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Computer simulations have long presented the exciting possibility of scientific insight into complex

real-world processes. Despite the power of modern computing, however, it remains challenging to

systematically perform inference under simulation models. This has led to the rise of simulation-

based inference (SBI), a class of machine learning-enabled techniques for approaching inverse

problems with stochastic simulators. Many such methods, however, require large numbers of

simulation samples and face difficulty scaling to high-dimensional settings, often making inference

prohibitive under resource-intensive simulators. To mitigate these drawbacks, we introduce active

sequential neural posterior estimation (ASNPE). ASNPE brings an active learning scheme into the

inference loop to estimate the utility of simulation parameter candidates to the underlying

probabilistic model. The proposed acquisition scheme is easily integrated into existing posterior

estimation pipelines, allowing for improved sample efficiency with low computational overhead. We

further demonstrate the effectiveness of the proposed method in the travel demand calibration

setting, a high-dimensional inverse problem commonly requiring computationally expensive traffic

simulators. Our method outperforms well-tuned benchmarks and state-of-the-art posterior

estimation methods on a large-scale real-world traffic network, as well as demonstrates a

performance advantage over non-active counterparts on a suite of SBI benchmark environments.

1. Introduction

High-fidelity computer simulations have been embraced across countless scientific domains,

furthering the ability to understand and predict behaviour in complex real-world systems. Modern

computing architectures and flexible programming paradigms have further lowered the barrier to
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capturing approximate models for scientific study in silico, enabling wide-spread use of

computational experiments across disciplines. However, despite the relative ease of capturing real-

world generative processes programmatically, the resulting black-box programs are often difficult to

leverage for inverse problems. This is a common challenge in practical applications; the simulator is

often computationally expensive to evaluate, its implicit likelihood function is generally intractable,

and the dimensionality of high-fidelity outputs is typically prohibitive. To address these issues,

likelihood-free inference methods have been introduced, operating under the broadly applicable

assumption that no tractable likelihood function is available. Early success along this direction was

achieved through easy-to-use methods like Approximate Bayesian Computation (ABC)[1][2], or

extensions of kernel density estimation. The scale of real-world applications demands more flexible

and scalable approaches, which has lead to the integration of aptly suited deep learning methods in

likelihood-free settings. Neural network-based methods[3][4][5]  have since been proposed,

introducing greater flexibility when approximating probabilistic components (e.g., the posterior,

likelihood ratio, etc) in the inference pipeline. The use of the term "simulation-based inference" (SBI)

has since been colloquially embraced[6] when referring to this emerging class of techniques.

SBI methods primarily leverage deep learning through their use of neural density estimators (NDE),

neural network-based parametrizations of probability density functions. Common choices of NDE in

practice include mixture density networks[7]  and normalizing flows[8][9], along with popular

extensions (e.g., Real NVP[10], MAE[11], MAF[12], etc). Methods also vary in the probabilistic form they

elect to approximate; the posterior[3], the likelihood[13], and the likelihood ratio[14][15] are all common

choices for well-established methods.

While many SBI techniques leverage basic principles from active learning (AL), they are mostly

established as a helpful heuristic for increased sample efficiency, rather than an explicit optimization

over a defined acquisition function. For example, methods like Sequential Neural Posterior Estimation

(SNPE)[3]  boost sample efficiency (over non-sequential methods) by iteratively updating a proposal

prior  , steering simulator parameters to values expected to be more useful for learning the

posterior under observations   of interest.

While sequential proposal updates are an effective first-order step to more informative simulation

runs, there are many key factors that remain overlooked. For example, the updated proposal does not

take into account the current parameters of the NDE itself, and parameter samples in the batch are

(θ)p~

xo
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drawn from the current proposal independently. This fails to fully utilize myopic AL strategies and

batch optimization, leading to large amounts of simulation runs with high expected information

overlap and wasted computation. To address this issue, we formulate an active learning scheme that

(1) selects samples expected to target epistemic uncertainty in the underlying probabilistic model, and

(2) makes acquisition evaluation simple and efficient when using any Bayesian NDE.

We demonstrate the effectiveness of our method on the origin-destination (OD) calibration task. OD

calibration aims to identify OD matrices that yield simulated traffic metrics that accurately reflect

field-observed traffic conditions. It can be seen as a parameter tuning process, akin to model fitting in

machine learning. From the machine learning perspective, OD calibration presents challenges due to

the requirement of calibrating specific unique samples from observed traffic information, such as link

flows, trip speeds, etc.

Our contributions are summarized as follows:

Active Sequential Neural Posterior Estimation (ASNPE), an SNPE variant that incorporates active

acquisition of informative simulation parameters   to the underlying (direct) posterior estimation

model, without the use of additional surrogate models. This helps to drive down uncertainty in

parameters of the utilized NDE and improve sample efficiency, both of which are particularly

important when interfacing with computationally costly simulation-based models.

An efficient approximation to the proposed acquisition function above, along with a means of

training Bayesian flow-based generative models for density estimation during posterior

approximation (both with open source implementations1). Leveraging this class of models enables

direct uncertainty quantification in the acquisition function, and is more flexible, efficient to train,

and scalable to high-dimensional data than many traditional Bayesian model choices (e.g.,

Gaussian processes).

A Bayesian formulation of the OD calibration problem and coupled statistical framework for

performing sequential likelihood-free inference with neural posterior estimation methods. We

show ASNPE outperforms baseline methods across a wide variety of simulation scenarios on a

large-scale traffic network. We also evaluate ASNPE on three broader SBI benchmark environments

and find it acheives a performance advantage over non-active counterparts.

θ
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2. Background

2.1. Neural posterior estimation

Given observational data of interest   and a prior  , we want to carry out statistical inference to

approximate the posterior   under the model  . We assume   is defined implicitly

via a simulation-based model, where direct evaluation of    is not possible but samples 

 can be drawn. Conventional Bayesian inference is thus not accessible in this setting, and we

instead look to approximate the posterior using   generated pairs  .

