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Abstract

Given an autonomous second-order ordinary differential equation (ODE), we
define a Riemannian metric on an open subset of the first-order jet bundle. A
relationship is established between the solutions of the ODE and the geodesic
curves with respect to the defined metric. We introduce the notion of energy
foliation for autonomous ODEs, and highlight its connection to the classical energy
concept. Additionally, we explore the geometry of the leaves of the foliation.
Finally, the results are applied to the analysis of Lagrangian mechanical systems.
In particular, we provide an autonomous Lagrangian for the damped harmonic
oscillator.
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1 Introduction

Second-order ordinary differential equations (ODEs) are an essential tool for modeling
a wide range of nonlinear evolutionary phenomena, especially in systems with one-
dimensional dynamics. These equations arise in various fields, including physics, en-
gineering, and biology, where they are employed to describe processes as diverse as
mechanical vibrations, chemical reactions, and population dynamics.

However, solving second-order ODEs is often challenging, as no universal algorithm
exists to determine their solutions. Over the past few decades, significant research has
been dedicated to finding solutions and first integrals for such ODEs [1, 2, 3, 4, 5, 6].
Additionally, extensive research has focused on the qualitative analysis and numerical
methods for solving second-order ODEs [7, 8, 9].

In most cases, researchers have focused on specific families of second-order ODEs to
gain meaningful insights. In this paper, we focus on autonomous second-order ODEs,
whose study remains an active area of research (see [10] and references therein). These
equations are particularly interesting because many of them arise from dynamical sys-
tems governed by (not necessarily autonomous) Lagrangians. In particular, under-
standing the behavior of these equations can lead to deeper insights into the underlying
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mechanics of physical systems, making them an important topic in both theoretical and
applied mathematics.

Recently, there has been a growing interest in associating Riemannian metrics with
differential equations [11, 12, 13, 14, 15, 16, 17, 18], as this approach offers insights into
the behavior of these equations. Following this approach, and after introducing some
preliminaries in Section 2, we show in Section 3 that autonomous second-order ODEs
induce a Riemannian metric on an open subset of the first-order jet bundle J1(R,R).
We then explore the geometry of the resulting Riemannian manifold, relating it to the
integrability of the ODE. Specifically, we link solutions of the ODE to geodesics of the
manifold. We also introduce a minimal foliation in the manifold (Section 4), whose
leaves correspond to constant energy surfaces in the context of mechanical systems, and
study the geometry of these leaves. In Section 5, we shift our focus to ODEs derived from
Lagrangian systems, illustrating, in particular, how the damped harmonic oscillator can
be framed within an autonomous Lagrangian formulation.

2 Preliminaries

2.1 Jet bundles and second-order ODEs

A central tool in the study of ODEs is the use of jet bundles, which provide a natural
geometric context for understanding the structure and solutions of these equations. In
this work we will use the first-order jet bundle J1(R,R) to study autonomous second-
order ODEs that can be written in the form

u2 = ϕ(u, u1). (1)

Here, (x, u, u1) stand for the standard coordinates of J1(R,R), with x and u represent-
ing the independent and dependent variables, respectively, and u1 denoting the first
derivative of u with respect to x. Also, ϕ denotes a smooth function defined on an open
subset U ⊆ J1(R,R). The contact form on J1(R,R) is defined as

θ = −u1dx+ du, (2)

and it captures the first-order differential relations between u, x, and u1 [19, 20].
Recall that the vector field associated to equation (1),

∂x + u1∂u + ϕ∂u1
, (3)

which is defined on U , encodes all the relevant information about the equation, in the
following sense. Given a smooth function f : I ⊆ R → R, its first-order prolongation
[19] is the curve j1f : I → J1(R,R) defined by the expression

(j1f)(x) = (x, f(x), f ′(x)).

It turns out that a smooth function f is a solution to equation (1) if and only if its
first-order prolongation j1f is an integral curve of the vector field (3) (see [20, 21] for
the details).
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2.2 Riemannian geometry

Recall that a Riemannian manifold is a smooth manifold M equipped with a Rieman-
nian metric g, i.e., a two-times covariant symmetric tensor field, positive definite, and
hence non-degenerate. Every Riemannian metric gives rise to a uniquely determined
torsionless metric connection ∇, called the Levi-Civita connection.

