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Candida, especially C. albicans, has traditionally only been framed as an opportunistic infection.

Unfortunately this rather limited view has impeded appreciation for this pathobiont and its growing

role as a facilitator of gut dysbiosis and limited gut biodiversity. Candida overgrowth (CO) is linked to a

gut microbiome that lacks biodiversity and sufficient butyrogenic bacteria. CO promotes intestinal

permeability (leaky gut) and upregulates the estrobolome. The former is associated with dementia and

autoimmune disease (AID) and the latter with many hormone driven cancers. Most appear to be

estrogen receptor positive. Obesity predisposes to CO and to hormone driven cancers, dementia, AID,

dementia, cardiovascular disease (CVD), and infectious disease. All report altered tryptophan

metabolism (ATM). Candida can create its own indoleamine dioxygenase (IDO) to manipulate levels of

this essential amino acid that otherwise inhibits hyphal morphogenesis. Candida releases numerous

proteases and induces release of bacterial proteases as well. These proteases activate protease

activated receptor (PAR2), linked to IBS (irritable bowel syndrome), IBD (inflammatory bowel disease),

progression of estrogen receptor (ER) positive cancers, and AID. To quell proteolytic hyperactivity, gut

microbiota produce an inhibitor - β-glucuronidase. This deconjugates estrogen in bilirubin otherwise

destined for excretion, enabling its reabsorption. This Candida enabled increase in circulating

estrogen may be the facilitator of this epidemic of cancer and AID in young women. Although the

connection between CO and this unforgiving epidemic is enticing and supported by the

pathophysiology, definitive clinical confirmation is required.
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I. Introduction

The Western diet, high in refined carbohydrates and low in fiber, promotes an imbalanced gut

microbiome. The result is gut dysbiosis, characterized by low biodiversity. However, there are certain

biomarkers that suggest a prominent role for CO in the development of gut dysbiosis and subsequent

risks for cancer, dementia, AID, cardiovascular disease, infectious disease, and obesity. These include

altered tryptophan metabolism (ATM) and increased kynurenine to tryptophan ratio, increased zonulin

and intestinal permeability, and periodontitis linked to fungal biofilms. Both zonulin and periodontitis

(gingivitis) have also been independently linked to these same human diseases (see figure 1).

Figure 1. This hypothetical figure links Candida with cancer, AID, dementia, CVD, and obesity. Numbers are

references.

Increased proteolytic activity characterizes gut dysbiosis, e.g., irritable bowel syndrome (IBS), leaky gut,

celiac disease, inflammatory bowel disease (IBD). These proteases activate receptors (PAR2), linked to

progression of ER+ cancers and AID. Gut microbial β-glucuronidase inactivates these microbial proteases

by unconjugating bilirubin. This includes estrogen. Unconjugated estrogen, otherwise destined for

excretion, can then be reabsorbed. Sustained exposure of estrogen receptor (ER) positive cells to elevated
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levels of estrogen may hypothetically drive many hormone dependent cancers and AID, especially in

young females, dementia in the elderly, and obesity in both (see figure 2). All are now globally epidemic.

Figure 2. This is a hypothetical view for the vicious circle that CO (Candida overgrowth) may mediate. MCAS,

POTS, and hEDS are each about three to four times more common in females. ACP is the alternative

complement pathway, AID is autoimmune disease, PAR is protease activated receptor, IBS is irritable bowel

syndrome, IBD is inflammatory bowel disease, ER is estrogen receptor, and CA is cancer.Numbers are

references.
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II. Candida Overgrowth and ATM

The role of Candida and its impact on the gut microbiome as a pathobiont has been overlooked and

marginalized in favor of its longstanding role as an opportunist in the immunocompromised.

However, one of the most persuasive arguments for its impact as a pathobiont is ATM, linked to cancer[1],

dementia [2], CVD [3], AID [4], obesity [5], Covid-19 [6][7], and long Covid [8].

