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While the advanced reproductive technologies have attained remarkable increases in sophistication,

success, and availability since the 1980’s, a therapeutic impasse continues to be reached when

ovarian reserve reaches exhaustion. Irrespective of fertility aspirations, the deterioration and

eventual collapse of ovarian estrogen output means that menopause arrives with tremendous

physiologic change and reduced overall productivity. Because more women are gaining in longevity

or delaying age at pregnancy, the number of a�ected patients has never been larger. As concerns

with standard hormone replacement therapy and limitations of IVF are confronted, a workable path

to enable primordial germ cell recruitment and de novo oocyte development would be welcome.

Proof-of-concept case reports and clinical studies on autologous activated platelet-rich plasma

(PRP) or its condensed cytokine derivatives suggest a way to facilitate these goals. But ovarian PRP

faces vexing challenges which place ‘ovarian rejuvenation’ under caution as it enters this

therapeutic space. Here we review key features of experimental human ovarian stem cell

isolation/handling and rea�rm the need to harmonize laboratory protocols. Recognizing the

regenerative science borrowed from other disciplines, specimen centrifugation, platelet processing,

and condensed plasma cytokine enrichment are highlighted here. Because re�nement of this

rejuvenation approach would promise to reprogram adult ovarian physiology, disruption of

established treatment paradigms for infertility, menopause, and perhaps overall women’s health

seems likely. Emerging roles in reproductive biology and clinical practice are thus placed in a

broader social and demographic context.
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1. Introduction

Replacement of terminally di�erentiated post-natal cells in humans is possible, but for adults this is

neither universal nor unlimited. The process was considered su�ciently astonishing in antiquity to

merit two mentions in classical literature: Myths of Prometheus and Tityus describe ceaseless liver

evulsion followed by overnight renewal  [1]. The scienti�c concept of ‘ovarian rejuvenation’ found

modern expression centuries later, also in Greece [2]. With a focus on fertility, the Athens IVF group

successfully used platelet-rich plasma (PRP) to reset diminished ovarian reserve in poor-prognosis

patients. But how might this work? And why would platelets be especially relevant?

It was already known that partial �nger regrowth was possible after distal-tip digit amputation during

early childhood, although over time this regenerative capacity is eventually lost. Single-cell gene

lineage mapping and transcriptomic analyses are providing clari�cation of this process  [3]  and

platelets represent one place where growth factors and cytokines are abundant. Humans are not the

only large animal with platelets where this theme is evident, as seasonal antler regrowth in mature

deer provides a more dramatic example of rapid tissue regeneration [4].

Local tissue injury can elicit blastema formation comprising less-di�erentiated mesenchymal stem

cells, where functional (positional) memory persists. Derived from di�erentiated cells which receive

some prior anatomic and/or positional assignment, the blastema gains a capacity to de-

di�erentiate [5][6]. Since stem-like cells have been localized to several post-natal organ settings, it is

plausible to anticipate adult human ovarian tissue might also harbor its own reservoir of such cells [7].

The existence of ovarian cells having stem-like characteristics is now largely settled [8] but separating

such oocyte-producing germline cells depends on speci�ed laboratory protocols, how results are

interpreted, or which data analysis techniques are used [9][10][11].

Recognizing these points, reproductive science is beginning to detail ovarian PRP preparation and

specify treatment techniques. As information on PRP in the fertility space grows, other medical �elds

with far greater PRP experience continue to build on their head-start to improve clinical response [12]

[13].
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2. Boundaries and beginnings

Why might cells with stem-like potential be in the adult human ovary? Latent stem cells situated in

terminally-di�erentiated zones have been explained as an evolutionarily conserved adaptation to

permit regeneration of damaged tissues or missing limbs [6]. Working under the theory that such cells

may exist in older or nonresponsive adult human ovarian tissue, native cytokines discharged from

fresh activated platelets have been surgically inserted into ovarian tissue (see Figure 1). Platelet

releasate shares considerable overlap with so-called ‘Yamanaka factors’, which govern cell

di�erentiation, recruitment, migration and function  [14]. So how could these cells be con�rmed and

optimized using this new approach?