Consider a 3-dimensional Riemannian manifold (M, g), with an orthonormal frame
(e1, e2, e3), and its corresponding dual coframe (ω1, ω2, ω3). The connection form of the
Levi-Civita connection is defined as the matrix of 1-forms Θ = (Θi

j), satisfying

∇eiej =

3∑
k=1

ei ⌟Θ
k
jek, 1 ≤ i, j ≤ 3, (4)

where ⌟ denotes the interior product.
These 1-forms can be obtained from Cartan’s first structural equation

dωi =

3∑
k=1

ωk ∧Θi
k, 1 ≤ i ≤ 3, (5)

and the condition Θi
j = −Θj

i (derived from the orthonormality of the frame). Details
can be found, for instance, in [22, 23, 24].

On the other hand, recall that the notion of geodesic is used in differential geometry
to extend to arbitrary spaces the idea of a straight line in flat spaces. A curve γ : I ⊆
R → M is called a geodesic if

∇γ̇(t)γ̇(t) = 0

for every t ∈ I. It turns out that if a vector field X satisfies ∇XX = 0 then its integral
curves are geodesics of the manifold [25, 26, 27].

Moreover, the behavior of geodesics is influenced by the curvature of the manifold.
In Riemannian geometry, the curvature plays a crucial role in determining how geodesics
diverge or converge, giving insight into the local and global geometry of the space. The
curvature of the manifold is encoded in the Levi-Civita connection and can be described
through the curvature 2-forms Ωi

j , as defined by Cartan’s second structure equation

Ωi
j = dΘi

j +

3∑
k=1

Θi
k ∧Θk

j . (6)

The components of the Riemann curvature tensor in the given frame are related to the
curvauture 2-forms by the expression [23, 25]

Ri
jab = Ωi

j(ea, eb). (7)

The sectional curvature along specific planes within the tangent space can be com-
puted from the components of the Riemann curvature tensor. For instance, the sectional
curvatures along the planes spanned by the pairs {e1, e2}, {e1, e3}, and {e2, e3} are given
by the components R1

212, R
1
313 and R2

323, respectively. These components provide es-
sential geometric information about the curvature of the manifold along the chosen
planes.
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Now, consider a 2-dimensional manifold Σ embedded into M , in such a way that
the given frame (e1, e2, e3) is adapted to Σ, i.e., ω3|TΣ = 0. The surface Σ inherits
a Riemannian metric from the ambient manifold, with its corresponding Levi-Civita
connection. We will denote by ω̃1, ω̃2 the restrictions of ω1, ω2 to TΣ, and by Θ̃ and Ω̃
the connection forms and the curvature forms, respectively, of the inherited connection.

By restriction to TΣ of the first Cartan equation (5) we have

Θ̃i
j = Θi

j |TΣ, i, j = 1, 2.

In addition, there must exist smooth functions sij defined on Σ, such that

Θ3
1|TΣ = s11ω̃

1 + s12ω̃
2,

Θ3
2|TΣ = s21ω̃

1 + s22ω̃
2,

(8)

with s12 = s21. Observe that we can express the functions sij in terms of the connection
forms as follows:

sij = ẽj ⌟Θ
3
i|TΣ, i, j = 1, 2, (9)

where ẽj = ej |TΣ. The reader may refer to [28] for further details.
The shape operator S is defined as

S =

2∑
i,j=1

sijω̃
i ⊗ ẽj ,

and it has two independent invariants: the extrinsic Gaussian curvature,

Kext = s11s22 − s12s21, (10)

and the mean curvature,

H =
1

2
(s11 + s22). (11)

Regarding the intrinsic geometry of Σ, denote by R̃ the Riemann curvature tensor of
Σ with respect to the inherited metric. The curvature 2-form Ω̃ satisfies, by definition,

Ω̃i
j = Ωi

j |TΣ +Θ3
1|TΣ ∧Θ3

2|TΣ

= Ωi
j |TΣ +Kextω̃

1 ∧ ω̃2.