There are three pathways for tryptophan metabolism (see figures 3,5) - indole, a longevity agent

produced by intestinal bacteria (<5%); serotonin, produced by the host (<5%); and kynurenine, production

shared by the host and Candida, driven by indoleamine dioxygenase (IDO) and IFN gamma. IDO is the

rate limiting step in the metabolism of tryptophan along the kynurenine pathway (95%). Candida can

synthesize its own IDO, 31% homologous with human IDO [9].
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Figure 3. This figure proposes a model framework for the interrelationships between pro-inflammatory

cytokines/inflammaging/oxidative stress and the major diseases afflicting humans, mediated by gut

dysbiosis and Candida overgrowth. AhR is aryl hydrocarbon receptor; GLP is glucagon-like peptide; K/T is

kynurenine to tryptophan ratio. Red boxes and arrows indicate unhealthful conditions and inhibition

respectively.

Although some articles restrict the synthesis of IDO to eukaryotes (mammals and fungi), others contest

this and include some bacteria, which may also produce TDO. However, ultimately only mammalian IDO

and fungal IDO show high efficiency for Trp degradation along the kynurenine pathway [10].

The interplay between fungal and mammalian IDO seems to modulate tryptophan, permitting the

benefits of Candida the commensal, while avoiding the dangers of Candida the pathobiont.

Butyrogenic bacteria can down regulate IDO [11] and suppress IFN gamma, TNF-alpha, IL-6, and IL-1 [12],

all of which up-regulate IDO. Candidal IDO and host IDO oppose each other [9] but maintain a balance via

luminal tryptophan between hyphal morphogenesis and bacterial overgrowth [13]
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ATM reflects not only immune function but also neuroendocrine function. This cross linkage can be seen

with cortisol, which responds to stress  [14]. Lactobacilli  [15] and Bifidobacteria  [16]  counts are negatively

associated with cortisol levels. Unsurprisingly elevated cortisol is a risk factor for Candida

overgrowth [17]. Cortisol suppresses gut microbiome diversity [18]. ATM is also associated with decreased

gut biodiversity  [19], which increases risks for AID and dementia  [20]. This incriminates Candida as a

central player in gut dysbiosis, as CO is tightly linked to ATM [19].

Candida Overgrowth and Biofilms

Gut dysbiosis and biofilm formation are linked. Biofilms are seen in irritable bowel syndrome,

inflammatory bowel diseases, gastric cancer, and colorectal cancer  [21], although they are most readily

appreciated in the oral cavity. Candida is integral to the formation of tenacious biofilm structures, either

alone or in mixed species communities [22]. These biofilms, composed of pathobionts, drive periodontitis

aka gingivitis [23].

Unfortunately there is an unrecognized global epidemic of periodontitis [24]. It is a sentinel risk indicator

for cancer, dementia, AID, CVD, and chronic diseases in general [25]. Periodontitis is linked to both CO and

gut dysbiosis. Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola are not only

pathobionts but also the majority of pathogenic bacteria involved in periodontitis [26]. All conspire with

Candida to form biofilms [27]. Porphyromonas gingivalis mediated periodontitis has been linked to CVD,

dementia, and AID  [28]. Periodontitis is also linked with obesity  [29]. The dysbiotic change in the oral

cavity due to periodontitis is linked directly and indirectly to systemic diseases such as IBS,

neurodegenerative diseases, muscle joint diseases, respiratory infections  [30], cancer risks in general,

especially GI cancers  [31], dementia  [32], and CVD  [33]. Periodontitis increases the kynurenine to

tryptophan ratio (K/T)  [34]. Mast cells are biomarkers for periodontitis  [35][36]. Hyphae linked to

periodontitis can activate mast cells [37], which release histamine and tryptase. Hypermobility spectrum

disorder, a genetic connective tissue disorder, is tightly linked to gut dysbiosis and can accompany MCAS

and POTS, often referred to as the trifecta. Elevated tryptase links all three [38]. POTS patients exhibit low

gut biodiversity [39]. Might intestinal dysmotility in hypermobility spectrum disorder [40] predispose CO

and gut dysbiosis?
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III. Candida Overgrowth and Zonulin