Neural Posterior Estimation (NPE) methods attempt to approximate the posterior directly with a

neural density estimator   trained on samples  , where   and  , by

minimizing the loss

for learnable parameters  . Provided    is sufficiently expressive,    will converge to the true

posterior   as  .

Sequential Neural Posterior Estimation (SNPE) methods break up the NPE process across several

iterations, and can improve sample efficiency by leveraging the fact that   is often far more

narrow than  . While accurately representing    for any    is ideal (where    is the

simulation output space), doing so can require prohibitively large simulation samples, including

outputs from parameters with low posterior density under  . To combat this, SNPE methods draw 

 expected to be more informative about   by using a successively updated proposal distribution 

 which approximates  . Training the NDE   on samples   when   is not the true

prior, however, will cause it to converge instead to the proposal posterior  ,

rather than the true posterior (as shown in  [3]). Existing SNPE methods correct for this in different

ways: SNPE-A  [3]  trains    to approximate    during each round and employs importance

reweighting afterward, SNPE-B  [4]  directly minimizes an importance weighted loss, and SNPE-

C [5] (also known as Automatic Posterior Transformation, or APT) maximizes an estimated proposal

posterior that easily transforms to the true posterior.

xo p(θ)

p(θ|x = )xo p(x|θ) p(x|θ)

p(x|θ)

x ∼ p(x|θ)

N {( , )θi xi }Ni=1

(θ|x)qϕ {( , )θi xi }Ni=1 ∼ p(θ)θi ∼ p(x| )xi θi

L(ϕ) = [− log (θ|x)]Eθ∼p(θ)Ex∼p(x|θ) qϕ

ϕ qϕ (θ|x)qϕ

p(θ|x) N → ∞

p(θ|x = )xo

p(θ) p(θ|x) x ∈ X X

xo

θ p(θ| )xo

(θ)p~ p(θ|x = )xo qϕ ∼ (θ)θ
~

p~ p~

(θ|x) = p(θ|x)p~
(θ)p(x)p

~

(x)p(θ)p
~

(θ|x)qϕ (θ|x)p~
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2.2. Bayesian active learning

Bayesian active learning is a selective data-labeling technique commonly employed in data-scarce

learning environments. Active learning assesses the strength of candidate data points using a so-

called acquisition function, often capturing some notion of expected utility to the underlying model

given the currently available data. Given an acquisition function  , computing the next best point to

label includes optimization of    over a domain of as yet unlabeled points  : 

, where   are input data points and   is the posterior of the Bayesian

model parameters    given the current training dataset, i.e., the distribution over parameters after

training the model. In modern Bayesian deep learning pipelines, this model is often a Bayesian neural

network[16][17]. Many acquisition functions used in practice are extensions or approximations of

expected information gain (EIG)[18]

where   is conditional entropy, and   are input labels.

Several existing works explore the use of Bayesian optimization (BO) in the likelihood-free inference

setting.[19][20] employ Gaussian processes (GPs) as surrogate models for the discrepancy as a function

of  , and select parameter candidates by optimizing this surrogate with BO. GPs are also used as a

surrogate by[21]  to represent the proposal distribution in MCMC ABC.[22]  further extends these

principles to deep Gaussian processes and leverage these models as surrogate likelihoods. In this

work, we explicitly avoid the use of likelihood surrogates and aim to leverage only the approximate

posterior NDE model, with the express intent of subverting additional computational overhead and

enabling the use of powerful NDEs (e.g., flow-based generative models).

2.3. Origin-destination calibration

OD calibration is an important task for transportation agencies and practitioners who develop traffic

simulation models of road networks and use them to inform a variety of planning and operational

decisions. Calibrating the input parameters of these simulators is an important offline optimization

problem that agencies must face on a regular basis (e.g., when new traffic data are made available,

when changes to the road network have occurred, etc). These simulators are often computationally

expensive to evaluate, however, and highlight the practical importance of developing sample efficient

calibration methods.

α

α U

= α(x,p(θ|D))x∗ argmaxx x p(θ|D)

θ

H(θ|D) − [H[θ|D ∪ {(x,y)}]] ,argmaxx Ey∼p(y|x,D) (1)

H[⋅|⋅] y

θ
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Previous works primarily approach OD calibration using general-purpose simulation-based

optimization (SO) algorithms, such as Simultaneous Perturbation Stochastic Approximation (SPSA)

methods[23][24][25][26] and genetic algorithms[27][28][24]. These general-purpose SO algorithms tend

to require large numbers of simulation evaluations, which can be computationally costly. To address

this issue, recent extensions of SPSA have been proposed[29][30][31][32]. Analytic metamodels have also

been considered and shown to reduce the need for large numbers of function evaluations[33][34][35]

[36].

3. Methodology

Figure 1. Depiction of the proposed active learning-integrated method. Demonstrates the high-level

ASNPE pipeline. Samples   are drawn from sequentially updated proposal distributions  , filtered

according to the acquisition function  , and run through the simulator   to

generate   pairs   for training the approximate posterior  . The learned posterior is then

conditioned by the target observation  , producing the next round’s proposal  .

3.1. Active learning for SNPE

SNPE methods produce iteratively updated proposal priors    from 

  at each round    in the inference process, where    is the accumulated dataset 

  by round    and    is the number of newly collected pairs per round. These sequentially

updated proposals provide a means of drawing parameter values    that are increasingly

useful (i.e., high likelihood) to the posterior estimate of interest  . As such, SNPE offers a clear

possible benefit for improved sample efficiency over non-sequential NPE, which cannot explicitly

θi (θ)p~

α( , p(ϕ|D))θ1:N p(x|θ)

B ( , )θi xi qϕ

xo (θ) = (θ| )p~ qϕ xo

(θ) ≈ p(θ|x = )p~(r+1) xo

(θ| , )qϕ xo D(r) r D(r)

{ ,θi xi}rBi=1 r B

∼ (θ)θ(r) p~(r)

p(θ| )xo
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sample new values at expected high likelihood regions under  . Despite this, it’s difficult to quantify

theh value of any particular    and whether it’s worth the computational cost to obtain 

 with respect to its utility to the underlying NDE  .