From here, and according to equation (7), it is obtained Gauss’ equation,

Kint = R1
212 +Kext, (12)

where Kint = R̃1
212 is the intrinsic Gaussian curvature of Σ.

3 Riemannian metric associated to autonomous second-
order ODEs

In this section we introduce the notion of Riemannian manifold associated with a given
autonomous second-order ODE.
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Definition 3.1. Consider a second-order ODE in the form (1). We define the associated
3-dimensional Riemannian manifold as the open submanifold given by

M = {(x, u, u1) ∈ U : u1 ̸= 0} ⊆ J1(R,R),

endowed with the Riemannian metric

g = (1 + u2
1)dx

2 − 2u1dxdu+

(
1 +

ϕ2

u2
1

)
du2 − 2

ϕ

u1
dudu1 + du2

1. (13)

Interestingly, the vector field (3) associated with equation (1) has constant unit
length, as can easily be verified. Moreover, the vector field ∂u1

also has unit length, and
it is orthogonal to the associated vector field. By standard procedures, we can complete
this pair of vector fields, to get the orthonormal frame (e1, e2, e3) defined by

e1 = ∂x + u1∂u + ϕ∂u1
,

e2 = ∂u +
ϕ

u1
∂u1

,

e3 = ∂u1 .

(14)

The corresponding dual coframe (ω1, ω2, ω3) is given by the 1-forms

ω1 = dx,

ω2 = −u1dx+ du,

ω3 = − ϕ

u1
du+ du1,

(15)

being ω2 the contact form θ of J1(R,R) given in equation (2). Observe that

dω1 = 0,

dω2 =
ϕ

u1
ω1 ∧ ω2 + ω1 ∧ ω3,

dω3 =

(
ϕu1

− ϕ

u1

)
ω1 ∧ ω3 +

u1ϕu1
− ϕ

u2
1

ω2 ∧ ω3,

(16)

where subscripts denote partial derivatives (this notation will be used throughout the
paper). From (16), and using Cartan’s first structural equation (5), we obtain the
connection form

Θ =


0 − ϕ

u1
ω2 − 1

2ω
3 − 1

2ω
2 −

(
ϕu1

− ϕ
u1

)
ω3

ϕ
u1
ω2 + 1

2ω
3 0 − 1

2ω
1 − u1ϕu1

−ϕ

u2
1

ω3

1
2ω

2 +
(
ϕu1

− ϕ
u1

)
ω3 1

2ω
1 +

u1ϕu1
−ϕ

u2
1

ω3 0

 . (17)

We are now in a position to discuss the link between the geodesic curves of the
Riemannian manifold (M, g) and the solutions to equation (1). Recall that the integral
curves of e1 are precisely the first-order prolongation of solutions of equation (1). And,
on the other hand, a straightforward calculation yields

∇e1e1 = e1 ⌟Θ
k
1ek = 0, (18)
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so the integral curves of e1 are geodesic curves. Therefore, given a smooth function f
which is a solution to equation (1), then the curve j1f is a geodesic of the manifold.
The converse is not true, but we can establish the following weaker version:

Proposition 3.1. Suppose equation (1) satisfies
(

ϕ
u1

)
u1

̸= 0. If a smooth function f is

such that the curve j1f is a geodesic, then f is a solution of (1).

Proof. Assume that j1f is a geodesic curve. We can express the tangent vector field to
the curve j1f in the frame (e1, e2, e3) as

(j1f)′(x) = e1 + (f ′′(x)− ϕ)e3.

If j1f is a geodesic curve, then

∇
(j1f)′(x)(j

1f)′(x) = (f ′′(x)− ϕ)2
ϕ− u1ϕu1

u1
e1

+ (f ′′(x)− ϕ)2
ϕ− u1ϕu1

u2
1

e2

+

(
f ′′′(x)− e1(ϕ)−

ϕ

u1
(f ′′(x)− ϕ)

)
e3 = 0.

(19)

Then, since
(

ϕ
u1

)
u1

̸= 0, we have ϕ− u1ϕu1
̸= 0. Therefore,

f ′′(x)− ϕ = 0,

thus completing the proof.

