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Abstract

A characteristic feature of real-world applications is the occurrence of dataset class imbalance in the output class

distribution. Predictive modeling contributions from the minority or underrepresented class are overlooked by most

learning algorithms. Addressing this challenge includes applying re-sampling techniques that eliminate class distribution

imbalance for a more balanced output class distribution in the training examples. Random sampling techniques such as

random over-sampling of the minority class duplicates the minority class examples to achieve a more balanced

distribution or random under-sampling to delete training examples in the majority class for a balanced distribution to

eliminate class imbalance in the dataset. The usefulness of these random sampling techniques has received attention

in several research studies, particularly for binary classifications in two-class or multi-classification problems. This

application, to many, is aimed at achieving equal class distribution meant to determine optimal model performance.

This comparative assessment of random sampling optimization uses five classification-based algorithms, namely:

extreme gradient boosting, gradient boosting, random forest, support vector machines and logistic regression, to

evaluate predictive performance in random sampling on a real-world healthcare dataset of patients suffering from

hypertension with comorbidities. The average prediction accuracy score (balanced accuracy) obtained shows

statistically significant differences between scores obtained at the pre-sampling and post-sampling stages. The lowest

score obtained with post-sampling was 85.55%, as against 54% in pre-sampling. However, high auc_roc score

recorded in pre-sampling, over-sampling and under-sampling indicate a statistically insignificant impact of over-

sampling and under-sampling use in this context. This confirms that the impact and effect of random sampling use in

predictive modeling can better be explained in context.
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1.0 Introduction

Common among real-world applications is the occurrence of unequal class distribution in target labels. In supervised

learning, variables are labelled for identification. Output class may consist of two or more classes for predictive

classification modeling. Predictive modeling techniques that are capable of correctly identifying predominantly higher

number of target classes define its performance potency. However, the challenge of predictive modeling techniques

making biased predictions with skewed class distribution persists and continues to attract research interest. This

phenomenon leads to a situation in which minority class contribution, effect and impact are ignored by learning algorithms.

Meanwhile, in many real-world applications such as healthcare systems, fraud detections etc., minority class contributions

are particularly of paramount interest. For example, the detection of fraudulent transactions in a banking system, spam

email detection system etc., may reveal an exceedingly higher number of normal transactions than fraudulent ones, but

for which the detection of fraudulent transactions is of utmost priority. Similarly, the prediction of infectious diseases[1][2]

[3] among patients could also show that the majority of patients who may not have the disease but knowledge of patient

minority with the disease is of paramount importance to contain any potential spread or large scale outbreak and any

devastating impact on public health. Additionally, risk assessment of default by patients to disease treatment[4][5] and

other risk assessments for default may also encounter class distribution imbalance. Addressing dataset class imbalance

to improve prediction accuracy scores continues to gain attention in many related research works. Solutions to dataset

imbalance range from using sampling techniques that address class imbalance through over-sampling the minority class

or under-sampling the majority class to other optimization techniques, such as applying class weight optimization to

penalize the minority class for each prediction error made. A key concern for addressing class imbalance is why and for

what purpose? This legitimate concern arises because a characteristic of real-world applications is the phenomenon of

class imbalance; therefore, applied predictive modeling techniques should rather be evaluated to determine effective and

efficient performance on such datasets with minority class involvement. This evaluation task should include impact

assessment on prediction accuracy, model generalization and model behavior on training examples over a period. This

key challenge has received little attention in related research works as a solution to the use of datasets with class

imbalance.

1.1 Related Works

In this section, a preview of related research works showcasing random sampling technique use is examined for

emphasis. Using transaction details of customers, the application of random sampling techniques showed high over-

sampling technique performance over under-sampling [6]. Applied over-sampling techniques on large datasets to address

challenges associated with class imbalance drew conclusions about its efficiency against other sampling techniques [7].

Similarly, a comparative study of several re-sampling techniques to determine efficiency also concluded that over-

sampling is an efficient sampling approach [8]. Improving prediction accuracy in instance method selection [9] with over-
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sampling and under-sampling techniques showed accuracy improvements in minority class prediction. Understanding

superior differences in performance of over and under-sampling techniques with an exploration of dataset inner

structure [10] to explain the superior performance of over-sampling technique. A new approach [11] for determining the

required over-sample size, which is less than the required sample for achieving class balance, has been evaluated to

conclude that this approach improves classification performance when used with over-sampling. Comparative analysis of

over-sampling and under-sampling influence on physical activities with ensemble machine learning techniques determines

that under-sampling with refined features addresses class imbalance more effectively[12]. Another approach to effectively

address class imbalance includes the use of synthetic minority over-sampling [13]. A combination of three sampling

techniques – over-sampling, under-sampling and combi-sampling [14] – on healthcare datasets with artificial neural

networks showed varying performance for different re-sampling techniques, including varying performance on different

datasets by ANN.

