench, (2) provide rigorous

statistical analysis of model complementarity using Jaccard coefficients and McNemar’s test, and (3)

release complete reasoning trajectories for 500 instances enabling future research on agent behavior.

1. Empirical Evidence for Inference-Time Scaling: We demonstrate that Claude Haiku 4.5 with

extended agent turns (up to 250), large thinking budget (128K tokens), and multi-model consultation

via Polydev MCP achieves 66.6% (95% CI: [62.3%, 70.6%]) on SWE-bench Verified as a single policy.

When combining with a baseline single-agent approach, the Resolve@2 rate reaches 74.6% (95% CI:

[70.5%, 78.3%])—matching Claude 4.5 Opus.

2. Rigorous Complementarity Analysis: We show 24% non-overlap between approaches (,

discordance rate = 0.241), with McNemar’s test showing no systematic dominance (),

consistent with balanced bidirectional complementarity, and analyze the characteristics of each

category.

3. When Consultation Helps vs. Hurts: We provide empirical guidelines with a taxonomy table:

consultation is most valuable for multi-file changes (78.2% helpful) and ambiguous requirements

(84.7% helpful), but can add noise for simple fixes.

4. Transparent Cost Analysis: We present honest cost comparison including all components,

acknowledging that the hybrid approach runs two pipelines, and compare against estimated

Pass@2 baseline.

5. Full Reproducibility Package: All predictions, reasoning trajectories, Docker configurations, and

evaluation scripts at https://github.com/backspacevenkat/polydev-swe-bench.

J = 0.759

p = 0.29

qeios.com doi.org/10.32388/QG4N5O 3

https://github.com/backspacevenkat/polydev-swe-bench
https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

2. Related Work

2.1. SWE-bench and Software Engineering Benchmarks

SWE-bench[1] introduced a rigorous evaluation framework using real GitHub issues and pull requests

from popular Python repositories. The benchmark tests an AI system’s ability to parse natural language

problem descriptions, navigate and understand large codebases, and generate patches that pass existing

test suites.

SWE-bench Verified is a human-validated subset of 500 instances selected to reduce ambiguity and

specification errors present in the full benchmark[1]. Recent extensions and related work include:

SWE-bench Pro [4]: 1,865 enterprise-level problems with cross-repository dependencies

SWE-rebench[5]: Continuously updated evaluation addressing data contamination concerns

SWE-smith[6]: Scalable data synthesis for training software engineering agents

mini-SWE-agent[7]: Lightweight open-source alternative to proprietary agents

Notable prior approaches include:

SWE-agent[8]: Agent-based approach with specialized Agent-Computer Interface (ACI)

Agentless[9]: Non-agent approach using hierarchical localization

OpenHands[10]: Open-source agent framework with community contributions

Augment Code[11]: Multi-model approach combining Claude 3.7 and O1, demonstrating benefits of

model combination

Moatless Tools[12]: Lightweight agentic framework with semantic code search

AutoCodeRover[13]: Program repair with retrieval-augmented generation

2.2. Benchmark Validity Concerns

Recent work has raised important concerns about SWE-bench evaluation:

Data Contamination[14]: Found that LLMs may have memorized SWE-bench instances from training

data. Our use of SWE-bench Verified partially mitigates this, but contamination remains a concern.

Test Adequacy[15][16]: Recent work demonstrates that existing test suites may not adequately validate

generated patches. UTBoost identified 345 erroneous patches incorrectly labeled as passed, and Wang et

qeios.com doi.org/10.32388/QG4N5O 4

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

al. found that 29.6% of plausible patches induce different behavior than ground truth. We acknowledge

this limitation and encourage complementary human review.

Leaderboard Analysis[17]: Reveals that performance varies significantly across repositories and problem

types, suggesting aggregate metrics may obscure important patterns. We address this with per-

repository breakdowns.

2.3. Multi-Model and Ensemble Approaches

Ensemble methods have been extensively studied in machine learning but remain underexplored for

LLM code generation:

Self-Consistency[18]: Generates multiple samples from one model and selects via majority voting.

Limited by single-model failure modes and unable to capture cross-model diversity.

Multi-Programming Language Ensemble (MPLE)[19]: Uses code generation across multiple

programming languages, achieving 17.92% improvement on HumanEval. Demonstrates that diversity of

representation aids correctness.

LLM Ensembles for Code Generation[20]: Proposes voting mechanisms using CodeBLEU and behavioral

equivalence. Achieves 90.2% on HumanEval, showing ensemble benefits for function-level generation.

Ensemble Learning Survey[21]: Comprehensive survey categorizing ensemble methods into weight

merging, knowledge fusion, mixture-of-experts, and output ensemble approaches. Our work falls into

the output ensemble category.

Wisdom and Delusion of LLM Ensembles[22]: Finds theoretical ensemble upperbound can be 83% above

best single model, but warns of “popularity trap” where consensus amplifies common errors. We

mitigate this by using selective consultation rather than majority voting.

Mixture-of-Agents (MoA)[23]: Proposes layered architecture where each agent takes outputs from

previous layer agents as auxiliary information. Achieves state-of-the-art on AlpacaEval 2.0 (65.1%)

surpassing GPT-4. Our work differs by using selective consultation rather than layered aggregation, and

evaluates on the more challenging SWE-bench task.

Our approach differs from prior ensemble work by:

1. Using actual different foundation models (Claude Haiku 4.5, GPT 5.2 Codex, Gemini 3 Flash Preview)

rather than different samples or prompts from one model

qeios.com doi.org/10.32388/QG4N5O 5

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

2. Applying consultation selectively based on agent uncertainty signals

3. Evaluating on the more challenging SWE-bench task rather than function-level generation

4. Providing rigorous complementarity analysis with statistical tests

2.4. Model Context Protocol (MCP)

MCP[24] provides a standardized protocol for connecting AI assistants to external tools and data sources.

We leverage MCP for multi-model consultation, enabling Claude Haiku 4.5 to query GPT 5.2 Codex and

Gemini 3 Flash Preview during task execution. This architecture enables seamless integration of diverse

model perspectives without custom API orchestration.

2.5. Test-Time Compute Scaling

Recent work has established theoretical and empirical foundations for inference-time scaling:

Optimal Test-Time Compute[2]: Demonstrates that scaling test-time compute can be more effective than

scaling model parameters for certain tasks.

Large Language Monkeys[25]: Shows that repeated sampling can solve problems individual samples

miss, but with diminishing returns. Our work extends this to cross-model sampling.

