Open Peer Review on Qeios

Different pattern of menstrual in patients with COVID-19 infections

Omnia B. Bakr¹, Alaa H. El-keky¹, Rania Gamal¹

1 Ain Shams University

Funding: No funding disclosures or support to make with regards to this study.Potential competing interests: The author(s) declared that no potential competing interests exist.

Abstract

Objective: To investigate the impact of COVID-19 infection on menstrual pattern with or without use of anticoagulation therapy.

Methods: A retrospective study was conducted on 175 female patients, diagnosed with COVID-19 to assess the pattern of menstrual changes after infection using an online based questionnaire.

Results: There is highly significant results between number of menstruation days before and after COVID infection with P value (p<0.001) among the studied patients without use of anticoagulation. No statistically significant difference between without anti-coagulation and with anti-coagulation according to the effect of COVID-19 infection on menstrual flow, the number of menstrual flow days' post COVID-19 infection, the number of pads per day post-COVID-19 infection and action after abnormal menstrual pattern, with p-value (p>0.05 NS).

Conclusion: COVID-19 infection has a direct effect of menstrual pattern regarding the duration of menstruation in infected females irrespective of the use of anticoagulants in the treatment plane. However, it hasn't direct effect on regularity or amount of menstrual flow.

Corresponding author: Rania Gamal El-Skaan, Ain Shams University, Cairo, Egypt.

Tel: +201283262383

Email: dr.raniagamal2015@yahoo.com

Keywords: Menstruation, COVID-19 infection.

Introduction

A novel coronavirus was identified in late 2019 that rapidly reached pandemic proportions. The World Health Organization has designated the disease caused by the virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) as coronavirus disease 2019 (COVID-19).^[1]

Many reports have described Individuals with COVID-19 may suffer from coagulation abnormalities (a

hypercoagulable state associated with COVID-19).^{[2][3]} The prevalence of venous thromboembolism (VTE) is increased, especially in critically ill individuals, despite prophylactic anticoagulation.^[4] Arterial thrombosis has also been reported but the prevalence is not known.^[5] Elevated D-dimer has a direct relation with a worse prognosis. So different approaches

were described how to use prophylactic and therapeutic anticoagulation in patients with COVID-19.^[6]

The pathogenesis of hypercoagulability in COVID-19 is incompletely understood. Virchow's triad, (hypercoagulability can be thought of in terms of Virchow's triad). All three of the major contributions to clot formation apply to severe COVID-19 infection: Endothelial injury, through direct invasion of endothelial cells by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses. Other sources of endothelial injury include host immune response, intravascular catheters, the mediators of the acute systemic inflammatory response like interleukin [IL]-6 and other acute phase reactants and the contribution of complement-mediated endothelial injury may have a role. Increased markers of complement activation such as C5b-9 in the circulation of individuals hospitalized with COVID-19 than in controls (healthy people, people in the intensive care unit with non-COVID-19 respiratory failure, or people with influenza).^{[3][7]}

Immobilization can cause stasis of blood flow in all hospitalized and critically ill patients, regardless of whether they have COVID-19 infection.^{[8][9]}

Hypercoagulable state, a number of changes in circulating prothrombotic factors have been reported or proposed in patients with severe COVID-19. Elevated factor VIII, Elevated fibrinogen, and Circulating prothrombotic microparticles and neutrophil extracellular traps (NETs).^[10]

All hospitalized medical, surgical, and obstetric patients with COVID-19 should receive thromboprophylaxis unless contraindicated according to guidelines from the American Society of Hematology (ASH). Low molecular weight (LMW) heparin is preferred, but <u>unfractionated heparin</u> can be used if LMW heparin is unavailable or if there is an impairment in kidney functions. Other protocols include more aggressive anticoagulation with intermediate-dose or even therapeutic-dose anticoagulation for thromboprophylaxis.^[11]