In high-cost simulation environments, we want to take every measure to sample only at highly

informative regions of the parameter space to improve our estimate    of  . This

entails a more principled analysis of candidate simulation parameters    before investing in the

simulation run  . In an attempt to quantify the prospective impact of any particular   on our

posterior estimate, we look to Bayesian active learning, and acquisition functions such as EIG. EIG

considers the reduction in uncertainty of model parameters under the inclusion of new data in

expectation over the predictive posterior. Adapting Eq. (1) to our NPE context gives

which seeks to drive down uncertainty in NDE parameters    by optimizing for    with simulation

outputs    expected to be most informative. Unfortunately, EIG and related

approximations require  , which we cannot evaluate nor do we directly approximate in the

NPE setting. This makes it considerably more difficult to quantify the utility of candidate   values, as

we have no direct means of sampling likely simulation outputs.

3.2. Characterizing posterior uncertainty

Instead of relying on the marginal distribution  , we seek instead to capture uncertainty

across different parameterizations of the NDE. Broadly speaking, we want to simulate   expected to be

informative to our NDE model, reducing epistemic uncertainty as measured by    and further

elucidating parameter sets   likely to explain the probabilistic mapping from simulation outputs   to

parameter inputs  . Given that   models this relationship as the conditional distribution  , we

consider the uncertainty over distributional estimates induced by  . This allows for the targeting

of epistemic uncertainty in the NDE model according to how that uncertainty appears across feasible

target posterior forms  . More precisely, for some divergence measure  , we represent this

distributional uncertainty as

where    is the corrected posterior produced by    (see Section  2.1), and    is the

NDE’s marginal posterior (under model parameters  ) for simulation posterior estimates

xo

θ ∼ (θ)p~(r+1)

x ∼ p(x|θ) (θ|x, )qϕ D(r)

(θ| )qϕ xo p(θ|x = )xo

θ

x ∼ p(x|θ) θ

H(ϕ|D) − [H[ϕ|D ∪ {(θ,x)}]] ,argmaxθ Ex∼p(x|θ,D)

ϕ θ

x ∼ p(x|θ,D)

p(x|θ,D)

θ

p(x|θ,D)

θ

p(ϕ|D)

ϕ x

θ qϕ (θ|x)qϕ

p(ϕ|D)

(θ|x)qϕ D(⋅||⋅)

(x) = [D(p(θ|x,D)||p(θ|x,ϕ))],HD Eϕ|D (2)

p(θ|x,ϕ) (θ|x)qϕ p(θ|x,D)

ϕ
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(parameters  ):

Intuitively,    captures a notion of dissimilarity between the posterior estimates from different

draws of  . Put another way,    indicates how certain the NDE is in assigning likelihood

values across    under a chosen  ; a relatively low value would indicate that likely parameter

draws    produce posterior estimates    that tend to agree with the “marginal”

posterior  , for instance. Note that when we let the divergence measure be the KL divergence 

, we have   (see proof A.1). Computing this exactly is difficult in practice,

however, and we therefore seek a practically appropriate approximation below.

3.3. Acquisition of informative parameters

Eq. (2) provides a basis for evaluating uncertainty in an NDE without relying on access to or

approximations of the likelihood  . Given the posterior estimation problem at hand, we’re

particularly interested in how to select simulation parameters   expected to reduce   at or around 

. Here we take inspiration from [37], who seek to drive down uncertainty at   with noisy estimates of

the log joint probability (albeit in a context where likelihoods   are available). While   provides

a measure of distributional uncertainty, we can target specific   whose assigned likelihood is widely

disagreed upon across draws of  :

While optimization of Eq. (3) over all    in the prior support may be ideal, this is computationally

infeasible given the posterior estimates from all parameters    required in expectation.

Additionally, note that Eq. (3) does not explicitly account for relative likelihoods of    under the

posterior or available approximations, possibly leading to   with high uncertainty under   but with

low-likelihood under    in expectation. We account for this explicitly during integration with

specific SNPE approaches, as seen in the section below.

θ

p(θ|x,D) = p(θ|x,ϕ)p(ϕ|D)dϕ.∫
Φ

HD

ϕ ∼ p(ϕ|D) HD

θ ∈ Θ x

ϕ ∼ p(ϕ|D) p(θ|x,ϕ)

p(θ|x,D)

D = DKL = I[ϕ; θ| ,D]HDKL xo

p(x|θ)

θ HD

xo θ

p(x|θ) HD

θ

ϕ ∼ p(ϕ|D)

= [ ] .θ∗ argmaxθEϕ|D (p(θ| ,D) − p(θ| ,ϕ))xo xo
2 (3)

θ

ϕ ∼ ϕ|D

θ

θ∗ xo

p(θ| )xo
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3.4. Integration with APT

In order to tractably approximate Eq. (3), we impose two additional restrictions to bring the parameter

acquisition into the SNPE loop:

1. Require the NDE be updated according to APT[5], i.e., trained via maximum likelihood on 

, where

and by Proposition 1 of[3] ensures   as   without requiring post-hoc updates to

the NDE’s distributional estimate. This allows the model parameter posterior    to be used

directly in the contexts of Eq. (2) and Eq. (3), whereas otherwise the corrective terms involved would

need to be accounted for explicitly.