Remark 3.1. Proposition 3.1 does not apply to equations satisfying
(

ϕ
u1

)
u1

= 0. For
example, if we consider the equation u2 = u1, it can be checked that the function
f(x) = x + ex is not a solution, but the prolongation j1f is a geodesic curve, since it
verifies (19).

Nevertheless, this family of equations takes the form

u2 = K(u)u1, (20)

so they can be fully integrated by quadratures. Indeed, observe that u1 −
∫
K(u) du is

a first integral of equation (20):

e1

(
u1 −

∫
K(u) du

)
= ϕ− u1K(u) = 0.

Now, the family of first-order ODEs

u1 −
∫

K(u) du = C,

where C ∈ R, can always be solved by another quadrature, and their solutions corre-
spond to solutions of (20).
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To continue the analysis of the geometry of the manifold (M, g), we compute the
curvature of the connection, i.e., the matrix of 2-forms Ω = (Ωi

j) given by equation
(6), whose explicit expression is too involved to be included here. Nevertheless, by
using equation (7), a straightforward computation yields the following components of
the Riemann curvature tensor with respect to the frame (e1, e2, e3):

R1
212 = Ω1

2(e1, e2) =
1

4
− e1(ϕ)

u1
, (21a)

R1
313 = Ω1

3(e1, e3) = −3

4
+ ϕu − ϕ2

u1
− ϕϕu1u1 − ϕuu1u1 +

3ϕϕu1

u1
− 2ϕ2

u2
1

, (21b)

R2
323 = Ω2

3(e2, e3) =

=
1

4
− ϕϕu1

+ ϕuu1

u1
−

ϕϕu1u1
− ϕ2 − ϕu + ϕ2

u1

u2
1

+
4ϕϕu1

u3
1

− 3ϕ2

u4
1

. (21c)

Recall that these components correspond to the sectional curvatures along the planes
generated by the pairs {e1, e2}, {e1, e3} and {e2, e3}, respectively.

Example 3.1. Consider the second-order ODE

u2 =
√
1− κu2

1, (22)

where κ ̸= 0. In this case, the associated Riemannian manifold consists of
M = {(x, u, u1) ∈ J1(R,R) : u1 ̸= 0}, together with the Riemannian metric

g = (1 + u2
1)dx

2 − 2u1dxdu+

(
1− κ+

1

u2
1

)
du2 − 2

√
1− κu2

1

u1
dudu1 + du2

1.

According to the results above, we have the following sectional curvatures:

R1
212 =

1

4
+ κ, (23a)

R1
313 = −3

4
− 2

u2
1

, (23b)

R2
323 =

1

4
+

1

u2
1

− 3

u4
1

. (23c)

Example 3.2. The autonomous second-order ODE

u2 =
4u2

1 + u2 + u

2u+ 1
, (24)

gives rise to a Riemannian manifold which has zero sectional curvature along the planes
generated by {e1, e2}. Indeed, from (21a) we have

R1
212 =

1

4
−

e1

(
4u2

1+u2+u
2u+1

)
u1

= 0.

The sectional curvature R1
212 plays a significant role in understanding the geometric

structure of the manifold. In particular, it is closely tied to the foliation introduced in
the following section.
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4 Energy foliation

We now turn our attention to a key geometric feature of the manifold (M, g), namely
the existence of a foliation, which we will refer to as the energy foliation, related to the
integrability of the differential equation (1).

Consider the distribution given by

Dp := {v ∈ TpM : v ⌟ (ω3)p = 0},

for each p ∈ M . This distribution is spanned by the vector fields {e1, e2}. Thus, it is
involutive, since

[e1, e2] = − ϕ

u1
e2.

By Frobenius’ theorem [29], there exists a foliation E on M such that the tangent
space to the leaf at p ∈ M is Dp. The leaves are given locally by the level sets of a
certain smooth function E : M → R, i.e., in a neighborhood V of p, the leaves are
described by

ΣC = {p ∈ V : E(p) = C}, C ∈ R.