Bleeding is less common than clotting in patients with COVID-19^[12] but it may occur, especially in the setting of anticoagulation. Bleeding is likely multifactorial, related to the COVID-19 illness severity or anticoagulation. If it occurs, treatment is similar to non-COVID-19 patients and may include transfusions, anticoagulant reversal or discontinuation, or specific products for underlying bleeding disorders.^[13]

But here will concentrate on Heavy menstrual bleeding (HMB) which is one of the most common complications of anticoagulation use, it represents about 70% of menstruating women receiving oral anticoagulation but actually, it is lesser with new generations of oral anticoagulation like apixiban. HMB can result in iron deficiency anemia, decrease quality of life.^[14] So, we will investigate the effect of anticoagulation use on menstrual flow on patient who had COVID- 19 infection or it is one of the effects of the viral infection itself.

Patients and Methods

Aquestionnaire based retrospective study was conducted on 175 ladies, diagnosed with COVID-19, at Maternity Hospital (inpatient, ER, and outpatient clinic), Ain Shams University, during the period from January 2021 to March 2021. All 175 patients were diagnosed either by nasopharyngeal swab, CT chest or based upon suspected clinical findings e.g.; anosmia, dyspnea, dry cough, GIT troubles. Inclusion criteria include female patients in child bearing period with past history of COVID-19 infection, menopausal patients were excluded.

Online based questionnaire was implemented (Available at:

https://docs.google.com/forms/d/e/1FAIpQLScjV2JA35_QdAhWqaoQsPPyfR33HXpHVc0mv1hDIVFh9XQd2Q/viewform? vc=0&c=0&w=1&flr=0&usp=mail_form_link), including patient demographic data (age, marital status, level of education, socioeconomic status, job and special habits of consideration), obstetric history (number of deliveries, mode of deliveries and number of abortions), menstrual history (age of menarche, menstrual flow regularity, duration of flow, number of pads used/day, passage of blood clots, associated symptoms and average cycle length), contraceptive history (last method used, when started and when stopped), past history of (medications received, thromboembolic disorders, bleeding disorders or abnormal uterine bleeding), COVID-19 infection (date of diagnosis, method of diagnosis, symptoms, history of hospital or ICU admission, laboratory tests abnormality and treatment that was given including type, dose and duration of anticoagulation), menstrual changes post COVID-19 infection (menstrual regularity, menstrual flow days, number of pads used/day, average cycle length, if there was change in menstrual pattern for how long and how managed).

Statistical analysis: Recorded data were analyzed using the statistical package for social sciences, version 23.0 (SPSS Inc., Chicago, Illinois, USA). The quantitative data were presented as mean± standard deviation and ranges. Also, qualitative variables were presented as number and percentages. *The following tests were done:* Chi-square (x²) test of significance was used in order to compare proportions between qualitative parameters. The confidence interval was set to 95% and the margin of error accepted was set to 5%. So, the p-value was considered significant as the following: Probability P-value <0.05 was considered significant.

Results

Table 1 demonstrates demographic data and personal history of all patients are demonstrated in. Detailed data about the menstrual pattern and the used contraceptive methods before COVID-19 infection are illustrated in Table 2.

As regards anticoagulant use among the infected patients, 57 patients (32.4%) did not receive anticoagulants, 76 patients (43.2%) received prophylactic anticoagulation mainly asposid (30.3%), and 43 patients (24.4%) received therapeutic anticoagulation mainly revaspire (41.9%) (Table 6).

After COVID-19 infection, changes in menstruation are summarized in Table 5. Our results showed a statistically highly significant difference between the pattern of menstruation before COVID infection and menstruation after COVID infection according to the number of days of menstruation, with a p-value (p<0.001) (Table 6) (Figures 1 & 2), with no effects on menstrual flow, number of used bad or menstrual irregularity.