2. To account for the likelihood of    under the posterior estimate as captured by the proposal prior 

 in a given round of SNPE, we adjust Eq. (3):

Further, in practice we approximate this by optimizing Eq. (4) over samples  ,

straightforwardly integrating the acquisition mechanism into the standard SNPE pipeline. Round-

wise proposals    are set after    samples are collected (for round    with 

  samples collected per round), and    as  . All round-wise proposal

(ϕ) = − log ( |x)L
~

∑N
i=1 q~ϕ θi

(θ|x) = (θ|x) ,q
~
ϕ qϕ

(θ)p~

p(θ)

1

Z(x,ϕ)

(θ|x) → p(θ|x)qϕ N → ∞

p(ϕ|D)

θ

(θ) ≈ p(θ|x = )p~ xo

α(θ,p(ϕ|D)) = (θ) ⋅ [ ] .p~ Eϕ∼ϕ|D (p(θ| ,D) − p(θ| ,ϕ))xo xo
2 (4)

θ ∼ (θ)p~(r)

(θ) = (θ|x)p~(r) qϕ N = rB r

B (θ|x) → p(θ|x)qϕ N → ∞
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distributions share the support of the prior  , which itself is established as having support over the

entire parameter domain of interest  .

Thus, optimizing   over a sample of size   drawn from a proposal distribution   at any round 

  recovers the true optimum of    as  ; each proposal’s support connects back to the prior’s

support, which covers  . As a result, at each round a fixed sample size   drawn from the proposal can

be used to approximate the acquisition maxima, while additionally adhering to the round-wise

proposal sampling required to ensure  . Refer to Section A.2 for additional discussion

on the functional form of the acquisition function.

3. (Optional, depending on model) To approximate the Bayesian model parameter posterior  ,

neural network-based NDEs (such as flow-based generative models or mixture density networks) can

be trained via MC-dropout[17][38]. See additional details regarding consistent sampling and log

probability evaluation in MAFs under MC dropout in Appendix C.

Altogether, this constitutes the ASNPE method, which is more succinctly described in Algorithm 3.3.

See Figure 1 for a visual depiction of this process.

3.5. Bayesian origin-destination calibration

We now position OD calibration as a Bayesian inference problem, with a posterior density of interest to

be approximated by SNPE methods. During a time interval of interest   on a traffic network  , we

consider a single OD matrix  , where    represents the expected travel demand for the

origin-destination pair  .   is the set of OD pair indices, i.e.,  , for all pairs of interest

on  . OD pairs are typically defined between elements in a fixed set of Traffic Assignment Zones

(TAZs) whose size may not be uniform due to variable demand density; see Figure 7 for zones drawn

on two candidate networks. Figure  2 loosely depicts the acquisition pipeline for traffic data,

corresponding the collection process shown in Figure 1.

p(θ)

Θ

α N (θ)p~(r)

r α N → ∞

Θ N

(θ|x) → p(θ|x)qϕ

p(ϕ|D)

[ , ]ts te G

d = {dz}z∈Z dz

z Z Z = {1, 2, … ,Z}

G
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Figure 2. Simple depiction of the data acquisition and simulation process for the OD

calibration application. The acquisition step selects parameter candidates (OD matrices)

to then be simulated (via SUMO) and produce outputs (network flow observations) that

are used to update the approximate posterior model.

Conventionally, OD calibration is formulated as a simulation-based optimization problem over a

traffic simulator  , where    are vectors of endogenous simulation variables and

exogenous simulation parameters, respectively. The goal is to obtain an OD matrix    that yields

simulation results   that are sufficiently close to available observational data  .

While many pre-existing methods adopt a traditional optimization scheme and iteratively produce

point estimates for  , we formulate the calibration problem under the Bayesian paradigm and instead

seek a posterior 

S(⋅; , )u1 u2 ,u1 u2

d∗

= S( ; , )x∗ d∗ u1 u2 xo

d∗

p(d|x; )d̂
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where    represents the prior distribution over OD matrices, often defined around a noisy

historical estimate  . The posterior estimate under our observation   can then be used to

compute different point estimates for  , used in other downstream tasks as an informative prior, and

can represent intrinsic uncertainty in the calibration problem. This formulation achieves parity with

existing approaches, where    is otherwise used as a noisy starting point. Additionally, the traffic

simulator   is treated as a black-box that implicitly defines the likelihood  :

i.e., marginalizing over all possible latent trajectories  . As is typical in simulation-based inference

settings, this integral is intractable for simulators of sufficient complexity.

4. Experimental results

We explore the performance of the proposed ASNPE method in the context of OD calibration on a

challenging real-world traffic network. Our goal here is to 1) compare the general purpose utility of

our approach in complex settings against tuned benchmark methods, and 2) verify ASNPE’s candidacy

as a sample efficient posterior estimation tool in high-dimensional, data-scarce settings. These

objectives are directly in line with the needs of practitioners, both in the urban mobility community

and broadly across scientific disciplines.

p(d|x; ) = =d̂
p(x|d)p(d; )d̂

p(x; )d̂

p(x|d)p(d; )d̂

∫ p(x|d)p(d; )ddd̂
(5)

p(d; )d̂

d̂ p(d|x = ; )xo d̂

d∗

d̂

S p(x|d)

p(x|d) = ∫ (x, z|d)dz = ∫ (x, , |d)d d ,pS pS u1 u2 u1 u2 (6)

z

qeios.com doi.org/10.32388/QJ2JRK 12

https://www.qeios.com/
https://doi.org/10.32388/QJ2JRK


 
Hours 5:00-6:00 Hours 8:00-9:00

Cong. level A Cong. level B Cong. level A Cong. level B

Prior I   

Prior OD 0.178 0.165 0.181 0.150

Setting prior 0.396 0.488 0.539 0.387

SPSA
0.563 

0.089
0.521  0.052

0.453 

0.078

0.384 

0.049

PC-SPSA 0.193  0.063 0.185  0.097
0.159 

0.036

0.159 

0.046

MC-ABC 0.275  0.047
0.295 

0.066

0.343 

0.036
0.305  0.036

SNPE 0.201  0.085 0.167  0.092 0.187  0.059 0.314  0.025

(ours)

ASNPE
0.147  0.011 0.157  0.097

0.165 

0.064
0.161  0.079

Prior II   

Setting prior 0.340 0.311 0.245 0.277

SPSA 0.316  0.074 0.342  0.045 0.258  0.061 0.189  0.025

PC-SPSA 0.180  0.029 0.189  0.055 0.163  0.032 0.155  0.031

MC-ABC 0.143  0.034 0.190  0.036 0.169  0.023 0.140  0.010

SNPE 0.137  0.025 0.157  0.032 0.142  0.024 0.135  0.016

(ours)