2.0 Methods

To address the challenge of minority class use in predictive modeling, we adopt two approaches. One is to perform

predictive modeling using healthcare context-based datasets with extreme class imbalance without sampling techniques

to evaluate model performance on prediction accuracy score, model generalization and model behavior regarding training

examples with five (5) classification models. The second approach is to use the same dataset with class imbalance with

two sampling techniques (over-sampling the minority class and under-sampling the majority class for comparative

evaluation analysis to determine the impact of addressing dataset class imbalance. For this purpose, we adopt a real-

world healthcare dataset obtained with expressed permission referenced DCS/S.1/VOL.1 from a district hospital in Ghana

(Kwahu Government Hospital) noted for its long-standing involvement in managing chronic diseases. Identifiable features,

such as patient names, were blocked from the records for privacy protection. Records obtained showed biological data,

clinical notes, patient visits and performance metrics for prescriber evaluation. Records with no relevancy to this research

were excluded in the collection process, and some of these were body temperature readings, clinical notes on eye

treatments, dental notes, obstetric notes etc. Gold standards used for feature labeling include patient attendance records

and clinical note descriptions without identifiable patient features to address patient privacy concerns. We adopt five

classification-based machine learning techniques: Gradient boosting, Extreme gradient boosting, Logistic regression,

Support vector machines and Random forest classifiers for all predictive modeling.

2.1 Exploratory dataset analysis

Dataset exploration for patterns and features is described in the figures below.
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Figure 2.1 Distribution of age, gender and target class

The age distribution graph (first graph) of the sampled dataset from Figure 2.1 can be described as normal or with a

Gaussian distribution. The gender distribution graph (second graph) shows the number of female and male patients. This

graph describes a higher number of female patients than males in the sampled dataset. The last graph (third graph)

shows the distribution of the target class (number of patients described as defaulters of chronic disease and those who

are described as non-defaulting patients). The distribution of female numbers in the sampled population was 4,312,

constituting 80.86%, and 1,021 males made up 19.14% of the entire sampled population, bringing the total sample

population to 5,333.
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Figure 2.2 Class imbalance visualization

The dataset class output class imbalance visualization graph to demonstrate class distribution is shown in Figure 2.2

above.

2.2 Data preprocessing stages
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Figure 2.3 Flowchart of data preprocessing.

Figure 2.3 is a display of data preprocessing processes to improve dataset quality for model construction. Stages

involving sub-processes are boxed.

2.3 Supervised learning types

Figure 2.4 Model types
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Figure 2.4 shows supervised model selection types for each problem category and lists learning application choices for

each problem domain. Supervised learning has two main branches of use, classification and regression, and each choice

has predefined model selections.

Figure 2.5 Simplified model building process

Labeled data, as shown in Figure 2.5 (processed input), is given to a machine learning (supervised) algorithm with

computational functions to train for predictions as an output label. One of the key advantages of Supervised modeling use

is the prediction of an output based on prior experience for which knowledge of dataset class use is required.

3.0 Results and discussions

The presentation of results is in two parts. The first part deals with a display of results without random sampling

techniques and covers performance metrics such as receiver operating characteristics and learning curves with cross-

validation, true positive rates, true negative rates, false positives, false negatives, positive predicted values, negative

predicted values and the second part with random sampling technique.

Model
FNR(%)

 

TNR(%)

 
FPR(%) PPV(%) NPV(%) TPR(%)

AUC
SCORE(%)

PREDICTION
ACCURACY(%)

BALANCED
ACCURACY(%)

Gradient boosting 0.13 9.09 90.91 98.75 50 99.87 97.00 99.00 55.00

XGBC 0.51 13.64 86.36 98.80 27.27 99.49 99.00 98.00 57.00

Logistic regression 0.06 13.64 86.36 98.81 75 99.94 94.00 99.00
57.00

 

Random forest 0.57 9.09 90.91 98.74 20.16 99.25 97.00 98.00 54.00

SupportVector
machine

0.00 0.00 100 98.62 66.67 100 89.00 99.00 57.00

Table 2.0 Sensitivity and Specificity evaluation results (pre-sampling)
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Model
FNR(%)

 
TNR(%) FPR(%) PPV(%) NPV(%) TPR(%)

AUC
SCORE(%)

PREDICTION
ACCURACY(%)

BALANCED
ACCURACY(%)

Gradient boosting 20.84 98.91 1.09 98.67 82.19 79.16 95.00 88.90 89.03

XGBC 2.38 100 0.00 100 97.61 97.62 100.00 98.79 98.81

Logistic regression 17.46 94.59 5.41 94.01 84.04 82.54 93.00 87.84
88.57

 

Random forest 1.81 100 0.00 100 98.17 98.19 100.00 99.08 99.09

SupportVector
machine

20.53 91.63 8.37 90.71 81.28 79.47 91.00 85.47 85.55

Table 2.1 Sensitivity and Specificity results (Over-sampling)

Model
FNR(%)