Table 7 shows no statistically significant difference between without anti-coagulation and with anti-coagulation according to Effect of COVID-19 infection on menstrual flow, Number of menstrual flow days' post COVID-19 infection, Number of pads per day post-COVID-19 infection, Post COVID-19 menstrual irregularity, if there is abnormal menstrual pattern after COVID-19 infection and Action after abnormal menstrual pattern, with p-value (p>0.05 NS).

Discussion

Various external stimuli, including infections, medication, and organ dysfunctions can easily disrupt the typical menstruation rhythm.^[15] In previous studies, menstrual abnormalities were demonstrated among females infected with viral infections, including hepatitis B virus (HBV) and hepatitis B virus (HCV)^[16] as well as human immunodeficiency virus (HIV).^[17]

Based on online-based questionnaire, we tried to explore the effect of COVID infection on menstruation. We reported that the number of menstruation days before and after COVID infection were significantly different (p<0.001) among our patients, indicating obvious effects of viral infection on the menstrual cycle. By analyzing the menstrual changes of COVID-19 patients, it was found that the menstruation of more than half of patients remains from 2-7 days after infection, however, in some patients, the days of menstruation increased more than before infection and in other patients, it decreased or even stopped.

In the same context, in a retrospective study by Nguyen et a^[18] who examined changes in ovulation and menstruation among 18,076 women from more than 60 developing countries using the Natural Cycles mobile tracking app. They demonstrated a statistically significant decrease in cycle length and increase in the menses duration at the population level.

Also, Li et al^[19] study on menstruating females showed that about one-fifth of those infected with COVID-19 experienced a menstrual disturbance in the form of cycle prolongation and decrease menstrual volume. They attributed these disturbances to temporary changes in sex hormones resulting from transient ovarian suppression that resolved after a short period.

On the other hand, menstrual abnormalities have been described after receiving mRNA and adenovirus vectored COVID-19 vaccines, attributing these changes to immunological response to the vaccine rather than a certain vaccine component.^[20]

The usage of anticoagulants in COVID-19 remains an area of debate with no definite guidelines published to date highlighting the drug of choice, the timing, dosage, and duration of anticoagulation.^{[13][21]} Anticoagulant-associated heavy menstrual bleeding is one of the frequent side effects of anticoagulant use.^{[14][22]}

To investigate the effect of anticoagulant use on menstruation, we asked the patients about their menstrual flow, menstrual irregularities, number of menstrual flow days, number of used pads per day, abnormal menstrual pattern, and action after abnormal menstrual pattern before and after anticoagulant, and we found no statistically significant differences before and after the use anticoagulant in terms of menstrual changes (p>0.05). These results revealed no effect of anticoagulant use on menstruation in COVID patients yet these findings could be explained by the non-prolonged use of anticoagulants which actually is stopped shortly after treating the infection.

In summary, we concluded that the use of anticoagulants in COVID patients has a negligible effect on the menstrual rhythm. We assumed that the potential trigger for menstrual abnormalities could be due to increased stress caused by the pandemic and fear of deterioration of the disease and worries about the consciousness since the majority of our patients were married and had children. In an animal study, it was found that psychological stress leads to an increase in cortisol level and superoxide dismutase (SOD) activity causing anovulation and menstrual abnormalities in stressed mice.^[15]

Being retrospective and self-reported work, these were the main limitations of our study. In addition, we did not take

into consideration other variables that could affect the typical menstrual pattern such as an increase in body mass index (BMI), other inherited bleeding disorders, etc. Finally, this study was performed in only one hospital with limited sample size.

Conclusion

COVID-19 infection may be a direct cause of menstrual changes in infected females irrespective of the use of anticoagulants in the treatment protocol as we reported no significant difference on menstruation after receiving anticoagulants in COVID-19 patients.

Acknowledgments: The authors of this study possess no acknowledgments to make with regards to this study and this manuscript's content especially Professor doctor Alaa El-feky.

Author contributions: Protocol design: Professor Alaa El-feky; Data collection, analysis: Rania G. El-Skaan, Omnia B. Bakr; Manuscript writing: Rania G. El-Skaan, Omnia B. Bakr.