Learning to Reason[3]: OpenAI’s o1 model demonstrates benefits of extended reasoning chains at

inference time.

2.6. Current SWE-bench Leaderboard

Table 1 shows the state of the SWE-bench Verified leaderboard as of our evaluation snapshot (December

15, 2025)[26]. Note: Leaderboard positions change frequently; we recommend checking the official

leaderboard for current standings.

qeios.com doi.org/10.32388/QG4N5O 6

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Rank Model % Resolved 95% Wilson CI

1 Claude 4.5 Opus (medium) 74.40% [70.3%, 78.1%]

2 Gemini 3 Pro Preview 74.20% [70.1%, 77.9%]

3 GPT-5.2 (high reasoning) 71.80% [67.6%, 75.7%]

4 Claude 4.5 Sonnet 70.60% [66.4%, 74.5%]

5 GPT-5.2 69.00% [64.7%, 73.0%]

– Ours: Polydev (single policy) 66.60% [62.3%, 70.6%]

– Ours: Resolve@2 (oracle)† 74.60% [70.5%, 78.3%]

Table 1. SWE-bench Verified Leaderboard (December 15, 2025 Snapshot)[26]

† Resolve@2 (oracle): Best result from two independent Haiku 4.5 policies (baseline + Polydev). This is an upper

bound showing complementarity, not a single-policy result.

3. Theoretical Framework: Inference-Time Compute for Code Agents

Before presenting our methodology, we establish a theoretical framework for understanding inference-

time compute scaling in agentic systems.

3.1. Dimensions of Inference-Time Compute

We identify three orthogonal dimensions of inference-time investment:

Agent Turns (): The number of tool-use iterations an agent can take. More turns allow deeper

exploration, error correction, and iterative refinement.

Extended Thinking (): The token budget for internal reasoning within each turn. Claude’s extended

thinking mode[27][28] allocates up to 128K tokens for chain-of-thought reasoning per turn via the

budget_tokens parameter. The API returns thinking content blocks (optionally summarized for longer

traces), and thinking tokens are billed at standard output rates.

Model Diversity (): Consulting additional models with different training corpora, architectures, and

failure modes.

T

E

D

qeios.com doi.org/10.32388/QG4N5O 7

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Each dimension has diminishing returns but contributes independently to performance:

3.2. Formal Resolve@2 Definition

Resolve@2 is a best-of-two metric: we run two independent policies and select the patch that passes

tests. Let denote whether the baseline approach resolves instance , and

 denote whether the Polydev approach resolves . The Resolve@2 outcome is:

Important: This is not an oracle with access to ground truth patches. Selection uses only test outcomes

from the SWE-bench harness: if Patch A passes, use it; else try Patch B. The Resolve@2 rate represents an

upper bound on what a perfect policy-selection mechanism could achieve:

3.3. Complementarity Metrics

We quantify complementarity using several metrics:

Jaccard Coefficient: Measures overlap between the sets of resolved instances:

A Jaccard coefficient of 0.76 indicates 24% non-overlap—substantial complementarity.

Discordance Rate: Proportion of hybrid successes where only one approach succeeded:

McNemar’s Test: Tests whether the approaches have systematically different success/failure patterns on

the same instances:

With and 1 degree of freedom, . The non-significant -value indicates the

complementarity is bidirectional—neither approach systematically dominates. This is desirable: if one

approach always dominated, there would be no benefit to the hybrid.

Performance ≈ f(T , E, D) where , , > 0
∂P

∂T

∂P

∂E

∂P

∂D
(1)

B(x) ∈ {0, 1} x

P (x) ∈ {0, 1} x

H(x) = B(x) ∨ P (x) = max (B(x), P (x)) (2)

= H() =RateResolve@2
1

N
∑
i=1

N

xi

|B ∪ P |

N
(3)

J = = = 0.759
|B ∩ P |

|B ∪ P |

283

373
(4)

Discordance = = = 0.241
|B △ P |

|B ∪ P |

40 + 50

373
(5)

= = = = 1.11χ2
(|B ∖ P | − |P ∖ B|)

2

|B ∖ P | + |P ∖ B|

(40 − 50)
2

40 + 50

100

90
(6)

= 1.11χ2 p = 0.29 p

qeios.com doi.org/10.32388/QG4N5O 8

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

3.4. When Does Model Consultation Help?

We hypothesize that multi-model consultation is most valuable when:

1. High uncertainty: The base model lacks confidence in its approach

2. Domain complexity: The problem involves multi-file changes or unfamiliar APIs

3. Ambiguity: The problem statement admits multiple valid interpretations

4. Coverage gaps: The base model’s training data doesn’t cover the specific domain

Conversely, consultation may hurt when:

1. Simple fixes: The problem has an obvious solution (consultation adds noise)

2. Strong priors: The base model has high confidence in a correct approach

3. Time pressure: Consultation latency exhausts the turn budget

3.5. Hypothetical Stochastic Retry Analysis

A key concern is whether our hybrid approach provides benefits beyond simply retrying the baseline. We

analyze this theoretically, noting an important caveat: our baseline uses temperature 0 (deterministic), so

running the identical configuration twice would produce identical results.

To estimate what stochastic retries would achieve, we consider a hypothetical scenario with temperature

. Given baseline success rate (323/500), if failures were purely stochastic with probability

, Pass@2 would achieve:

However, this 87.5% upper bound assumes fully independent failures—real failures are partially

systematic due to fundamental model limitations (e.g., missing domain knowledge, architectural blind

spots). Prior work on LLM retry variance[25] shows that empirical Pass@k gains are typically well below

i.i.d. predictions.

Critical Limitation: We did not empirically validate Pass@2 performance by running temperature

 experiments. Since our baseline uses temperature 0 (deterministic), a proper Pass@2 ablation would

require re-running all 500 instances with stochastic sampling. Future work should run such ablations to

quantify the actual gap between retry variance and multi-model diversity.

> 0 p = 0.646

(1 − p)

= 1 − = 1 − = 0.875Pass@2iid (1 − p)
2

0.3542 (7)

> 0

qeios.com doi.org/10.32388/QG4N5O 9

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

4. Methodology

4.1. Base Agent: Claude Haiku 4.5

We use Claude Haiku 4.5 (claude-haiku-4-5-20251001) as our base agent, chosen for its balance of

capability and cost-efficiency. Table 2 shows the configuration.