ASNPE
0.130  0.024 0.148  0.034 0.138  0.025 0.132  0.016

Table 1. RMSNE scores on the Munich traffic network, as described in Section 4.1. Note that methods

like SPSA (poor convergence aside) can produce RMSNE scores larger than the reported setting prior

due to noise in the starting sample. The “setting prior” value is an average RMSNE score over many 

 draws from the shifted prior. Reported errors are empirical standard deviations computed over the

five trial runs.

r = 0.6 q = 0.3

±
±

± ±

± ±
± ±

±
± ±

±

± ± ± ±

± ±
±

±

r = 0.75

q = 0.45

± ± ± ±

± ± ± ±

± ± ± ±

± ± ± ±

± ± ± ±

θ
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Figure 3. Plots of the (averaged) calibration horizons for each of the evaluated methods on the Prior

I, Hours 5:00-6:00, Congestion level A scenario. (a) RMSN(E) scores reached throughout the 128

sample simulation horizon for each evaluated method, averaged over five repeated trials (mean line

plotted) and with error bars calculated as bootstrapped 95% confidence intervals. (b) The same

scores shown in (a), but instead plotted against the wallclock time passed before the score was

reached (for each method’s single best run). Note that the full 128-sample method trajectories are

included, and the variability in line lengths demonstrates both 1) the impact of NPE-based

methods’ ability to run simulations in parallel, and 2) noisiness in simulation runtimes due to the

variable inputs explored by each method. See Appendix E for all scenario plots.
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  Method C2ST MMD MED-DIST MEAN-ERR

Bernoulli

GLM

SNPE-C 0.749  0.017 0.210  0.024 11.454  0.255 0.188  0.117

ASNPE 0.725  0.012 0.146  0.057 11.993  0.172 0.150  0.085

SLCP

distractors

SNPE-C 0.987  0.001 0.172  0.001 16.716  1.014 0.899  0.065

ASNPE 0.985  0.002 0.148  0.022 16.547  0.499 0.906  0.220

Gaussian

mixture

SNPE-C 0.773  0.009 0.167  0.006 1.051  0.037 0.532  0.074

ASNPE 0.771  0.006 0.150  0.025 1.010  0.066 0.440  0.164

Table 2. Results comparing SNPE-C and ASNPE for various metrics on the Bernoulli GLM, SLCP

distractors, and Gaussian mixture tasks from[39]. Experimentation details, metrics, and associated plots

can be found in Appendix B.

4.1. Experimental setup

We conducted a case study on the large-scale regional Munich network seen in[40]. The Munich

network includes 5329 configurable origin-destination pairs (constituting simulation input), as well

as 507 detector locations (positions of reported output traffic flows), resulting in a highly

underdetermined system.

We build and evaluate a number of synthetic demand scenarios, following an established framework

for fair evaluation of urban demand calibration methods ([41][42][43]). Each of the test demand

scenarios are constructed from combinations of the following factors:

Time interval: a time interval of interest is specified through which to simulate traffic flows on the

network. Prior ODs are chosen to reflect real-world traffic patterns for the affiliated times. We

evaluate peak morning demand for hour-long intervals at 5:00am-6:00am and 8:00am-9:00am.

Congestion level: within a given time interval, we can further control the level of traffic congestion

exposed during the hour. The distribution of frequencies present in the starting ODs plays a critical

role in determining route time across the traffic network. Here we define two congestion levels, “A”

and “B,” to reflect different average frequencies assigned to OD pairs. Here we use a truncated normal

± ± ± ±

± ± ± ±

± ± ± ±

± ± ± ±

± ± ± ±

± ± ± ±
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distribution (lower bound at 0) to sample OD counts with varying means and variance: (1) 

  for hours 5:00-6:00, congestion level A, (2)    for hours 5:00-6:00,

congestion level B, (3)   for hours 8:00-9:00, congestion level A, (4)   for

hours 8:00-9:00, congestion level B.

Prior bias and noise: under each time interval and congestion level, we further perturb the generated

OD matrices to represent realistic variance found in real-world sampling of traffic observations. Here

we use the following noise model, mirroring that of[42]:  , where  . We

then formulate two perturbed settings: 1) Prior I:  ,  , and 2) Prior II:  ,  .

Prior I constitutes a heavily under-congested estimate with relatively little added noise, while Prior II

is less biased from the true OD but noisier. Both priors represent underestimations of the true

demand, reflecting the fact that most prior ODs from real-world settings are constructed from historic

travel demand observations.

The eight synthetic combinations constitute starting ODs/priors that span a variety of different

settings important for real-world urban demand calibration tasks. Each synthetic setting yields a

particular prior OD estimate  , which is then used to construct a prior  . A fixed sample is drawn

from    and passed through the open-source traffic simulator Simulation of Urban MObility

(SUMO) [44] to generate an associated “true” network flow  .

4.2. Comparison to SOTA Calibration Methods

We evaluate the effectiveness of the proposed solution by comparing against available SOTA

benchmarks commonly employed in the OD calibration space: Simultaneous Perturbation Stochastic

Approximation (SPSA)  [45]  and principal component (PC)-based SPSA, or PC-SPSA[40]. SPSA is a

widely employed algorithm for travel demand calibration, and PC-SPSA is an effective extension that

optimizes over parameters in a lower-dimensional subspace, as defined by the principal components

of computed travel demand history matrix. Both of these methods are conventional optimization-

based methods, and do not leverage neural networks. Additionally, these methods in their canonical

form cannot be parallelized, requiring serial simulation evaluations across each iteration.

For NPE-based approaches, we evaluate our proposed method ASNPE alongside SNPE-C (or APT)

[5]  and Approximate Bayesian Computation (ABC)[1][2]. ABC serves primarily as a less sophisticated

baseline that reflects early approaches to likelihood-free inference, and it typically faces difficulty

scaling and is far less flexible compared to its NPE counterparts.