Data availability statement: Data can be shared if required.

Tables

Table (1): Demographic data distribution								
among study group (n=176).								
Demographic data (n=176) No. %								
Marital status								
Single	72	40.9%						
Married	102	58.0%						
Divorced	2	1.1%						
Level of education								
Intermediate school	17	9.7%						
High school	22	12.5%						
Higher education	137	77.8%						
Socioeconomic status								
Average	142	80.7%						
Above average	24	13.6%						
Below average	10	5.7%						
Job								
Medical staff	80	45.5%						
Employee	45	25.6%						
Medical student	32	18.2%						
House wife	19	10.8%						
A 11111 1								

Special nabits and considerations		
No	132	75.0%
Smoking	44	25.0%
Number of deliveries		
NG	74	42.0%
P1	22	12.5%
P2	36	20.5%
P3	22	12.5%
P4	14	8.0%
P5	8	4.5%
Mode of delivery		
No	76	43.2%
Vaginal delivery	54	30.7%
Cesarean section	46	26.1%
Number of abortions		
No	130	73.9%
One	26	14.8%
Two	16	9.1%
Three	2	1.1%
Four	2	1.1%
Medical disorders		
No	144	81.8%
Abnormal uterine bleeding	27	15.3%
Bleeding disorders	2	1.1%
Thrombotic disorders	3	1.7%
Chronic medications use		
No	42	23.9%
ВА	28	15.9%
Insulin	10	5.7%
Ant thyroid	12	6.8%

Table (2): Pattern of menstruation Before COVID infection distribution among study group	on	
Pattern of menstruation Before COVID infection (n=176).	No.	%
Age of menarche		
10-16	163	92.6%
>16	13	7.4%
Menstrual regularity		
Irregular	28	15.9%

Regular	148	84.1%
Number of days		
<2 days	12	6.8%
2-7 days	149	84.7%
<7 days	15	8.5%
Number of pads per day		
2-5	155	88.1%
>5	21	11.9%
Passage of blood clots		
No	57	32.4%
Yes	119	67.6%
Average cycle length		
21-35	145	82.4%
>35	31	17.6%
Associated symptoms		
No symptoms	3	1.7%
Dysmenorrhea	58	33.0%
Breast tenderness	84	47.7%
Headache	5	2.8%
Mode changes	20	11.4%
Others	6	3.4%
Last contraception method		
No	82	46.6%
Barrier method	4	2.3%
Intradermal capsule	22	12.5%
Cupper IUCD	34	19.3%
Hormonal IUCD	7	4.0%
Oral contraceptive pills	16	9.1%
Injectable	2	1.1%
Natural methods	9	5.1%
Start of use of last contraception method		
1999	106	60.2%
2009	2	1.1%
2011	2	1.1%
2012	8	4.5%
2013	3	1.7%
2014	3	1.7%
2015	4	2.3%
2016	6	3.4%
2018	8	4.5%
2019	12	6.8%

202	12	6.8%
2021	10	5.7%
Stoppage of last contraception method		
Not Yet	148	84.1%
2015	2	1.1%
2019	2	1.1%
202	8	4.5%
2021	16	9.1%

Table (3): Hospital admission, ICU admission and Abnormal laboratorytests during active COVID-19 infection distribution among study group(n=176).

Hospital admission		
Yes	46	26.1%
No	130	73.9%
ICU admission		
Yes	8	4.5%
No	168	95.5%
Abnormal laboratory tests during active COVID-19 infection		
CBC	7	4.0%
CRP	55	31.3%
LDH	53	30.1%
D-Dimer	35	19.9%
Serum ferritin	24	13.6%
Liver enzymes	2	1.1%

 Table (4): Anticoagulation use distribution

 among study group (n=176).