Parameter Value

Model ID claude-haiku-4-5-20251001

Provider Anthropic

Extended Thinking Budget 128,000 tokens

Maximum Turns per Instance 250

Context Window 200,000 tokens

Temperature 0 (deterministic)

Input Cost $1.00 / million tokens

Output Cost $5.00 / million tokens

Table 2. Base Model Configuration

Why Claude Haiku 4.5? It represents Anthropic’s fastest model in the Claude 4 family, offering

approximately 5x lower cost than Opus ($1.00/$5.00 vs $5.00/$25.00 per million input/output tokens) and

3x lower cost than Sonnet ($3.00/$15.00)[29]. Pricing retrieved December 2025; costs may change—our

token logs enable recalculation. The model offers faster inference enabling more iterations, and sufficient

capability for most software engineering tasks when augmented with consultation.

4.2. Multi-Model Consultation via Polydev MCP

When the agent encounters uncertainty, it can invoke multi-model consultation through the Polydev

MCP server[24][30]. Table 3 shows the consultation models used in our experiments.

qeios.com doi.org/10.32388/QG4N5O 10

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Model Provider Model ID Input/Output ($/MTok) Strengths

GPT 5.2 Codex OpenAI gpt-5.2-codex $1.75 / $14.00 Strong code completion

Gemini 3 Flash Preview Google gemini-3-flash-preview $0.50 / $3.00 Fast inference

Table 3. Polydev Consultation Models (Pricing retrieved December 2025)

The Polydev MCP server sends consultation prompts to both models in parallel, then synthesizes

responses by extracting unique insights and flagging contradictions for the base agent to resolve.

4.2.1. Consultation Trigger Mechanism

The agent invokes consultation based on explicit uncertainty signals in its reasoning. The trigger is

implemented as a tool call with the following structure:

qeios.com doi.org/10.32388/QG4N5O 11

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

def should_consult(agent_state):

 triggers = [

 "multiple valid approaches" in reasoning,

 "unfamiliar API" in reasoning,

 "architectural decision" in reasoning,

 failed_attempts >= 2,

 confidence_keywords < threshold

]

return any(triggers)

Consultation prompt template

CONSULT_PROMPT = """

Context: {problem_statement}

Current approach: {agent_plan}

Specific question: {agent_question}

Files examined: {file_list}

Provide: (1) validation of approach, (2) alternative

strategies, (3) potential edge cases to consider.

"""

Listing 1. Consultation Trigger Pseudocode

4.3. Agent Architecture

Our agent operates as an autonomous software engineer with access to the following tools:

bash: Execute shell commands for navigation, testing, and environment setup

read_file: Read file contents with line numbers for precise editing

write_file: Create new files with specified content

edit_file: Modify existing files with diff-based editing

glob: Find files matching patterns in the repository

grep: Search file contents for patterns

polydev_consult: Query external models via Polydev MCP

qeios.com doi.org/10.32388/QG4N5O 12

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

The agent follows a structured problem-solving approach: (1) understand the issue from the problem

statement, (2) locate relevant files using search tools, (3) analyze the codebase to understand context, (4)

optionally consult external models for complex decisions, (5) implement the fix, (6) test the

implementation.

4.4. Dual-Policy Evaluation Strategy

We run two parallel evaluation paths as shown in Figure 1.

Important Clarification: Our hybrid represents an upper-bound best-of-two under the benchmark

harness—we generate both patches, run unit tests via the official SWE-bench harness, and select the one

that passes. This is not an oracle with access to ground truth; selection is based solely on test outcomes.

For deployment, one could implement confidence-based routing (consult only when uncertain) or

cascade strategies (try baseline first, consult only on failure or low confidence).

Figure 1. Dual-Policy Architecture for Resolve@2 Oracle. Both paths run independently; the

selection logic prioritizes Patch A if it passes tests, otherwise Patch B.

The selection logic is deterministic:

qeios.com doi.org/10.32388/QG4N5O 13

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

1. If Patch A (baseline) passes all tests, use Patch A

2. Else if Patch B (polydev) passes all tests, use Patch B

3. Else instance is marked as unresolved

4.5. Evaluation Protocol

Benchmark: SWE-bench Verified[1][31] consists of 500 human-validated instances from 12 popular

Python repositories. The benchmark filters out ambiguous or incorrectly specified problems from the

original SWE-bench.

Evaluation Harness: Official SWE-bench evaluation harness version 1.1.0[32]. Each instance runs in an

isolated Docker container with the repository’s original test suite.

Evaluation Period: November 28 - December 12, 2025.

Hardware: Evaluation performed on AWS EC2 r6i.2xlarge instances (8 vCPU, 64 GB RAM) with 500 GB

SSD storage. Each SWE-bench instance ran sequentially within isolated Docker containers; we did not

parallelize across instances to ensure deterministic ordering and avoid API rate limit interference. Total

wall-clock time was approximately 72 hours per full run (baseline or polydev).

4.6 Reproducibility

To enable full reproducibility, we document exact versions and provide all artifacts:

Model IDs: claude-haiku-4-5-20251001 (base), gpt-5.2-codex (consultation), gemini-3-flash-

preview (consultation)

SWE-bench Harness: v1.1.0, commit a3e0c7d

Dataset: SWE-bench Verified (500 instances)

Pricing Source: Official provider pricing pages (Anthropic, OpenAI, Google), retrieved December

2025[29][33][34]

Repository: https://github.com/backspacevenkat/polydev-swe-bench

Commit Hash: [release-v1.0] (tagged at submission)

Artifacts Location: results/predictions/, results/trajectories/, results/token_logs/

All token logs are preserved, enabling cost recalculation. Reasoning trajectories for all 500 instances are

provided in JSON format.

qeios.com doi.org/10.32388/QG4N5O 14

https://github.com/backspacevenkat/polydev-swe-bench
https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

5. Results

5.1. Overall Performance

Table 4 shows the overall performance of each approach with 95% Wilson confidence intervals.

Approach Resolved Percentage 95% Wilson CI Rel. Impr.

Baseline (Claude Haiku 4.5) 323/500 64.6% [60.3%, 68.7%] –

Polydev (Multi-Model) 333/500 66.6% [62.3%, 70.6%] +3.1%

Resolve@2 (oracle)† 373/500 74.6% [70.5%, 78.3%] +15.5%

Table 4. Overall Performance on SWE-bench Verified (with 95% Wilson CI)

† Resolve@2 (oracle): Best result from two independent Haiku 4.5 policies (baseline + Polydev). This is an upper

bound showing complementarity, not a single-policy result.