(μ = 5,σ = 25) (μ = 10,σ = 50)

(μ = 25,σ = 50) (μ = 50,σ = 100)

= (r + q × δ) ×xc d̂ δ ∼ N(0, )1
3

r = 0.6 q = 0.3 r = 0.75 q = 0.45

d̂ p(d; )d̂

p(d; )d̂

xo
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For all of the eight scenario priors  , each calibration method is ran for a maximum of 128 SUMO

simulations, seeking to recover  . The root mean squared normalized error (RMSNE) is recorded for

each method’s simulation horizon, as used in[42]  (see also Appendix  A.3). To account for the

stochasticity across evaluations, we report RMSNE averaged of five repeated simulation runs. See

Table  1 for reported values for each method across each of the eight synthetic scenarios, as well as

paired prior plots in Figure 3.

4.3. Analyzing calibration performance

ASNPE outperforms all other methods across most explored settings: as can be seen in Table 1, our

method outperforms both the well-tuned PC-SPSA method commonly employed by the urban

mobility community, as well as popular simulation-based inference (SBI) methods like SNPE, across

almost all of the explored settings. In general, PC-SPSA tends to quickly converge but demonstrates a

limited ability to further improve beyond the first 10-20 encountered simulations. Both SBI methods

tend to make steady improvements throughout the entire trial, however, albeit often doing so more

slowly in the first 20-40 simulations than PC-SPSA. This is primarily due to the limited feedback

SNPE/ASNPE receive comparatively, only incorporating new simulation data in batches (in this case,

every 32 simulation draws).

Additionally, ASNPE reliably reaches better RMSNE scores than SNPE with fewer simulations, as well

as Approximate Bayesian Computation (MC-ABC). This can be seen as early as the first NDE update,

before which the two methods encounter the same (seeded) simulation samples. This also empirically

supports our central methodological contribution, i.e., optimization over informative simulation

parameters can more efficiently improve the accuracy of the inferred posterior estimate.

ASNPE is outperformed in some cases: ASNPE is outperformed by PC-SPSA in two of our explored

settings (under Prior I, Hours 8:00-9:00). While we wouldn’t expect a single method to be the best

choice for all variations in such a high-dimensional setting, this particular scenario serves as an

opportunity to better understand possible failure modes of the proposed method.

As alluded to above, ASNPE updates its internal model only after a batch of simulation samples is

generated, whereas PC-SPSA adjusts its parameters after each simulation run. While generating

samples in batches can be beneficial (and is often necessary) for early stability of ASNPE, it can mean

informative simulation data is incorporated later in the trial. This explains the occasional gap that

opens up between SBI methods and PC-SPSA in the first 30 simulations, only after which is

p(d; )d̂

xo
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ASNPE/SNPE able to incorporate the samples to improve its posterior estimate. Note, however, that

most of the early advantage PC-SPSA may have over ASNPE is dwarfed by the ability to obtain its

simulation draws in parallel, whereas PC-SPSA must run simulations serially. This allows for larger,

more stable improvements in less time, which can be seen in subplot (b) of Figure 3.

4.4. Performance on common SBI benchmarks

We additionally report results on several common SBI benchmark environments, and compare against

the performance of (non-active) SNPE. Numerical results can be found in Table 2, along with plots and

more details in Appendix B. These additional results demonstrate the wider applicability of our

method beyond the travel demand calibration task.

5. Conclusion

In this paper, we introduced Active Sequential Neural Posterior Estimation (ASNPE), an SNPE variant

that actively incorporates informative simulation parameters   to drive down epistemic uncertainty in

the neural density estimator and improve sample efficiency for high-quality estimates. We evaluate

this method on a complex, high-dimensional problem in urban demand calibration, and show it

reliably outperforms available benchmark methods across a variety of scenarios with variable bias and

noise. We additionally provide results on several common SBI benchmark environments, and find

ASNPE is capable of outperforming state-of-the-art SNPE methods on key posterior approximation

metrics.

Appendix A

A.1. Connection between mutual information and 

Expanding the definition of mutual information for  , we have the following (note that 

 and   are fixed):

θ

HDKL

I[ϕ; θ| ,D]xo

xo D
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This aligns with the expected divergence term introduced in Eq. 2 when we let the measure  .

The connection to mutual information helps to position our motivation for the acquisition function

ultimately introduced in Eq. 4. That is, by seeking to drive down disagreement between “marginal”

and “component” posteriors    and  , respectively, we are attempting to realize the

information we expect    to tell us about our NDE parameters  , thereby minimizing the remaining

mutual information between the two.

A.2. Regarding the functional form of the acquisition function

The family of functions   under parameter   constitutes valid choices

for the acquisition function for any  , facilitating different levels of emphasis on uncertainties at

values of   relative to their likelihoods under  . While several values of   may be justifiable, the choice

to use  , implicit in Eq. 4, intuitively captures a desirable balance in the relationship between

uncertainties and likelihoods of  .

In particular, under level sets    (where    is held constant), as likelihoods 

  decrease by a factor of  , the average deviation between    and    need only

increase by a factor of  , i.e., changes in uncertainty are sub-linear in the likelihood ratio. With the

introduction of variable  , this factor generalizes to  , and may require additional measures to

balance the resulting sensitivity between the terms. We find that    is a natural choice that

reasonably captures the desire to explore potentially unlikely parameters with high uncertainties

without ignoring them (e.g.,  ) or relying too heavily on them (e.g.,  ).