Zonulin is a biomarker for increased intestinal permeability and loss of barrier integrity. Yeast

overgrowth is reported in the majority of those with elevated zonulin [41]. Zonulin is elevated in IBS [42]

and celiac disease. The hyphal wall protein (Hwp1), expressed on Candida hyphae, resembles the gluten

protein gliadin (celiac disease) and they exhibit humoral cross-reactivity  [43]. Increased serum zonulin

levels are linked with autism spectrum disorder [44], celiac disease [45], inflammatory bowel disease [46],

especially Crohn’s disease [47], type1 & 2 diabetes [48][49], and insulin resistant obesity [50]. Most of these

AIDs have surged over recent decades (see figure 4). Zonulin mediated AID affects about one in ten and

rates may be rising by 12-19 % annually worldwide [51].

qeios.com doi.org/10.32388/R0NA31.3 7

https://www.qeios.com/
https://doi.org/10.32388/R0NA31.3


Figure 4. This figure from FW Miller [51] demonstrates the rapid escalation of AID, especially SLE, IBD,

psoriasis, multiple sclerosis, rheumatoid arthritis, and celiac disease, over the last half century.

Zonulin also characterizes some cancers. e.g., glioblastoma multiforme (GBM)  [52]  and colorectal

cancer [53], as well as dementia [54], CVD [55], AID [56], obesity [57], severe Covid-19 [52], and long Covid [58].
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All of these entities are also linked to ATM, although there are no reports linking zonulin with ATM, other

than via gut dysbiosis and CO.

As a biomarker for increased intestinal permeability, zonulin raises metabolic risks in the overweight [59].

Weight loss decreases zonulin levels [60]. Not surprisingly Candida overgrowth is more prevalent in the

obese  [61]. Unfortunately the incidence of obesity is increasing at an alarming rate. Fifty years ago only

5% of children were obese. That number is now over 12%. This grows to 22% during adolescence and

40% as adults [62]. Morbid obesity is 10% and growing [63].

Surprisingly estrogen promotes immunoevasion by Candida  [64]. It suppresses the alternative

complement pathway, but upregulates IFN gamma (see figure 2)  [65]. Obesity enhances dysbiosis by

reducing microbiome diversity. It also upregulates the estrobolome, leading to increased systemic

estrogen levels [66], making the relationship between estrogen and obesity bidirectional [67]

IV. Gut Microbiome and the Estrobolome

The estrobolome is a collection of bacteria in the gut that can deconjugate estrogen. Estrogen is normally

metabolized in the liver and excreted as conjugated bilirubin. Certain bacteria associated with gut

dysbiosis can deconjugate this metabolite back to estrogen for intestinal reabsorption. β-glucuronidase is

the enzyme that enables this deconjugation and is a key factor in regulating host estrogen

metabolism [68]

This reabsorbed estrogen represents an excess that can stimulate estrogen receptor (ER) positive cells

and upregulate cancer risks. Estrogen may also compromise intestinal epithelial tight junction integrity

and increase permeability, potentiating AID risk  [69]. This appears to involve zonulin disruption of the

zonula occludens tight junctions. CO is associated with increased β-glucuronidase activity due to

proteolytic activity of its secreted proteases, especially aspartic proteases  [70]  and to that of opposing

bacteria induced by Candida (see figure 5).
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Figure 5. This figure proposes a hypothetical view connecting gut dysbiosis and the estrobolome driving

hormone related cancers. Candida overgrowth may play a prominent role. The neutral gray box containing

pleiotropic IFN-gamma can be either pro- or anti-inflammatory. Red boxes and arrows indicate unhealthful

conditions and inhibition respectively.