Anticoagulation use	No.	%
*Don't received Anticoagulation	57	32.4%
*Prophylactic Anticoagulation	76	43.2%
-Clexane 40 IU/24	10	13.2%
-Clexane 60 IU/24	7	9.2%
-Clexane 80 IU/24	3	3.9%
-Asposid	23	30.3%
-Revaspire	22	28.9%
-Eliquis	4	5.3%
-Xalerto	7	9.2%
*Therapeutic	43	24.4%
-Clexane 40 IU/12	2	4.7%
-Clexane 80 IU/12	3	7.0%
-Revaspire	18	41.9%
-Eliquis	10	23.3%
-Asposid	10	23.3%

 Table (5): Menstruation after COVID infection distribution among study group (n=176).

Menstruation After COVID infection	No.	%
Effect of COVID-19 infection on menstrual flow		
Increased	60	34.1%
Same	77	43.8%
Decreased	39	22.2%
Number of menstrual flow days post COVID-19 infection		
<2 days	31	17.6%
2-7 days	103	58.5%
>7 days	38	21.6%
Stopped	4	2.3%
Number of pads per day post COVID-19 infection		
2-5	142	80.7%
>5	34	19.3%
Post COVID-19 menstrual irregularity		
No	116	65.9%
Intermenstrual bleeding	27	15.3%
Contact bleeding	8	4.5%
Others	25	14.2%
If there is abnormal menstrual pattern after COVID-19 infection, for how many cycles		
No	136	77.3%
One	8	4.5%
Two	24	13.6%
Three	3	1.7%
Four	4	2.3%
Stopped after infection	1	0.6%
Action after abnormal menstrual pattern		
No thing	152	86.4%
Stop anticoagulation	18	10.2%
Add drugs to stop medications	2	1.1%
Add hormonal treatment	4	2.3%

 Table (6): Comparison between Pattern of menstruation Before COVID infection and Menstruation after COVID infection according to

 Number of days of menstruation and Number of pads per day.

Menstruation	Pattern of menstruation Before COVID infection		Menstruation After COVID infection		Chi-square test	
	No.	%	No.	%	x2	p-value
Number of days of menstruation						
<2 days	12	6.8%	31	17.6%	30.773	<0.001**
2-7 days	149	84.7%	103	58.5%		
>7 days	15	8.5%	38	21.6%		
Stopped	0	0.0%	4	2.3%		
Number of pads per day						
2-5 pads/day	155	88.1%	142	80.7%	3.103	0.078
>5 pads/day	21	11.9%	34	19.3%		0.070

Using: Chi-square test

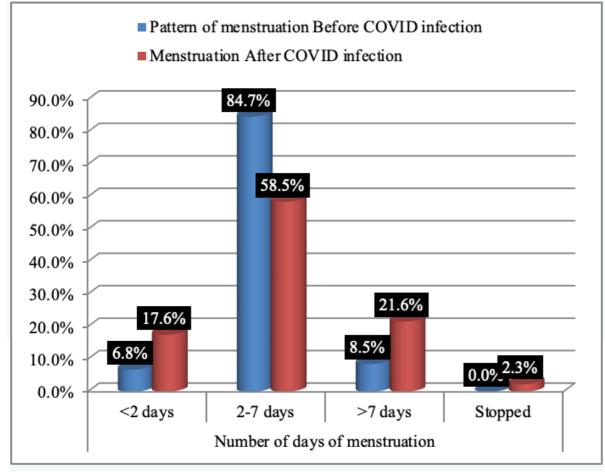
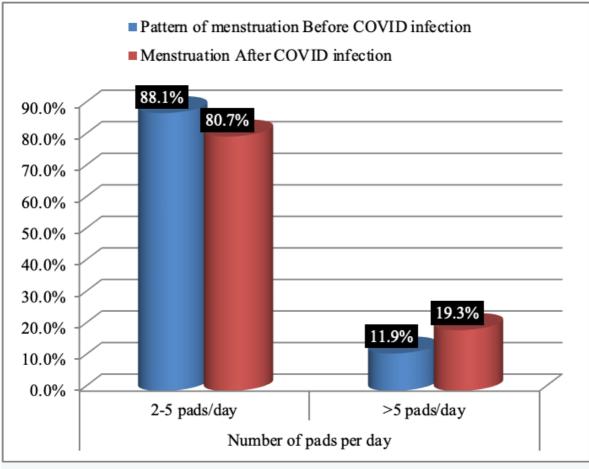