A.3. Additional Definitions

The root mean squared normalized error (RMSNE) for a simulated output    with respect to an

observational reference  , as used in [42], is defined as

I[ϕ; θ| ,D]xo = p(θ,ϕ| ,D) log( )dθdϕ∫
Φ
∫

Θ
xo

p(θ,ϕ| ,D)xo

p(θ| ,D)p(ϕ| ,D)xo xo

= p(θ|ϕ, ,D)p(ϕ| ,D) log( )dθdϕ∫
Φ
∫

Θ
xo xo

p(θ| ,ϕ)p(ϕ| ,D)xo xo

p(θ| ,D)p(ϕ| ,D)xo xo

= p(ϕ| ,D)[ p(θ| ,ϕ) log( )dθ]dϕ∫
Φ

xo ∫
Θ

xo
p(θ| ,ϕ)xo

p(θ| ,D)xo

= p(ϕ| ,D) [ (p(θ| ,ϕ)||p(θ| ,D))]dϕ∫
Φ

xo DKL xo xo

= [ (p(θ| ,ϕ)||p(θ| ,D))]Ep(ϕ| ,D)xo DKL xo xo

D = DKL

p(θ|x,D) p(θ|x,ϕ)

θ ϕ

α(θ,p(ϕ ∣ D)) = (θ)( […]p~ Eϕ∣D )λ λ

λ

θ p~ λ

λ = 1

θ

α(⋅,p(ϕ ∣ D)) = z p(ϕ ∣ D)

(θ)p~ n p(θ ∣ x,D) p(θ ∣ x,ϕ)

n−−√

λ n1/(2λ)

λ = 1

λ → 0 λ → ∞

x̂

xo
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where there   is the number of observed segment flows, and both   and   are  -dimensional vectors.

Appendix B. Additional SBI benchmarks

In order to appeal to the general utility of our proposed method, we provide additional experimental

results between ASNPE and SNPE-C  [5]  on three common SBI benchmark tasks: SLCP distractors,

Bernoulli GLM, and Gaussian Mixture. Each of these settings corresponds to a reproducible task

environment from [39], and the corresponding implementation in the sbibm Python package is used to

run our experiments.

We additionally evaluated our method on these tasks using metrics beyond RMSNE, the primary

metric used for the travel demand calibration case study. These include classifier 2-sample tests

(C2ST), maximum mean discrepancy (MMD), the posterior median distance (median    norm

between simulated samples   and the observation  ), and the posterior

mean error (normalized absolute error between the true posterior mean and the approximate

posterior mean). Full details for each of these tasks and metrics can be found in [39].

We evaluate both methods over medium-size sample horizons: 4 rounds with 256 samples per round,

for a total of 1024 simulation samples. Note that this is eight times larger than the sample sizes

collected for the trials on the travel demand task. For reference, 256 samples in our (non-parallelized)

SUMO environment takes ~6 hours, whereas 256 samples from the SLCP simulator takes ~10 seconds

on our hardware.

Trials were repeated five times for each method, and the average score and standard deviation for each

metric over these trials are shown in Figures 4, 5, 6. Note that smaller values are better for each metric

(C2ST ranges between  ). While these simulation horizons are relatively small, we find that, by

the final round, ASNPE tends to outperform SNPE across most settings and on most metrics. In

particular, ASNPE outperforms SNPE on C2ST and MMD across all settings, along with the distance-

based metrics on all but the median distance for Bernoulli GLM and mean error for SLCP Distractors.

While SNPE-C is a state-of-the-art benchmark method, comparing against it also constitutes an

ablation test for ASNPE’s acquisition component. Although parameter sets are chosen differently and

the underlying NDE varies (minimally to accommodate the need to approximate  ) across

RMSNE = ,
n ( −∑n

i=1 x̂
(i) x(i)

o )2
− −−−−−−−−−−−−−−

√

∑n
i=1 x

(i)
o

n xo x̂ n

L2

∼ p(θ ∣ ) → ∼ p(x ∣ )θi xo xi θi xo

0.5 − 1.0

p(ϕ|D)
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methods, the sequential inference procedures are otherwise identical. These results help to isolate and

identify the contribution of the active learning scheme across a wider range of tasks and metrics for

the overarching goal of producing accurate posterior approximations holistically (i.e., not just well-

calibrated point estimates).

Figure 4. Results on various metrics between ASNPE and SNPE-C across four rounds of sequential

inference for the Gaussian mixture task.

qeios.com doi.org/10.32388/QJ2JRK 21

https://www.qeios.com/
https://doi.org/10.32388/QJ2JRK


Figure 5. Results on various metrics between ASNPE and SNPE-C across four rounds of sequential

inference for the Bernoulli GLM task.
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Figure 6. Results on various metrics between ASNPE and SNPE-C across four rounds of sequential

inference for the SLCP Distractors task.

Appendix C. Code reproducibility

In the spirit of reproducibility and in the hopes our code may be of use for follow-up works, we

provide the following Python packages:

1. seqinf package: this package includes a full implementation of ASNPE and convenient

abstractions around the popular sbi[46]  and sbibm[39]  Python packages for general sequential

inference pipelines. This package also includes an implementation of the masked autoregressive

flow (MAF) with consistent MC-dropout that was used as an NDE for all experiments. Available at

https://github.com/samgriesemer/seqinf.

2. sumo_cal package: short for SUMO calibration, this package includes many general

programmatic utilities for calibrating traffic models using results from the SUMO traffic

simulator[44] with a high-level Pythonic interface, including collecting results from several runs,

running in multi-threaded contexts, employing standardized configuration, etc. See Figure 11 for
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a snapshot of the SUMO interaction scheme. Available at

https://github.com/samgriesemer/sumo_cal.

Appendix D. Additional demand calibration experimentation

details

D.1. Descriptions of SOTA Calibration Methods

SPSA: SPSA (Simultaneous Perturbation Stochastic approximation) is an optimization algorithm

for systems with multiple unknown parameters, which can be used for large-scale models and

various applications. It can find global minima, like simulated annealing[47]. SPSA works by

approximating the gradient using only two measurements of the objective function with gradients,

making it scalable for high-dimensional problems[45].

PC-SPSA: PC-SPSA is proposed to address fundamental scalability issues with SPSA. This is

because SPSA searches for the optimal solution in a high-dimensional space without considering

the structural relationships among the variables. PC–SPSA combines SPSA with principal

components analysis (PCA) to reduce the problem dimensionality and limit the search noise. PCA

captures the structural patterns from historical estimates and projects them onto a lower-

dimensional space, where SPSA can perform more efficiently and effectively[42].