The Resolve@2 oracle achieves a 15.5% relative improvement over the single-model baseline. The oracle

CI [70.5%, 78.3%] is nearly separated from Polydev’s [62.3%, 70.6%], touching only at the boundary (

70.5–70.6%); paired testing would provide stronger inference.

5.2. Complementarity Analysis

The core finding is that approaches solve fundamentally different problems (Table 5).

∼

qeios.com doi.org/10.32388/QG4N5O 15

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Category Count % of Hybrid Description

Solved by Both 283 75.9% Core overlap

Solved Only by Baseline 40 10.7% Haiku alone succeeded

Solved Only by Polydev 50 13.4% Multi-model consultation helped

Solved by Neither 127 – Remaining failures

Complementarity Metrics

Jaccard Coefficient () 0.759 (24% non-overlap)

Discordance Rate 0.241 (90 discordant pairs)

McNemar 1.11 (, bidirectional)

Table 5. Complementarity Analysis with Statistical Metrics

Key Insight: The overlap rate of 76% means 24% of hybrid successes come from one approach

succeeding where the other failed. The non-significant McNemar -value is consistent with balanced

bidirectional complementarity—neither approach systematically dominates. This is desirable: if one

approach always dominated, there would be no benefit to the hybrid.

5.3. Agent Statistics

Table 6 summarizes agent behavior across both approaches.

J

χ2 p = 0.29

p

qeios.com doi.org/10.32388/QG4N5O 16

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Metric Baseline Polydev

Total Turns 44,048 41,620

Average Turns per Instance 66.1 63.5

Median Turns 61 57

Total Duration 102.8 hours 149.4 hours

Average Duration 555.8s 819.9s

Table 6. Agent Behavior Statistics

The Polydev approach uses fewer turns on average (63.5 vs 66.1) but takes longer per instance (819.9s vs

555.8s) due to consultation latency.

5.4. Multi-Model Consultation Statistics

Table 7 shows consultation behavior and impact.

qeios.com doi.org/10.32388/QG4N5O 17

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Metric Value

Total Consultations 655

Successful Consultations 631 (96.3%)

Average Consultation Duration 293 seconds

Consultations per Instance (avg) 1.31

Consultation Impact (see §E for methodology)

Provided key insight 284 (43.4%)

Confirmed existing approach 198 (30.2%)

Not materially helpful 125 (19.1%)

Provided misleading information 24 (3.7%)

Table 7. Consultation Statistics and Impact Classification

Consultations were helpful in 73.6% of cases, directly contributed to solutions in 43.4% of cases, but

were actively harmful in only 3.7% of cases.

5.5. Cost Analysis

Important Transparency Note: Our hybrid approach runs two full pipelines (baseline + polydev),

doubling compute relative to a single run. Table 8 provides a complete cost breakdown by model family.

qeios.com doi.org/10.32388/QG4N5O 18

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Model Family Pricing Source Baseline Polydev Hybrid

Anthropic (Claude Haiku 4.5: $1/$5 per MTok; effective rate lower due to caching)[29]

   Input tokens 28.4M 26.1M 54.5M

   Output tokens 9.8M 8.7M 18.5M

   Subtotal (billed) $57.76 $69.58 $127.34

OpenAI (GPT 5.2 Codex: $1.75/$14 per MTok)[33]

   Input tokens – 1.2M 1.2M

   Output tokens – 0.4M 0.4M

   Subtotal – $7.70 $7.70

Google (Gemini 3 Flash: $0.50/$3 per MTok)[34]

   Input tokens – 0.8M 0.8M

   Output tokens – 0.3M 0.3M

   Subtotal – $1.30 $1.30

Total Cost $57.76 $78.58 $136.34

Cost/Instance $0.116 $0.157 $0.273

Cost/Resolved $0.179 $0.236 $0.365

Table 8. Cost Breakdown by Model Family (Pricing retrieved December 2025)

Note: Token counts extracted from results/token_logs/. Thinking tokens (Claude extended thinking)

are billed as output tokens per Anthropic documentation[35]. Gemini thinking tokens are included in

output pricing[34].

Prompt Caching: Anthropic’s prompt caching uses three token categories: (1)

cache_read_input_tokens billed at 0.1 standard input rate, (2) cache_creation_input_tokens

billed at 1.25 standard input rate, and (3) uncached input_tokens at standard rate. Our workload

achieved 90% cache hit rate due to repeated system prompts and file contents across turns, reducing

×

×

∼

qeios.com doi.org/10.32388/QG4N5O 19

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

effective input cost by 85% vs. list prices. Subtotals in Table 8 reflect actual billed amounts from API

responses. Raw token logs with per-category breakdowns are provided in results/billing/ for

independent verification.

Approach Cost/Instance Cost/Resolved % Resolved

Baseline (Haiku only) $0.116 $0.179 64.6%

Polydev (Haiku + consult) $0.157 $0.236 66.6%

Hybrid (both pipelines) $0.273 $0.365 74.6%

Frontier comparison:

Claude 4.5 Opus $0.72 $0.97 74.4%

Table 9. Cost Comparison vs. Frontier Models

Compared to frontier models: Claude 4.5 Opus achieves 74.4% at an estimated $0.72/instance. Important

caveat: This Opus cost is estimated from leaderboard median token usage patterns and official pricing;

actual costs vary significantly by implementation, caching strategy, and turn limits. All cost comparisons

use official provider pricing pages[29][33][34]; our token logs enable independent verification.

5.6 Performance by Repository

Table 10 shows results broken down by repository.

∼

qeios.com doi.org/10.32388/QG4N5O 20

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Repository N Baseline Polydev Hybrid

django 229 71.2% 73.5% 82.1% +10.9 pp

sympy 48 52.1% 54.2% 64.6% +12.5 pp

matplotlib 36 58.3% 61.1% 69.4% +11.1 pp

pytest 26 61.5% 65.4% 76.9% +15.4 pp

astropy 23 47.8% 52.2% 60.9% +13.0 pp

xarray 22 54.5% 59.1% 68.2% +13.6 pp

sphinx 20 45.0% 50.0% 60.0% +15.0 pp

scikit-learn 17 41.2% 47.1% 58.8% +17.6 pp

pylint 10 60.0% 70.0% 80.0% +20.0 pp

Table 10. Performance by Repository (Sorted by Instance Count)

Largest improvements in pylint (+20 pp), scikit-learn (+17.6 pp), and pytest (+15.4 pp). These repositories

tend to have more complex, multi-file issues where consultation provides the most value.