p-value >0.05 NS; **p-value <0.001 HS

Table (7): Comparison between Without Anti-coagulation and with Anti-coagulation according to Menstruation after COVID infection.


Menstruation After COVID infection	Without Anti- coagulation		With Anti- coagulation		Chi-square test	
		%	No.	%	x2	p-value
Effect of COVID-19 infection on menstrual flow						
Increased	15	26.3%	45	37.8%		
Same	29	50.9%	48	40.3%	2.490	0.288
Decreased	13	22.8%	26	21.8%		
Number of menstrual flow days post COVID-19 infection						
<2 days	9	15.8%	22	18.5%		
2-7 days	32	56.1%	71	59.7%	1.152	0 765
>7 days	14	24.6%	24	20.2%	1.102	0.705
Stopped	2	3.5%	2	1.7%		
Number of pads per day post COVID-19 infection						
2-5 pads/day	43	75.4%	99	83.2%	1.487	0 223
>5 pads/day	14	24.6%	20	16.8%	1.407	0.223
Post COVID-19 menstrual irregularity						
No	36	63.2%	80	67.2%		0.343
Intermenstrual bleeding	12	21.1%	15	12.6%	3 336	
Contact bleeding	1	1.8%	7	5.9%	5.550	0.040
Others	8	14.0%	17	14.3%		
If there is abnormal menstrual pattern after COVID-19 infection						
No	45	78.9%	91	76.5%		
One	0	0.0%	8	6.7%		
Two	9	15.8%	15	12.6%	5.196	0.000
Three	1	1.8%	2	1.7%	5.150	0.002
Four	2	3.5%	2	1.7%		
Stopped after infection	0	0.0%	1	0.8%		
Action after abnormal menstrual pattern						
No thing	52	91.2%	100	84.0%	4.802	
Stop anticoagulation	2	3.5%	16	13.4%		0 187
Add drugs to stop medications	1	1.8%	1	0.8%		0.107
Add hormonal treatment	2	3.5%	2	1.7%		

Using: Chi-square test; p-value >0.05 NS

Figures

Figure 1. Comparison between Pattern of menstruation Before COVID infection and Menstruation after COVID infection according to Number of days of menstruation.

Figure 2. Comparison between Pattern of menstruation Before COVID infection and Menstruation after COVID infection according to Number of pads per day.

References

- 1. [^]P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579(7798):270–3. doi:10.1038/s41586-020-2012-7
- 2. [^]M. Y. Abou-Ismail, A. Diamond, S. Kapoor, Y. Arafah, L. Nayak. (2020). The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res. 194:101–15. doi:10.1016/j.thromres.2020.06.029
- ^{a, b}A. Kichloo, K. Dettloff, M. Aljadah, M. Albosta, S. Jamal, et al. (2020). COVID-19 and Hypercoagulability. Eur Res J. 26(1076029620962853). doi:10.18621/eurj.830973
- [^]C. Wu, Y. Liu, X. Cai, W. Zhang, Y. Li, et al. (2021). Prevalence of Venous Thromboembolism in Critically III Patients With Coronavirus Disease 2019: A Meta-Analysis. Front Med. 8(603558). doi:10.3389/fmed.2021.603558
- S. K. Kunutsor, J. A. Laukkanen. (2020). Incidence of venous and arterial thromboembolic complications in COVID-19: A systematic review and meta-analysis. Thromb Res. 196:27–30. doi:10.1016/j.thromres.2020.08.022
- [^]B. Mouhat, M. Besutti, K. Bouiller, F. Grillet, C. Monnin, et al. (2020). Elevated D-dimers and lack of anticoagulation predict PE in severe COVID-19 patients. Eur Respir J. 56(4):2001811. doi:10.1183/13993003.01811-2020