Specifically, we implement the SPSA and PC-SPSA algorithms according to[48] and associated open-

source implementations2. In addition, we employ the so-called Method-6, titled "Spatial, Temporal,

and Day-to-Day Correlation," as detailed in[48]. This provides a means of systematically generating

needed historical data for PCA, and according to the original work constitutes the most robust and

optimal solution among the proposed variants.
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Figure 7. Depiction of traffic networks in the SUMO simulator. (a) depicts a relatively small synthetic

network for reference, with approximately 500 configurable OD pairs. (b) shows the larger Munich

network used in our reported experimental settings, with an order of magnitude more configurable OD

pairs than the synthetic network.

D.1.1. Hyperparameter details & computing resources

Here we include a brief discussion on the implications of the hyperparameters found in ASNPE, as well

as the settings used in our experiments. Keeping the total number of simulation samples constant,

1. The number of rounds   dictates how many times we update the proposal distribution over the

course of the simulation horizon. Increasing this value can enable quicker feedback to the NDE,

requiring fewer simulation samples before re-training the model. When the prior is well-

calibrated and simulation samples are representative of the observational data, this can have a

positive compounding effect that boosts the rate of convergence to the desired posterior.

However, for larger   the resulting batch sizes are smaller and the NDE receives noisier updates,

which can have the opposite effect and hurt early performance when the prior is poor.

2. The number of selected samples   per round is directly determined by   when the total number

of simulations is held constant, and thus the above effects apply here.

3. The number of proposal samples   per round governs the size of the parameter candidate pool

over which the acquisition function is evaluated. Increasing this value allows us to consider more

potentially relevant candidates under  , and can thus increase the quality of the resulting  -

R

R

B R

N

(θ)p~ B
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sized batch. Given the acquisition function can be evaluated over this pool very efficiently (i.e., as

a batched inference step through the NDE model), one can practically scale this up arbitrarily to

increase the sample coverage over the proposal support (but with decreasing marginal utility).

The following are additional hyperparameter details for the evaluated methods:

1. In the SNPE loop: total number of rounds    (4 in reported experiments), round-wise sample

size   (between 256-512), round-wise selection size   (32 in reported experiments).

2. Neural Density Estimator (NDE) model: our model architecture (used for both SNPE and ASNPE)

is a masked autoregressive flow with 5 transform layers, each with masked feedforward blocks

containing 50 hidden units, and trained with a (consistent) MC-dropout setting of 0.25. When

collecting distributional estimates as described in Eq  4, we used 100 weight samples 

 (as generally recommended in [17]).

3. PC-SPSA: this method uses PCA to optimize OD estimates in a lower-dimensional subspace of

the 5329-dimensional parameter space. The number of the principal components is chosen such

that 95% of the variance is recovered in the provided historical OD estimate (which is further

dictated by the choice of prior distribution). The number of PCs used by this method across the

many explored settings presented in Section 4.1 varies from 99-117.

All experimentation code is written in Python 3.11. To run experiments, we employed our own

hardward locally, which is an linux-based machine running an Intel(R) Core(TM) i9-10900X CPU @

3.70GHz 64GB memory, and NVIDIA GeForce RTX 2080 Ti.

Appendix E. Additional demand calibration plots

Figures 8, 9, and 10 are plots of calibration horizons for the remaining settings of the demand

calibration task not shown in the main paper (which highlighted the first scenario, Prior I, Hours 5:00-

6:00, Congestion level A). The associated RMSNE scores can all be found in Table 1 in the main paper

body.

R

N B

ϕ ∼ p(ϕ|D)
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Figure 8. Plots of the (averaged) calibration horizons for each of the evaluated methods on the Prior II,

Hours 5:00-6:00, Congestion level B scenario.

qeios.com doi.org/10.32388/QJ2JRK 27

https://www.qeios.com/
https://doi.org/10.32388/QJ2JRK


Figure 9. Plots of the (averaged) calibration horizons for each of the evaluated methods on the Prior I,

Hours 8:00-9:00, Congestion level A scenario.
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Figure 10. Plots of the (averaged) calibration horizons for each of the evaluated methods on the Prior II,

Hours 8:00-9:00, Congestion level B scenario.

Appendix F. Additional distribution plots and schematics for

demand calibration

F.1. Simulation schematic

Figure 11 provides a more detailed look at the programmatic interaction with the SUMO simulator.
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Figure 11. This diagram provides a more detailed look at some of the internal details behind the

preparation of input to and the transformation of output from the simulator. An input OD vector  ,

drawn from some proposal distribution in the outer method context, 1) “enters” the diagram at the

left, 2) is transformed into a suitable representation for SUMO, 3) combined with additional

configuration and network files, and 4) run through the SUMO simulator, after which the output is

parsed to produce the resulting segment flows   under demand  .

F.2. Additional posterior plots

Figure 12 and figure 13 provide additional plots of the posterior approximation for the primary travel

calibration task.

θ

x θ
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Figure 12. Pairwise density plots of a 20-dimensional slice of the final approximate posterior 

 produced by ASNPE on the Prior I, Hours 5:00-6:00, Congestion level A scenario.(θ) = (θ| )p~(R) qϕ xo
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Figure 13. Pairwise density plots of a 20-dimensional slice of the “empirical likelihood” under the final

ASNPE posterior on the Prior I, Hours 5:00-6:00, Congestion level A scenario. Figure 12 shows the

approximate posterior  , whereas here we draw samples   and feed them back

through the simulator   to visualize the resulting data space. The target observational

data point   is shown on top these pair plots as a red “plus”, which provides a visual anchor for how

well calibrated the posterior is around the observational data point of interest.

(θ| )qϕ xo ∼ (θ| )θi qϕ xo

{ → p(x|θ)θi}1:N

xo
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