Figure 1. With technical features common to oocyte retrieval/IVF, one method is shown for ‘ovarian

rejuvenation’ via placement of autologous condensed platelet cytokines (blue) derived from activated

platelet-rich plasma. This is placed into ovarian cortex and subcapsular space upon needle withdrawal

(red). Cyclic estradiol and progesterone production is expected to follow, with increased anti-Mullerian

hormone output and subsequent emergence of competent de novo metaphase II oocytes [14].
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For both mice and humans, existence for a source point for oocytes found support when small Oct-4+

SSEA+ cells were localized beneath ovarian surface epithelium  [15][16]. These discoveries in�uenced

later clinical work, leading to controlled placement of the full platelet signal array directly to the

ovarian subcapsular space via laparoscopy  [2]. Cells expressing pluripotency markers termed very

small embryonic-like stem cells (VSELs) have since been characterized  [17]; within the post-natal

ovary, these cells undergo uneven �ssion to self-regenerate and also yield oogonial stem cells. Of

note, they can also exhibit symmetrical division and clonal expansion to produce germ cell nests

before meiosis and oocyte di�erentiation [18][19]. Similar to technical doubts on separation of ovarian

stem cells central to ‘ovarian rejuvenation’, the presence of VSELs was also questioned based on

speci�c cytometric gating protocols used for isolation [20].

Against this background, human primordial germ cells and oogonia development was recently

achieved from induced pluripotent stem cells where meiosis was induced with subsequent

di�erentiation into primary oocytes via Wnt activation  [21]. Bone marrow mesenchymal stem cell

research also focusing on Wnt signal transduction has found that hydrostatic pressure change could

successfully activate Aggrecan, Col-II, and Sox9 expression when cocultured with platelet-rich

�brin [22]. Although not yet documented in the adult human ovary, Wnt5a with platelet-rich plasma

already is known to promote cell di�erentiation responses elsewhere  [23]. Deadbox polypeptide 4 or

‘DDX4’ (mouse vasa homolog/MVH) is an ATP-dependent cytoplasmic RNA helicase absent in somatic

tissues but speci�cally expressed in the germline; it is thus a useful label for oocyte precursors in adult

ovaries [24]. Indeed, experience has improved with use of antibodies speci�c for CD38, cKIT, EPCAM,

ITGA6, PDPN, and TNAP deployed for separation of primordial germ cells [25][26][27].

Beneath the surface epithelium of young adult mouse ovaries, large ovoid cells have been identi�ed

resembling germline cells observed in fetal ovaries [28], and immunohistochemical labeling for DDX4

has veri�ed their germline origin  [29][30]. Substructural analysis of cellular progenitors by

transmission electron microscopy has found large nuclei with euchromatin, thin cytoplasm, and

abundant spherical mitochondria  [31]. Such work o�ers insights on how intraovarian PRP might

achieve ‘revolutionary’ outcomes [32] for poor prognosis IVF patients and perhaps even ‘ploidy rescue’

against a history of blastocysts with multiple genetic errors [33].
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3. Centrifugation for platelets and their stem-cell targets

Except for stem-cell sequestration or PRP specimen preparation, centrifugation details are not often

critical in IVF benchwork. Standard fertility laboratory processes aim to pellet sperm, debris, or resin,

so broad tolerances are allowed. For processing of PRP samples for intraovarian use, platelets should

not be subject to stress >1500g since platelet survival is compromised if force exceeds 2200g. At these

speeds the risk of tube shatter, blood exposure, or other injuries are also more likely [34]. In contrast,

slow centrifugation is also problematic for di�erent reasons. For example, it has been noted [35] that

ovarian stem cells might elude detection when suspensions are processed at lower speeds more

appropriate to precipitate high-mass components, but not for small, lower density targets (e.g.,

ovarian stem cells). Accordingly, stem cells procured from adult ovarian tissue might be

missed [36] when centrifugation speed is constrained at 300g [35].

Interestingly, ovaries obtained from adult patients undergoing female-to-male gender reassignment

surgery (n=16) were used to �nd ovarian stem cells and a smaller group of comparable age cis-gender

patients provided ovarian biopsies collected at cesarian delivery  [36]. While gross ovarian follicular

density in the main group was similar to histology observed among the C-section patients, all gender

reassignment patients had received androgens for up to 7 years before oophorectomy. From

microscopic ovary �ndings detailed in both groups, it was accepted that long-term androgen exposure

did not impact ovarian tissue features  [36]. But while cortical follicle density may look grossly

unchanged after prolonged testosterone treatment  [37], chronic hyperandrogenic states (i.e., PCOS)

may silence histone methyltransferase, triggering dysfunctional gene expression and upregulated