Since TpΣC = Dp, we have that such a function E must satisfy

dE = µω3, (25)

for a non-vanishing smooth function µ defined on V . Equivalently, E must be a solution
to the following homogeneous linear partial differential equation (PDE)

Eu +
ϕ

u1
Eu1

= 0. (26)

Definition 4.1. The foliation E on M will be called the energy foliation of equation
(1), or simply the energy of the equation.

Remark 4.1. Note that while the energy foliation E of an autonomous second-order
ODE can be locally defined by a function E, it can equally well be described by any
other function that is functionally dependent on E. As we will see in Theorem 5.1, in
classical examples arising in mechanics one of these functions is, precisely, the classical
notion of energy of the system, thus justifying the terminology. However, for a general
autonomous second-order ODE, it is important to clarify that we cannot refer to any
specific function E as the energy, since there are many such functions, and no single
one is a natural or preferred choice.

Remark 4.2. Given any function E satisfying (26) we can solve the differential equation

u1Lu1
− L = E (27)

to determine a Lagrangian L = L(u, u1) suitable for equation (1). This Lagrangian
may be considered non-standard (see [30] and references therein). Indeed, a particular
solution to (27) is given by

L(u, u1) = u1

∫
E(u, u1)

u2
1

du1. (28)
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It can be checked that the corresponding Euler-Lagrange equation for this Lagrangian
is

−Eu − u2

u1
Eu1

= 0,

which, by virtue of (25), is equivalent to equation (1). This establishes the existence
of local solutions to the inverse problem of the calculus of variations for autonomous
second-order ODEs, a topic of ongoing relevance in mathematical physics [31, 32, 33, 30].
Importantly, the Lagrangians obtained are themselves autonomous.

Example 4.1. In the case of equation (22) in Example 3.1, we can find a function
determining its corresponding energy foliation by solving the PDE (26):

u1Eu +
√
1− κu2

1Eu1 = 0. (29)

It can be checked that a solution to equation (29) is the smooth function

E = u+
1

κ

√
1− κu2

1.

So the leaves of the energy foliation E of equation (22) are the surfaces in M given by

ΣC =

{
(x, u, u1) ∈ M : u+

1

κ

√
1− κu2

1 = C

}
, C ∈ R.

According to Remark 4.2, and taking into account (28), the smooth function

L(u, u1) = −u− 1

κ

(√
1− κu2

1 +
√
κu1 arcsin(

√
κu1)

)
, (30)

in case κ > 0, or the smooth function

L(u, u1) = −u− 1

κ

(√
1− κu2

1 +
√
−κu1arcsinh(

√
−κu1)

)
, (31)

for κ < 0, is a solution to equation (27), so it is a non-standard autonomous Lagrangian
whose Euler-Lagrange equation is (22).

Example 4.2. To find the energy foliation for the second-order ODE (24) in Example
3.2, we solve the PDE

4(2u+ 1)u1Eu + (4u2
1 + u2 + u)Eu1 = 0. (32)

It can be checked that the smooth function

E =
1

2u+ 1
u2
1 −

4u2 + 2u+ 1

32u+ 16

is a particular solution to (32), and its level sets define the energy foliation of (24).
On the other hand, we use the expression (28) in Remark 4.2 to obtain

L =
1

2u+ 1
u2
1 +

4u2 + 2u+ 1

32u+ 16
,

which is an autonomous Lagrangian whose corresponding Euler–Lagrange equation is
(24). In this case, the Lagrangian takes the form of a kinetic energy term plus a potential
energy term, and the function E can be considered as a mechanical energy.
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In the rest of this section we are going to explore the geometry of the leaves of the
energy foliation E . The metric given by (13) can be written as

g = ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3,

since the coframe (15) is orthonormal. As ω3|ΣC
≡ 0, the induced metric on the surface

ΣC is
g̃ = ω̃1 ⊗ ω̃1 + ω̃2 ⊗ ω̃2, (33)

where ω̃i denotes the restriction of ωi to ΣC , for i = 1, 2.
Correspondingly, the shape operator of ΣC is given by

S =
1

2
ω̃1 ⊗ ẽ2 +

1

2
ω̃2 ⊗ ẽ1,

since we have, from equation (9) together with (17),

s11 = 0, s12 = s21 =
1

2
, s22 = 0.