Overactivity of bacterial proteases have emerged as crucial players in intestinal diseases  [71]. Gut

microbiota can suppress intestinal proteolytic activity through production of unconjugated bilirubin.

This occurs via microbial β-glucuronidase. Proteases and β-glucuronidase are inverses and modulate

each other [72].

Luminal proteases, e.g., aspartyl proteases, can initiate hyphal morphogenesis. These can arise directly

from Candida albicans  [73]  or indirectly by protease secreting bacteria. Proteolytic bacterial expansion

during colitis amplifies inflammation via host receptor (PAR2) tied to pain [74]. Activation of this receptor

has been linked to IBS and IBD [75], progression of ER positive cancers [76], and AID [77].

Furthermore, candidalysin released by Candida is bactericidal and induces additional proteolytic activity,

which exacerbates this proteolytic milieu [78]. This lowers gut biodiversity, entrenches gut dysbiosis, and
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increases β-glucuronidase activity, upregulating the estrobolome [79]. SARS CoV2 driven host cathepsins

(proteases) and serine proteases from immune cells  [80]  may exacerbate any pre-existing dysbiotic

proteolytic activity due to CO. Indeed CO may drive long Covid [81]

Lactobacillus and Bifidobacterium keep β-glucuronidase levels in check, ensuring a proper balance

between estrogen excretion and reabsorption. Butyrate producing intestinal bacteria, biomarkers for a

healthy gut microbiome, can also reduce β-glucuronidase activity  [82]. β-glucuronidase is a specific

biomarker for colorectal [83] and breast cancer [84], which display ERs, and for pancreatic cancer [85]

ERs are present on non-small cell lung cancer (NSCLC) cells [86], which comprises 85% of all lung cancers.

β-glucuronidase by “breath biopsy” has even been recommended for early detection of lung cancer [87].

ERs are also present on some pancreatic cancer cells [88], endometrial cancer cells [89], and gastric cancer

cells [90]. The vast majority of prostate cancers are AR and/or ER positive [91]. Conjugated androgens are

also secreted by the liver and can be deconjugated by bacterial β-glucuronidase.

These cancers - lung, breast, colon, and pancreas - constitute the top four most lethal cancers and their

incidence and those of gastric, endometrial, and prostate have increased significantly over the past few

decades and are predicted to increase 30% globally from 2019 to 2030 [92]

A 2025 report from the American Cancer Society demonstrated that women under age 50 had an 82%

higher cancer rate than men in the same age group in 2021, up from 51% in 2002.

The increased incidence of breast, ovarian, and endometrial cancer in younger females has become

mainstream. Thyroid, gastric, and pancreatic cancers can be added to this list. There is abundant

circumstantial evidence that links greater ER positivity to all of these, otherwise present in less than 1%

of non-gynecologic cancers. Many of these ER positive cancers are neuroendocrine tumors, e.g.,

carcinoids. Although less frequently encountered than in gynecologic malignancies, ER positivity in

neuroendocrine tumors is an order of magnitude more frequent than in their non-gynecologic

counterparts [93].

Neuroendocrine tumors are primarily gastrointestinal, including the pancreas, and pulmonary in origin.

The relative frequency of neuroendocrine cancers versus that of epithelial cancers in these organs with

increasing cancer rates is not clear.

Establishing a correlation between ER positivity and the cancer epidemic in young women is complex.

For example, there has also been an increase in oral cavity cancers due to HPV and in melanoma,
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frequently over diagnosed. These tumors are rarely ER positive. The increase in thyroid cancers is

predominantly due to the increase in papillary carcinoma, which is not considered a neuroendocrine

tumor. Yet 50% of the tumors are ER positive [94].

On the other hand, ERs are present in GBM [95], which, unlike other brain tumors, may be increasing [96].