 
TNR(%) FPR(%) PPV(%) NPV(%) TPR(%)

AUC
SCORE(%)

PREDICTION
ACCURACY(%)

BALANCED
ACCURACY(%)

Gradient boosting 11.25 98.26 1.74 98.00 90.06 88.75 98.00 93.59 93.5

XGBC 2.13 100.00 0.00 100.00 97.99 97.87 100.00 98.97 98.93

Logistic regression 16.61 94.58 5.42 93.68 85.52 83.39 93.00 89.09
88.98

 

Random forest 1.29 100 0.00 100.00 98.77 98.71 100.00 99.37 99.35

SupportVector
machine

18.55 91.15 8.85 89.87 83.6 81.45 92.00 86.39 86.3

Table 2.2 Sensitivity and Specificity evaluation results (Under-sampling)
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Figure 2.6 roc_auc characteristic curves. a=pre-sampling roc_auc curve ; b=over-sampling roc_auc curve

Figure 2.7 roc_auc under-sampling
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Figure 2.8 Over-sampling roc_auc learning curve

Qeios, CC-BY 4.0   ·   Article, September 28, 2023

Qeios ID: QZPWNX   ·   https://doi.org/10.32388/QZPWNX 10/15



Figure 2.9 Under- sampling roc_auc learning curves

Figure 2.10 Pre-sampling learning curves
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Discussions

Evaluation metrics and predictive performance results are presented as follows: Tables 2.0, 2.1 and 2.2 are results of

specificity and sensitivity from pre-sampling, over-sampling and under-sampling activities. Table 2.0 describes the results

obtained before applying random sampling techniques (pre-sampling), Table 2.1 represents results from applied over-

sampling, and Table 2.2 represents the under-sampling technique.

Receiver operating characteristic curve scores (roc_auc) recorded in Tables 2.0, 2.1 and 2.2 were obtained from the

display of graphs in Figure 2.6 (a=pre-sampling), 2.6 (b=oversampling) and Figure 2.7 (under-sampling).

Additional evaluation metrics presented in Figure 2.8 (a, b, c, d, e) represent over-sampling learning curves, Figure 2.9 (a,

b, c, d, e) shows results from under-sampling and Figure 2.10 (a, b, c, d, e).

In Figure 2.1, three graphs represent the dataset distribution of patient age, gender and output class. These graphs are

represented as the first graph- age distribution, the second graph- distribution by gender and the third graph is

represented by outcome or output distribution. The mean age is approximated at 64 years, the minimum age is 18 years,

and the maximum age is 111. The distribution of age, as shown in Figure 2.1 (first graph), follows a normal Gaussian

distribution. The distribution of gender, as shown in the second graph, indicates an unequal distribution between the

female majority and the male minority. Output class distribution, as indicated (third graph), shows an imbalance

distribution, and this is confirmed in Figure 2.2, visualization of output class distribution.

Evaluation of performance with area under the curve (auc_roc) for pre-sampling (Table 2.0), over-sampling (Table 2.1)

and under-sampling (Table 2.2) show minimum prediction auc_roc score of 89% in pre-sampling by support vector

machines. The high auc_roc scores in pre-sampling, over-sampling and under-sampling indicate a statistically

insignificant impact of over-sampling and under-sampling application of random sampling techniques used in this context.

However, as recorded in Tables 2.0, 2.1 and 2.2, average prediction accuracy scores (balanced accuracy) obtained from

minority and majority classes on sensitivity and specificity performance show a statistically significant difference between

scores obtained at the pre-sampling stage and those using applied random sampling techniques. The lowest score

obtained with applied sampling is 85.55%, as against 54% in pre-sampling.

Other performance evaluation metrics indicated in Tables 2.0, 2.1, and 2.2 show differences between pre-sampling scores

against over and under-sampling use and these are FNR, TNR, FPR, NPV and balanced accuracy. However, in sharp

contrast to observed differences, scores as shown for FPR and TPR determination show close score associations with

insignificant differences for pre-sampling, over-sampling and under-sampling.

Evaluating model performance behavior with Learning curves indicates the following: No significant difference in

performance behavior as observed in pre-sampling, over-sampling and under-sampling. The performance behavior of

models shows similarities in both instances. Overall performance of the gradient boosting classifier shows continuous

improvements over time with more training examples, increasing accuracy score over more training examples. It

generalizes well on unseen datasets on cross-validation in both pre-sampling and post-sampling (over-sampling and
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under-sampling).

Conclusions

Similar performance metrics showing close associations and diverse performance in other measures, as shown in this

research study, confirm that extensive model evaluation is needed to determine the best model performance in both

balanced and imbalanced dataset classifications. We have demonstrated with learning curves and other important metrics

how future predictive modeling performance determination in healthcare systems can be influenced by these results. It

also brings into focus an understanding of model performance evaluation metric use, especially in class imbalanced

datasets for the determination of the best performing predictive model.
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