Then, we have the following result regarding the extrinsic geometry of ΣC within M :

Proposition 4.1. The leaves of the energy foliation are minimal surfaces with constant
extrinsic curvature.

Proof. The mean curvature for each of these surfaces is given by

H =
1

2
(s11 + s22) = 0,

so they are minimal surfaces.
On the other hand, the extrinsic Gauss curvature is

Kext = s11s22 − s12s21 = −1

4
.

Remark 4.3. According to this result, the energy of an autonomous second-order ODE
forms a minimal foliation of the associated manifold (M, g). The study of this kind of
foliations is an area of significant interest in differential geometry [34, 35, 36, 37, 38].

On the other hand, with respect to the intrinsic geometry of ΣC , we have the fol-
lowing immediate consequence of equations (12) and (21a):

Corollary 4.1. The intrinsic Gauss curvature of ΣC is

Kint = −e1(ϕ)

u1
. (34)

Example 4.3. We now return to Example 4.1. The Riemannian metric (33) induced
in the surfaces ΣC , obtained by means of the local parametrization of ΣC given by

ι(x, u) =

(
x, u,

√
1

κ
− κ(C − u)2

)
,
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is

g̃ =

(
κ+ 1

κ
− κ(C − u)2

)
dx2 − 2

√
1

κ
− κ(C − u)2dxdu+ du2.

The intrinsic Gauss curvature is, according to (34),

Kint = −e1(
√

1− κu2
1)

u1
= κ. (35)

On the other hand, the shape operator of ΣC can be represented, in the coordinate
frame, by the matrix

S =

− 1
2

√
1
κ − κ(C − u)2 1

2 − 1
2κ + κ

2 (C − u)2

1
2

1
2

√
1
κ − κ(C − u)2

 .

It can be checked that the extrinsic Gauss curvature of the leaf ΣC is

Kext = det(S) = −1

4
,

and the mean curvature is H = 1
2 tr(S) = 0, so it is a minimal surface, as stated in

Proposition 4.1.

Example 4.4. In the case of equation (24) of Example 3.2, similar computations show
that the leaves of its energy foliation satisfy

Kint = Kext = −1

4
.

5 Lagrangian mechanical systems

In this section, we will focus on second-order ODEs arising as the Euler-Lagrange equa-
tions of one-dimensional mechanical systems defined by a Lagrangian function. The
variable x will represent time, u will denote the generalized coordinate, and u1 will
represent the generalized velocity.

We begin by providing a justification for the terminology introduced in Definition
4.1. Consider a mechanical system governed by a Lagrangian L = L(x, u, u1). For such
a system, recall that the function

h(u, u1) := u1Lu1 − L (36)

is known as the energy function. Under standard assumptions for L, this function
coincides with the total mechanical energy of the system, which is typically expressed
as h(u, u1) = T (u, u1) + V (u), where T and V represent the kinetic and potential
energies, respectively.

In the case of an autonomous Lagrangian system, where L = L(u, u1), the energy
function (36) remains conserved along the solutions of the equation of motion of the
system. For further details regarding the energy function and its conservation in au-
tonomous systems, the reader is referred to [39, Section 2.7].

Having established these preliminaries, we now state the following result:
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Theorem 5.1. Given an autonomous one-dimensional Lagrangian system, its energy
function (36) defines the energy foliation of the corresponding equation of motion.

Proof. The Euler-Lagrange equation for a mechanical system defined by the autonomous
Lagrangian L = L(u, u1) is

d

dx
Lu1 − Lu = 0

which can be expanded as

u1Luu1 + u2Lu1u1 − Lu = 0.

This is an autonomous second-order ODE, whose corresponding ω3 (see equation (15))
is given by

ω3 = −Lu − u1Luu1

u1Lu1u1

du+ du1.

In order to check that the energy function (36) satisfies condition (25), we compute
the exterior derivative:

dh = (u1Luu1
− Lu) du+ u1Lu1u1

du1.

We observe that dh = u1Lu1u1ω
3, so the result is proven.

In the following subsections, we analyze the applicability of the results presented in
this paper to specific examples of Lagrangian mechanical systems.