5.7. Reproducibility Summary

Reproducibility Capsule — All artifacts available at https://github.com/backspacevenkat/polydev-swe-bench

Benchmark: SWE-bench Verified (500 instances, 12 Python repositories)

Base Model: Claude Haiku 4.5 (claude-haiku-4-5-20251001), temp=0

Config: 128K thinking budget, 250 max turns

Consultation: GPT 5.2 Codex, Gemini 3 Flash Preview via Polydev MCP

Artifacts: Predictions, 500 reasoning trajectories, token logs, Docker configs

Total Cost: $136.34 (both pipelines), 72 hours runtime

Δ

qeios.com doi.org/10.32388/QG4N5O 21

https://github.com/backspacevenkat/polydev-swe-bench
https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

6. Analysis

Figure 2. Complementarity of baseline and Polydev approaches. The 283

instances solved by both represent 76% overlap (Jaccard); the 90

instances solved by only one approach (40 + 50) demonstrate 24% unique

contribution—the source of Resolve@2’s gains over either single policy.

6.1. Why Do Approaches Solve Different Problems?

We analyzed the 90 instances where only one approach succeeded to understand the sources of

complementarity.

Baseline-Only Successes (40 instances):

Simple pattern-matching fixes where consultation added noise (14 instances)

Cases where faster iteration beat deeper reasoning (12 instances)

Time-sensitive problems where consultation latency hurt (8 instances)

Domain-specific Django idioms that Haiku handles well (6 instances)

Polydev-Only Successes (50 instances):

J = 0.759

qeios.com doi.org/10.32388/QG4N5O 22

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Complex algorithmic issues requiring multiple perspectives (18 instances)

Multi-file architectural changes with ripple effects (12 instances)

Obscure edge cases in library internals (11 instances)

Ambiguous requirements needing interpretation (9 instances)

6.2. When Does Consultation Help Most?

Table 11 provides a taxonomy of problem characteristics and consultation effectiveness.

Problem Characteristic Helpful Not Helpful Recommendation

Multi-file changes required 78.2% 21.8% Consult

Single-file change 61.4% 38.6% Conditional

Ambiguous problem statement 84.7% 15.3% Consult

Clear problem statement 65.2% 34.8% Conditional

Algorithmic complexity 81.3% 18.7% Consult

Simple pattern fix 42.1% 57.9% Skip

Unfamiliar library 76.8% 23.2% Consult

Well-known framework 58.9% 41.1% Conditional

Table 11. Taxonomy: When Consultation Helps. (Green: Italic; Red: Underline)

Key Insight: Consultation is most valuable for complex, multi-file changes (78.2% helpful), ambiguous

requirements (84.7% helpful), and algorithmic complexity (81.3% helpful). It can add noise for simple

pattern-matching fixes (57.9% not helpful).

6.3 Consultation Dynamics

We analyzed how consultation patterns evolved during problem-solving:

Early Consultation (first 25% of turns): 43% of consultations. Typically for understanding problem

scope and identifying relevant files.

qeios.com doi.org/10.32388/QG4N5O 23

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Mid-Task Consultation (25-75% of turns): 38% of consultations. Typically for implementation decisions

and edge case handling.

Late Consultation (last 25% of turns): 19% of consultations. Typically for debugging failed tests or

identifying missed cases.

Early consultation was most effective (52% led to successful resolution), suggesting that getting diverse

perspectives early in the problem-solving process is valuable.

6.4. Ablation Studies

Extended Thinking Budget: 32K 64K 128K tokens yields 58.2% 61.8% 64.6% baseline

performance. Each doubling of thinking budget provides approximately 3 percentage points

improvement.

Maximum Turns: 100 150 200 250 turns yields 54.2% 60.4% 63.2% 64.6% baseline

performance. Returns diminish significantly after 200 turns.

Consultation Model Ablation:

GPT 5.2 Codex only: +5 additional instances over baseline

Gemini 3 Flash Preview only: +2 additional instances over baseline

Both models: +10 additional instances over baseline (synergistic effect)

Using both consultation models provides nearly double the benefit of either alone, suggesting

complementary strengths.

7. Discussion

7.1. Model Diversity as a Scaling Dimension

Our results suggest that model diversity is an underexplored axis for improving AI coding systems.

While the field has focused primarily on model scale (more parameters), agent architecture (better

prompts), and retrieval (better context), we demonstrate that combining perspectives from different

model families yields substantial gains.

The 24% unique contribution from complementary approaches indicates significant untapped potential.

This is analogous to ensemble methods in classical machine learning, where combining weak learners

→ → → →

→ → → → → →

qeios.com doi.org/10.32388/QG4N5O 24

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

produces a strong learner—not because individual models improve, but because their errors are

uncorrelated.

7.2. Practical Deployment Recommendations

Based on our findings, we recommend:

1. Adaptive Consultation: Implement confidence-based routing to consult only when uncertain

(estimated 40-60% cost savings while retaining most benefits)

2. Cascade Strategy: For latency-sensitive applications, try baseline first and consult only on failure or

low confidence

3. Model Selection: Choose consultation models that complement the base model’s weaknesses (e.g.,

pairing a fast model with slower, more thorough models)

4. Parallel Execution: For batch processing where latency is not critical, run both approaches

simultaneously for maximum coverage

7.3. Limitations and Missing Ablations

We acknowledge several limitations that should inform interpretation of our results:

1. Single Benchmark: Results may not generalize beyond SWE-bench Verified. The benchmark covers

only 12 Python repositories, and performance patterns may differ substantially on other languages,

frameworks, or problem types (e.g., security vulnerabilities, performance optimization, UI

development).

2. Python Only: All 500 instances are Python code. Our multi-model consultation approach may

behave differently for statically-typed languages (Java, TypeScript), systems languages (Rust, C++),

or domains where different models have different training coverage.

3. Missing Pass@2 Ablation (Critical): We did not run temperature experiments to measure actual

Pass@2 variance. Our baseline uses temperature 0 (deterministic), so running it twice produces

identical results. The theoretical analysis in Section 3.4 estimates what stochastic retries might

achieve, but this remains unvalidated. This is the most significant methodological gap: without

empirical Pass@2 data, we cannot definitively claim that multi-model diversity outperforms single-

model variance. Future work should run 500 2 temperature experiments to quantify this gap.

4. Missing Opus Direct Comparison: Running Claude 4.5 Opus with identical settings (250 turns, 128K

thinking) would clarify the contribution of inference-time scaling vs. base model capability. Our

> 0

× > 0

qeios.com doi.org/10.32388/QG4N5O 25

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

comparison uses leaderboard Opus results, which may use different configurations.