mRNA of steroidogenic enzymes including StAR, CYP17A1, and SRD5A1/2  [38][39]. Thus, even if

pluripotent stem progenitors in adult ovarian tissue were initially unveri�ed in this study group, this

would not necessarily preclude a positive result if receptive cells received di�erent preemptive

signaling [14][40]. Mammalian induced pluripotent stem cells have been obtained from somatic cells to

generate competent oocytes from embryonic stem cells, and this was extended by later in vitro

work [40]  to establish how somatic cells can be ‘reprogrammed’ to a female germ cell lineage. Given

the importance of these issues, precise methods to isolate pluripotent cells as well as the laboratory

protocols used for validation deserve close inspection  [19][41]. Downstream processes to enrich

platelet-derived growth factors or cytokine condensates for intraovarian PRP, especially activation,

are likewise critical [42].
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4. Fresh platelet activation

It has been suggested that activation is an undervalued step of the platelet cytokine release sequence,

which is integral for successful commitment of undi�erentiated ovarian stem cells to an oocyte

lineage [42]. A recent �ow cytometry comparison between platelet products discharged spontaneously

vs. after thrombin activation found that thrombin activation can alter platelet releasate

composition  [43]. While clinical ovarian tissue response to the PRP product en toto or its condensed

plasma cytokines is only now being investigated, others have revealed how PRP applied to injured

tissues can signi�cantly increase local cAMP levels to decrease in�ammation and improve redox

status [44]. The cAMP-mediated process appears to augment PGC-1α expression, which in turn boosts

mitochondrial function  [45][46]. This agrees with allied work which emphasized relations across

reduced tissue metabolism, poor follicular oxygenation, and impaired ovarian function  [47]. Despite

the role of cAMP documented in platelet operation  [48]  the biomolecular mechanisms coordinating

synthesis and hydrolysis of platelet cAMP in an ovarian context after PRP injection await better

characterization.

It should be mentioned that reproductive gains after ovarian PRP injection have also been attributed to

a ‘needle e�ect’ itself, hypothesized as rather akin to internal acupuncture. However, if this were

correct, then the process of oocyte retrieval would be expected to yield an uptick in ovarian reserve

following ovary punctures with IVF. Researchers in Vienna  [49]  were the �rst to monitor sequential

serum AMH levels over multiple oocyte retrievals, observing that repetitive ovarian punctures may

diminish—but not boost—ovarian reserve, especially among IVF patients with PCOS. Moreover, when

ovarian PRP responses were classi�ed by baseline platelet concentration independent of age, patients

(n=182) with higher platelet count were more likely to show increased post-treatment serum AMH

than those with lower baseline platelet levels [50].

5. Conclusions

Against the blended backgrounds of reproduction and population, the prospect of using intraovarian

PRP to defer menopause or repair fertility has entered the public discourse at an interesting time. The

historic prediction of Thomas Malthus (1766-1834) su�ered from two fundamental errors—neither

technical advancement nor population growth rate behaved according to forecast. While reduced

fertility brings devastating consequences for the individual patient, this also has population-wide
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e�ects by downshifting momentum towards sustained contraction and demographic instability  [51]

[52]. In this way, both the census o�cer and the fertility expert see the same problem through

di�erent lenses. Until recently, fertility control was hailed as useful social policy [53][54] ostensibly to

accelerate regional development and personal capital acquisition [55]. Full understanding of national

transfer accounts data required such an outlook to be reconsidered, as fertility above replacement rate

turns out to be central to government pension solvency and welfare budgets [56].

Operating at di�erent scale, women’s health individually and population status nationally may thus

be viewed as sharing a common upstream ramifying term, as both are connected to ovarian �tness

and senescence. The issue recently drew comment in the U.K. where reduced birthrates have

contributed not only to rising mean population age, but also to closure of ~4,000 nurseries [57][58].

While infertility and symptomatic menopause are both entangled with ovarian status, the clinical

scope of the latter looms far larger (by orders of magnitude) compared to infertility and

miscarriage  [59]. Indeed, IVF utilization barely registers in the social background, so it cannot

realistically be expected to add anything above low single-�gure percentages to any country’s

national birth statistics. This does not exempt reproductive biologists from our obligation to improve

this important intervention. Borrowing famous guidance from colleagues in engineering, ‘Inside

every complicated problem are many smaller ones waiting to be noticed’. Further studies on ovarian

function should help de�ne how platelet cytokines in�uence or coordinate this process.
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