5.1 Lagrangian for a particle in a gravitational field

A classical problem in the context of Newtonian gravity involves understanding the
behavior of a particle under the influence of the gravitational field created by a mass
distribution. Consider a one-dimensional universe with spatial coordinate u, and a
mass distribution defined by the smooth function ρ(u). This distribution generates a
gravitational field that exerts a force on a test particle of mass m located at position
u. The gravitational potential at position u due to the mass distribution, denoted by
Φ(u), is derived from the Poisson equation [40], which in one dimension is given by:

Φuu = 4πGρ(u),

where G is the gravitational constant.
The Lagrangian for the test particle moving in this gravitational field is then given

by

L =
1

2
mu2

1 −mΦ(u),

and the corresponding equation of motion is

u2 = −Φu. (37)

Within our framework, the metric for the ODE (37) is, according to equation (13),

g = (1 + u2
1)dx

2 − 2u1dxdu+

(
1 +

Φ2
u

u2
1

)
du2 + 2

Φu

u1
dudu1 + du2

1, (38)
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and the orthonormal coframe determined in (15) is

ω1 = dx,

ω2 = −u1dx+ du,

ω3 =
Φu

u1
du+ du1.

(39)

To find the energy foliation, we don’t need to identify smooth functions E and µ
satisfying dE = µω3. According to Theorem 5.1, the energy foliation is described by the
energy function of the system, which, in this case, coincides with the total mechanical
energy:

h =
1

2
mu2

1 +mΦ(u).

The surfaces of constant energy, defined by h(u, u1) = C, C ∈ R, are minimal, according
to Proposition 4.1. And their intrinsic Gauss curvature is given by equation (34) in
Corollary 4.1

Kint = −e1(−Φu)

u1
= Φuu = 4πGρ(u). (40)

Thus, we see that the intrinsic Gauss curvature of the leaves of the energy foliation
is directly tied to the mass density generating the gravitational field. Equation (40)
reflects the fact that the curvature is proportional to the amount of matter present in
the system.

5.2 The damped harmonic oscillator

In this subsection, we examine the well-studied damped harmonic oscillator, a funda-
mental system in classical mechanics, central to understanding a wide variety of physical
systems, from mechanical vibrations to electrical circuits. It describes the motion of an
oscillating object subject to a restoring force proportional to its displacement, along
with a damping force that opposes its velocity.

This system is governed by the second-order differential equation:

u2 = −αu1 − λu, (41)

where u = u(x) represents the displacement as a function of time, u1 = u1(x) is the
velocity, and u2 = u2(x) is the acceleration. The parameter α represents the damping
coefficient, which quantifies the resistance to motion (such as friction or air resistance),
while λ is the spring constant, characterizing the strength of the restoring force.

It is well known that this system does not present energy conservation in the classical
sense. Indeed, this system is typically described by using the time-dependent Lagrangian
[39]

L =
eαx

2

(
u2
1 − λu2

)
,

so that the corresponding energy function (36) is

h =
eαx

2

(
u2
1 + λu2

)
, (42)

which is clearly not conserved over time.
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However, equation (41) does not explicitly depend on time, so we can apply the
ideas introduced in the previous sections. First, we consider the Riemannian metric
associated to equation (41), given by

g = (1 + u2
1)dx

2 − 2u1dxdu+

(
1 +

(
α+ λ

u

u1

)2
)
du2 − 2

(
α+ λ

u

u1

)
dudu1 + du2

1.

The orthonormal coframe introduced in (15) is

ω1 = dx,

ω2 = −u1dx+ du,

ω3 =

(
α+ λ

u

u1

)
du+ du1.

(43)

To find the energy foliation E , we write down condition (26), which in this case corre-
sponds to the following PDE

u1Eu − (αu1 + λu)Eu1
= 0. (44)

In what follows, we will focus on the underdamped case, i.e., α2 < 4λ, but the
remaining cases can be developed in an analogous manner. It can be checked that a
particular solution for equation (44) in this case is given by

E =
e

α
ω arctan

(
αu1+2λu

2ωu1

)
2

(αuu1 + u2
1 + λu2), (45)

where ω := 1
2

√
4λ− α2. The level sets of this function defines the energy foliation E of

the second-order ODE (41).
It is interesting to highlight that the function E defined in (45) exhibits a structural

resemblance to the energy function presented in equation (42). Moreover, by setting
α = 0 in equation (45), which corresponds to the undamped harmonic oscillator, one
recovers the classical expression for the mechanical energy of the harmonic oscillator:

E =
1

2
(u2

1 + λu2).