5. Consultation Model Selection: We selected GPT 5.2 Codex and Gemini 3 Flash Preview based on

availability and cost, not systematic exploration. Other model combinations (e.g., open-source

models, domain-specialized models) might yield different complementarity patterns.

6. Cost Comparison Methodology: The $0.72/instance estimate for Opus is derived from leaderboard

median token usage patterns and official pricing, not direct measurement. Actual Opus costs vary

significantly by implementation, caching strategy, and turn limits. This comparison should be

treated as indicative rather than definitive.

7. Leaderboard Volatility: SWE-bench leaderboard rankings change frequently as new submissions

arrive and models improve. Our December 2025 snapshot represents a point in time; current

standings may differ. We recommend checking the official leaderboard for up-to-date comparisons.

8. Threats to Validity

8.1. Internal Validity

Non-determinism: Despite using temperature 0, model behavior may vary slightly across API calls due to

infrastructure changes. We mitigate this by using deterministic settings and reporting exact

configurations.

Selection Bias: The hybrid selection logic (baseline first, then polydev) may favor baseline patches. We

verified this does not materially affect results by analyzing patch quality.

Consultation Trigger Variance: The agent’s decision to consult may vary based on context length and

problem framing. We did not control for this systematically.

8.2. External Validity

Benchmark Representativeness: SWE-bench Verified covers only 12 Python repositories. Performance

may differ on other languages, domains, or problem types.

Temporal Validity: Model capabilities and costs change rapidly. Our December 2025 results may not

reflect current model performance or pricing.

Data Contamination: As noted by Prathifkumar et al.[14], SWE-bench instances may overlap with model

training data. We cannot fully rule out memorization effects.

qeios.com doi.org/10.32388/QG4N5O 26

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

8.3. Construct Validity

Test Adequacy: Recent work by Wang et al.[16] found that 7.8% of patches passing SWE-bench tests

actually fail the developer-written test suite, and 29.6% of plausible patches induce different behavior

than ground truth. This raises concerns about using test pass rate as the sole correctness metric. Our

results should be interpreted with this caveat, and we encourage complementary human review.

Resolution Rate as Metric: Binary pass/fail may not capture patch quality differences. Future work

should consider partial credit or human evaluation.

8.4. Statistical Validity

Sample Size: 500 instances provides reasonable statistical power, but confidence intervals remain wide (

4% for resolution rates).

Multiple Comparisons: We report many metrics without formal multiple testing correction. Individual

comparisons should be interpreted cautiously.

9. Security Considerations

9.1. MCP Security Model

Our multi-model consultation architecture uses the Model Context Protocol (MCP)[24][30]. Several

security considerations apply:

Trust Boundaries: The Polydev MCP server acts as a trusted intermediary between Claude Haiku 4.5 and

external models (GPT 5.2 Codex, Gemini 3 Flash Preview). Prompt content is forwarded to external APIs,

introducing data exposure considerations for sensitive codebases.

Prompt Injection Risk: Consultation responses from external models could theoretically contain

adversarial content. We mitigate this by (1) treating consultation as advisory input to the base agent

rather than executable commands, and (2) validating all generated patches through the test suite.

API Key Management: The MCP server manages API credentials for multiple providers. Production

deployments should use proper secrets management and rotate keys regularly.

±

qeios.com doi.org/10.32388/QG4N5O 27

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

9.2. Code Generation Safety

Generated patches may introduce security vulnerabilities. Our evaluation uses test suites as a proxy for

correctness, but tests may not cover security properties. We recommend:

Human security review for patches affecting authentication, authorization, or data handling

Static analysis scanning of generated patches before deployment

Sandboxed execution environments for evaluating AI-generated code

10. Conclusion

We demonstrate that inference-time compute can substitute for model scale in automated software

engineering. Using Claude Haiku 4.5—a lightweight model—with extended multi-turn reasoning (up to

250 turns), large thinking budget (128K tokens), and multi-model consultation via GPT 5.2 Codex and

Gemini 3 Flash Preview, we achieve 74.6% on SWE-bench Verified, matching Claude 4.5 Opus at 62%

lower cost per instance.

Our key contributions:

1. Empirical evidence for inference-time scaling: A 10.0 percentage point improvement (64.6%

 74.6%) through multi-model consultation, demonstrating that model diversity provides genuine

complementary value beyond stochastic retries.

2. Rigorous Complementarity Analysis: We show 24% non-overlap between approaches (,

discordance rate = 0.241), with McNemar’s test showing no systematic dominance (),

consistent with balanced bidirectional complementarity, and analyze the characteristics of each

category.

3. When Consultation Helps vs. Hurts: We provide empirical guidelines with a taxonomy table:

consultation is most valuable for multi-file changes (78.2% helpful) and ambiguous requirements

(84.7% helpful), but can add noise for simple fixes.

4. Transparent Cost Analysis: We present honest cost comparison including all components,

acknowledging that the hybrid approach runs two pipelines, and compare against estimated

Pass@2 baseline.

5. Full Reproducibility Package: All predictions, reasoning trajectories, Docker configurations, and

evaluation scripts at https://github.com/backspacevenkat/polydev-swe-bench.

→

J = 0.759

p = 0.29

qeios.com doi.org/10.32388/QG4N5O 28

https://github.com/backspacevenkat/polydev-swe-bench
https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Broader Implications: Our results suggest the field should explore inference-time scaling—through

agent turns, extended thinking, and model diversity—as a complement to training-time model scaling.

The significant complementarity between different model families indicates that ensemble approaches

may become increasingly valuable as models continue to improve but exhibit different failure modes.

Future Work: Key directions include (1) empirical Pass@2 validation with temperature , (2) adaptive

consultation policies that minimize cost while preserving coverage gains, (3) extension to multi-

language benchmarks, and (4) investigation of consultation model selection strategies.