- [^]C. Magro, J. J. Mulvey, D. Berlin, G. Nuovo, S. Salvatore, et al. (2020). Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 220:1–13. doi:10.1016/j.trsl.2020.04.007
- Y. Shang, C. Pan, X. Yang, M. Zhong, X. Shang, et al. (2020). Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China. Ann Intensive Care. 10(1). doi:10.1186/s13613-020-00689-1
- [^]F. A. Klok, M. Kruip, N. J. M. Meer, M. S. Arbous, D. Gommers, et al. (2020). Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb Res. 191:148–50. doi:10.1016/j.thromres.2020.04.041
- ^M. Panigada, N. Bottino, P. Tagliabue, G. Grasselli, C. Novembrino, et al. (2020). Hypercoagulability of COVID-19
 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J
 Thromb Haemost. 18(7):1738–42. doi:10.1111/jth.14850
- 11. ^A. Cuker, Peyvandi F. Coronavirus. 2020. Available from: https://www.uptodate.com/contents/covid-19hypercoagulability.
- ^B. Singh, A. Mechineni, P. Kaur, R. J. Reid, M. Maroules. (2021). COVID-19 and bleeding at unusual locations: Report of four cases. Hematol Transfus Cell Ther. 43(2):214–8. doi:10.1016/j.htct.2021.01.007
- ^{a, b}J. Helms, C. Tacquard, F. Severac, I. Leonard-Lorant, M. Ohana, et al. (2020). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 46(6):1089–98. doi:10.1007/s00134-020-06062-x
- ^{a, b}Samuelson Bannow B. (2020). Management of heavy menstrual bleeding on anticoagulation. Hematology. 2020(1):533–7. doi:10.1182/hematology.2020000138
- ^{a, b}M. Kala, M. Nivsarkar. (2016). Role of cortisol and superoxide dismutase in psychological stress induced anovulation. Gen Comp Endocrinol. 225:117–24. doi:10.1016/j.ygcen.2015.09.010
- ^A. M. Kurmanova, G. M. Kurmanova, V. N. Lokshin. (2016). Reproductive dysfunctions in viral hepatitis. Gynecol Endocrinol. 32(sup2):37–40. doi:10.1080/09513590.2016.1232780
- 17. [^]T. Chen, D. Wu, H. Chen, W. Yan, D. Yang, et al. (2020). Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 368:m1091:m1091. doi:10.1136/bmj.m1091
- [^]B. T. Nguyen, R. D. Pang, A. L. Nelson, J. T. Pearson, E. Benhar Noccioli, et al. (2021). Detecting variations in ovulation and menstruation during the COVID-19 pandemic, using real-world mobile app data. PLOS ONE. 16(10):e0258314. doi:10.1371/journal.pone.0258314
- [^]K. Li, G. Chen, H. Hou, Q. Liao, J. Chen, et al. (2021). Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. Reprod Biomed Online. 42(1):260–7. doi:10.1016/j.rbmo.2020.09.020
- 20. [^]Medicines and Healthcare Products Regulatory Agency. Coronavirus vaccine—weekly summary of yellow card reporting. 2021. Available from: https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-reactions/coronavirus-vaccine-summary-of-yellow-card-reporting#annex-1-vaccine-analysis-print.
- N. Tang, D. Li, X. Wang, Z. Sun. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 18(4):844–7. doi:10.1111/jth.14768

22. [^]K. Boonyawat, S. H. O'Brien, S. M. Bates. (2017). How I treat heavy menstrual bleeding associated with anticoagulants. Blood. 130(24):2603–9. doi:10.1182/blood-2017-07-797423