Consequently, one may regard (45) as a non-mechanical form of energy that remains
conserved along the solutions.

On the other hand, the leaves of the foliation E are, according to Proposition 4.1,
minimal surfaces with Kext = − 1

4 . Moreover, by Corollary 4.1, their intrinsic curvature
is

Kint = λ− α2 − αλ
u

u1
.

It is worth noting that the intrinsic curvature of this system is closely related to the
damping coefficient and the spring constant. In particular, for a harmonic oscillator
without damping, the intrinsic curvature simplifies to the spring constant: Kint = λ.

Finally, observe that the energy foliation of the second-order ODE (41) can also be
expressed as the level sets of the smooth function

Ẽ := ln (2E) =
α

ω
arctan

(
αu1 + 2λu

2ωu1

)
+ ln

(
αuu1 + u2

1 + λu2
)
. (46)
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By solving the differential equation (27) using Ẽ, we find the following non-standard
autonomous Lagrangian

L =
2u1

ωu
arctan

(
αu+ 2u1

2uω

)
− α

ω
arctan

(
αu1 + 2λu

2ωu1

)
− ln

(
αuu1 + λu2 + u2

1

)
, (47)

which has previously appeared in the literature [41], although derived through a different
methodology.

6 Concluding remarks

In this work, we have introduced a Riemannian metric on an open subset of the first-
order jet space via an autonomous second-order ODE. We have studied the geometry of
the resulting Riemannian manifold in relation to the integrability of the second-order
ODE, establishing a connection between the solutions of the ODEs and the geodesic
curves of the associated Riemannian manifold.

We have also defined the concept of energy foliation for autonomous second-order
ODEs and showcased its connection to the classical notion of energy, for ODEs arising
from mechanical systems. Furthermore, we have explored the geometric properties of
this foliation, proving that it constitutes a minimal foliation.

Our framework has been applied to ODEs derived from Lagrangian mechanics, pro-
viding a conservative approach to certain systems that may initially seem to lack con-
served energy. In particular, we examined the damped harmonic oscillator as a key
example to illustrate the applicability of our results.

This research not only highlights a compelling intersection between mathematical
analysis, differential geometry, and physics but also opens interesting directions for fur-
ther investigation. Future work could explore higher-order ODEs or extend the analysis
to Lagrangian systems in higher dimensions. These extensions hold significant potential
for a better understanding of both the geometric structure of differential equations and
their physical interpretations.
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Jacobi fields.” arXiv:2404.14352, 2024.

[18] T. Bayrakdar and A. Turhan, “Equivalence problem for first and second-order
odes with a quadratic restriction,” International Journal of Geometric Methods in
Modern Physics, 07 2024.

[19] D. J. Saunders, The geometry of jet bundles, vol. 142. Cambridge University Press,
1989.

16

https://arxiv.org/abs/2312.04489
https://arxiv.org/abs/2404.14352


[20] P. J. Olver, Applications of Lie groups to differential equations, vol. 107. New York:
Springer-Verlag, 1986.

[21] H. Stephani, Differential Equations: Their Solutions Using Symmetry. New York:
Cambridge University Press, 1989.

[22] W. Chen, S. S. Chern, and K. S. Lam, Lectures on differential geometry, vol. 1.
World Scientific Publishing Company, 1999.

[23] S. Morita, Geometry of Differential Forms. Rhode Island: American Mathematical
Society, 2001.

[24] T. A. Ivey and J. M. Landsberg, Cartan for Beginners, vol. 175. American Math-
ematical Soc., 2016.

[25] J. M. Lee, Riemannian manifolds: an introduction to curvature, vol. 176. Springer
Science & Business Media, 2006.

[26] M. P. Do Carmo, Riemannian geometry, vol. 6. Springer, 1992.
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