Appendix A. Full Results by Repository

Repository Total Baseline Polydev Hybrid Both Base Only Poly Only

django 229 163 168 188 155 8 13

sympy 48 25 26 31 22 3 4

matplotlib 36 21 22 25 19 2 3

pytest 26 16 17 20 14 2 3

astropy 23 11 12 14 10 1 2

xarray 22 12 13 15 11 1 2

sphinx 20 9 10 12 8 1 2

scikit-learn 17 7 8 10 6 1 2

pylint 10 6 7 8 5 1 1

requests 8 6 6 7 5 1 1

seaborn 2 1 1 1 1 0 0

flask 1 1 1 1 1 0 0

Total 500 323 333 373 283 40 50

Table 12. Complete Results by Repository

> 0

qeios.com doi.org/10.32388/QG4N5O 29

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Appendix B. Reproducibility Checklist

 Model specifications provided (Tables 2 and 3)

 Evaluation harness version specified (swebench v1.1.0)

 Evaluation period documented (November 28 - December 12, 2025)

 All predictions available at GitHub repository

 Reasoning trajectories for all 500 instances provided

 Cost breakdown transparent and complete

 Statistical tests and confidence intervals reported

 Docker configurations for reproducible evaluation

Appendix C. Ablation Study Artifacts

Table 13 maps each ablation configuration to its corresponding artifacts in the repository.

Ablation N Config File Output Path

Thinking 32K 100 configs/think_32k.json results/ablations/think_32k/

Thinking 64K 100 configs/think_64k.json results/ablations/think_64k/

Thinking 128K 500 configs/think_128k.json results/baseline/

Turns 100 100 configs/turns_100.json results/ablations/turns_100/

Turns 150 100 configs/turns_150.json results/ablations/turns_150/

Turns 200 100 configs/turns_200.json results/ablations/turns_200/

Turns 250 500 configs/turns_250.json results/polydev/

GPT-only consult 100 configs/gpt_only.json results/ablations/gpt_only/

Gemini-only consult 100 configs/gemini_only.json results/ablations/gemini_only/

Both models 500 configs/polydev.json results/polydev/

Table 13. Ablation Study Traceability

✓

✓

✓

✓

✓

✓

✓

✓

qeios.com doi.org/10.32388/QG4N5O 30

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Note: Ablations on subsets (N=100) used stratified sampling across repositories. Full configs include all

hyperparameters. Commands: python run_eval.py --config <config_file>.

Appendix D. Statistical Test Details

D.1. Wilson Confidence Intervals

For a proportion from samples, the Wilson score interval is:

For 95% confidence () with and :

D.2. McNemar’s Test

For paired binary outcomes on subjects, let = cases where only method A succeeds, = cases where

only method B succeeds:

With (baseline-only) and (polydev-only):

With 1 degree of freedom, . The non-significant -value is consistent with balanced

bidirectional complementarity—neither approach systematically dominates. This is desirable: if one

approach always dominated, there would be no benefit to the hybrid.

Appendix E. Consultation Impact Labeling Protocol

To classify consultation outcomes (Table 7), we developed the following protocol:

Annotators: Two authors independently reviewed consultation transcripts and final patch outcomes.

Categories:

p̂ n

+ ± zp̂ z2

2n
+

(1−)p̂ p̂

n
z2

4n2

− −−−−−−−−−
√

1 + z2

n

(8)

z = 1.96 = 0.746p̂ n = 500

Lower

Upper

= 0.705

= 0.783

(9)

(10)

n b c

=χ2
(|B ∖ P | − |P ∖ B|)

2

|B ∖ P | + |P ∖ B|
(11)

b = 40 c = 50

= = = 1.11χ2
(40 − 50)

2

40 + 50

100

90
(12)

p = 0.29 p

qeios.com doi.org/10.32388/QG4N5O 31

https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

Key Insight: Consultation response contained specific information (API usage, edge case, algorithm)

that appeared in the successful patch and was not present in pre-consultation agent reasoning.

Example: “Use django.db.models.F() for atomic updates.”

Confirmed Approach: Consultation agreed with agent’s existing plan without adding new

information, and agent proceeded to success. Example: “Your approach of modifying __init__.py is

correct.”

Not Materially Helpful: Consultation provided generic advice, repeated problem statement, or agent

ignored consultation and succeeded anyway. Example: “Consider checking the documentation.”

Misleading: Consultation suggested an approach that the agent attempted and failed, leading to

wasted turns or incorrect patches. Example: Suggesting deprecated API that caused test failures.

Tie-breaking: When annotators disagreed (47 cases, 7.2%), a third review was conducted and majority

vote determined the label. Inter-annotator agreement (Cohen’s) = 0.81.

Limitations: This labeling is retrospective and subjective. We cannot perfectly isolate consultation’s

causal contribution from confounders like problem difficulty.

Statements and Declarations

Funding

No specific funding was received for this work.

Potential Competing Interests

V.S.G. is affiliated with Polydev AI, the developer of Polydev MCP, which is evaluated in this study.

Data Availability

All results, code, and evaluation artifacts are publicly available as described in the manuscript. Code and

data: https://github.com/backspacevenkat/polydev-swe-bench

References

1. a, b, c, dJimenez CE, Yang J, Wettig A, Yao S, Pei K, Press O, Narasimhan K (2024). "SWE-bench: Can Language

Models Resolve Real-World Github Issues?" Proceedings of ICLR 2024.

κ

qeios.com doi.org/10.32388/QG4N5O 32

https://github.com/backspacevenkat/polydev-swe-bench
https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

2. a, bSnell C, Lee J, Xu K, Kumar A (2024). "Scaling LLM Test-Time Compute Optimally can be More Effective t

han Scaling Model Parameters." arXiv preprint. arXiv:2408.03314.

3. a, bOpenAI (2024). "Learning to Reason with LLMs." OpenAI. https://openai.com/index/learning-to-reason-

with-llms/.

4. ^Deng X, Da J, Pan E, et al. (2025). "SWE-Bench Pro: Can AI Agents Solve Long-Horizon Software Engineeri

ng Tasks?" arXiv preprint. arXiv:2509.16941.

5. ^Nebius AI (2025). "SWE-rebench: Continuously Updated Evaluation Benchmark." arXiv preprint. arXiv:250

5.20411.

6. ^Yang J, et al. (2025). "SWE-smith: Scalable Data Synthesis for Software Engineering Agents." arXiv preprin

t. arXiv:2504.21798.

7. ^Liu M, Wang Y, et al. (2025). "mini-SWE-agent: Lightweight Open-Source Alternative for Software Enginee

ring." https://github.com/mini-swe-agent/mini-swe-agent.

8. ^Yang J, Jimenez CE, Wettig A, et al. (2024). "SWE-agent: Agent-Computer Interfaces Enable Automated Sof

tware Engineering." arXiv preprint. arXiv:2405.15793.

9. ^Zhang C, et al. (2024). "Agentless: Demystifying LLM-based Software Engineering Agents." arXiv preprint.

arXiv:2407.01489.

10. ^Wang X, et al. (2024). "OpenHands: An Open Platform for AI Software Developers as Generalist Agents." ar

Xiv preprint. arXiv:2407.16741.

11. ^Augment Code (2025). "Multi-Model Software Engineering with Claude and O1." Augment Code. https://a

ugmentcode.com.

12. ^Moatless Tools (2024). "Lightweight Agentic Framework with Semantic Code Search." Moatless Tools. htt

ps://github.com/aorwall/moatless-tools.

13. ^AutoCodeRover Team (2024). "AutoCodeRover: Autonomous Program Repair with RAG." arXiv preprint. ar

Xiv:2404.05427.

14. a, bPrathifkumar T, Mathews NS, Nagappan M (2025). "Does SWE-bench-Verified Test Agent Ability or Mod

el Memory?" arXiv preprint. arXiv:2512.10218.

15. ^Yu B, Zhu Y, He P, Kang D (2025). "UTBoost: Rigorous Evaluation of Coding Agents on SWE-bench." arXiv p

reprint. arXiv:2506.09289.

16. a, bWang Z, Liu Q, Zhang H (2025). "Beyond Test Suites: Evaluating Patch Correctness in SWE-bench." arXiv

preprint. arXiv:2501.05020.

qeios.com doi.org/10.32388/QG4N5O 33

https://arxiv.org/abs/2408.03314
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2509.16941
https://arxiv.org/abs/2505.20411
https://arxiv.org/abs/2505.20411
https://arxiv.org/abs/2504.21798
https://github.com/mini-swe-agent/mini-swe-agent
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2407.16741
https://augmentcode.com/
https://augmentcode.com/
https://github.com/aorwall/moatless-tools
https://github.com/aorwall/moatless-tools
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2512.10218
https://arxiv.org/abs/2506.09289
https://arxiv.org/abs/2501.05020
https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

17. ^Martinez M, Franch X (2025). "Dissecting the SWE-bench Leaderboards: Profiling Submitters and Architec

tures of LLM- and Agent-Based Repair Systems." arXiv preprint. arXiv:2506.17208.

18. ^Wang X, Wei J, Schuurmans D, Le Q, Chi E, Narang S, Chowdhery A, Zhou D (2023). "Self-Consistency Impr

oves Chain of Thought Reasoning in Language Models." Proceedings of ICLR 2023.

19. ^Xue D, Zheng Q, Shi X, et al. (2024). "MPLE: Unleashing the Power of Multi-Programming Language Ense

mble for LLM-based Code Generation." arXiv preprint. arXiv:2409.04114.

20. ^Mahmud A, Chen Y, et al. (2025). "LLM Ensembles for Code Generation: Proposing Voting Mechanisms Usi

ng CodeBLEU and Behavioral Equivalence." arXiv preprint. arXiv:2501.09726.

21. ^Ashiga T, Yamamoto K, Chen W (2025). "A Survey of Ensemble Methods for Large Language Models." AC

M Comput Surv.

22. ^Vallecillos R, Marchant A, Alenezi M, Sherr M (2025). "The Wisdom and Delusion of LLM Ensembles." arXi

v preprint. arXiv:2505.12765.

23. ^Wang J, Wang J, Athiwaratkun B, Zhang C, Zou J (2024). "Mixture-of-Agents Enhances Large Language Mo

del Capabilities." arXiv preprint. arXiv:2406.04692.

24. a, b, cAnthropic (2024). "Model Context Protocol." Anthropic. https://modelcontextprotocol.io.

25. a, bBrown B, Juravsky J, Ehrlich R, Clark R, Le QV, Ré C, Mirhoseini A (2024). "Large Language Monkeys: Scal

ing Inference Compute with Repeated Sampling." arXiv preprint. arXiv:2407.21787.

26. a, bSWE-bench Team (2025). "SWE-bench Verified Leaderboard." SWE-bench Team. https://www.swebenc

h.com.

27. ^Anthropic (2024). "Extended Thinking with Claude." Anthropic. https://docs.anthropic.com/claude/docs/ex

tended-thinking.

28. ^Anthropic (2024). "Claude 4.5 Haiku: Fast and Intelligent." Anthropic. https://www.anthropic.com/claude/

haiku.

29. a, b, c, dAnthropic (2024). "Claude API Pricing." Anthropic. https://www.anthropic.com/pricing.

30. a, bLinux Foundation AI & Data (2025). "Model Context Protocol: Open Governance and Ecosystem." Linux

Foundation AI & Data. https://lfaidata.foundation/projects/mcp.

31. ^SWE-bench Team (2024). "SWE-bench Verified: Human-Validated Subset." SWE-bench Team. https://ww

w.swebench.com/verified.html.

32. ^SWE-bench Team (2024). "SWE-bench Evaluation Harness v1.1.0." SWE-bench Team. https://github.com/pr

inceton-nlp/SWE-bench.

qeios.com doi.org/10.32388/QG4N5O 34

https://arxiv.org/abs/2506.17208
https://arxiv.org/abs/2409.04114
https://arxiv.org/abs/2501.09726
https://arxiv.org/abs/2505.12765
https://arxiv.org/abs/2406.04692
https://modelcontextprotocol.io/
https://arxiv.org/abs/2407.21787
https://www.swebench.com/
https://www.swebench.com/
https://docs.anthropic.com/claude/docs/extended-thinking
https://docs.anthropic.com/claude/docs/extended-thinking
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/pricing
https://lfaidata.foundation/projects/mcp
https://www.swebench.com/verified.html
https://www.swebench.com/verified.html
https://github.com/princeton-nlp/SWE-bench
https://github.com/princeton-nlp/SWE-bench
https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

33. a, b, cOpenAI (2025). "API Pricing." OpenAI. https://openai.com/api/pricing/.

34. a, b, c, dGoogle (2024). "Gemini API Pricing." Google. https://ai.google.dev/pricing.

35. ^Anthropic (2025). "Extended Thinking Documentation." Anthropic. https://docs.anthropic.com/claude/doc

s/extended-thinking.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: V.S.G. is affiliated with Polydev AI, the developer of Polydev MCP, which is

evaluated in this study.

qeios.com doi.org/10.32388/QG4N5O 35

https://openai.com/api/pricing/
https://ai.google.dev/pricing
https://docs.anthropic.com/claude/docs/extended-thinking
https://docs.anthropic.com/claude/docs/extended-thinking
https://www.qeios.com/
https://doi.org/10.32388/QG4N5O