According to the French Public Health Agency (2019), the incidence of glioblastoma multiforme increased

fourfold between 1990 and 2015. Similar increases were noted in the US and Australia. The increase in

young adults was noteworthy. The incidence of carcinoids has also increased in recent decades, especially

in women  [97] and Covid-19 may have boosted this. The SARS CoV2 virus enters ACE2 receptor bearing

intestinal epithelial cells. This receptor is integral to absorption of neutral amino acids [98] and their loss

compromises absorption of tryptophan and methionine, two of the eight neutral (nonpolar) essential

amino acids. Loss of tryptophan promotes ATM and loss of methionine down regulates methylation (see

figure 6). According to the CDC, the MTHFR variant allele that dictates this folate cycle rate limiting step

is present in more than 50% of Americans. Methionine synthase (MS) is inhibited by acetaldehyde, a

metabolite of alcohol, produced in abundance by Candida. Methylation is critical to the operation of the

epigenome. Methylation helps prevent DNA mutations and activates many proteins.

Figure 6. MTHFR is methylene tetrahydrofolate reductase from a variant allele, present in 50% of the

population (35% reduction in activity with single allele, 70% with homozygous state), MS is methionine

synthase, inhibited by acetaldehyde, SAMe is S-adenosyl methionine, required for virtually 100% of

methylation needs. Note the importance of Mg and Mg dependent B2,3,6,9,12.
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Elevated levels of β-glucuronidase are linked to the Western diet of processed food, especially high meat

and fat  [99]. A diet high in plant-based foods, particularly complex carbohydrates, and lower in fat and

animal proteins prevents inflammation and positively modulates gut microbiota [100]. Hunter gatherers

exhibit greater gut microbiome diversity compared to those predominantly on a processed fast food type

diet [101].

V. Therapeutic Interventions

As recognized by Hippocrates (400 BC), the gut microbiome and its biodiversity are the primary

determinants of human health.

Avoiding processed/ultra processed foods (low in fiber) and refined carbohydrates is extremely difficult.

Consequently, the most rational approach invokes some degree of supplementation.

Prebiotics, e.g., dietary fiber or supplemental d-mannose, probiotics, e.g., yogurt or other sources rich in

Bifidobacteria and Lactobacilli, and postbiotics, e.g., butyrate, constitute excellent support for a healthy

gut microbiome. Fermented foods (kimchi and sauerkraut) increase microbiome diversity and decrease

markers of inflammation  [102]. Probiotics with lactobacilli and bifidobacteria increase intestinal lactate

and are recommended for possible prevention of and/or survival from breast cancer [103]. L. acidophilus is

especially effective at suppressing CO [104][105]. Lactate producing bacteria crossfeed butyrogenic bacteria.

Butyrate reduces appetite by upregulating glucagon-like peptide 1 (GLP1) [106]. GLP-1 also downregulates

the production of pro-inflammatory cytokines, such as IFN-γ, TNF-α, IL-6, and IL-8, thereby opposing

inflammaging and oxidative stress [12]. The chronic low grade inflammation of gut dysbiosis drives this

pro-inflammatory cytokine production. The consequent increase in ROS creates oxidative stress [107].

Candida and cancer cells (Warburg effect) thrive on sugar. Candida ferments simple sugars to alcohol and

acetaldehyde, toxic to the rate limiting step in the methionine cycle, critical to one carbon metabolism

(methylation). Candida and cancer cells also produce histone deacetylase (HDAC)  [108][109], which

damages DNA/RNA. Butyrate also inhibits HDAC [110] and is a beneficial aryl hydrocarbon receptor (AhR)

ligand that promotes an optimal gut microbiome. Butyrate producing intestinal bacteria, biomarkers for

a healthy gut microbiome, can also reduce β-glucuronidase [82]

Low Mg impedes intestinal biodiversity  [111], promotes oxidative stress and inflammaging  [112], and

increases the pro-inflammatory state  [113]. Mg supplementation reduces these pro-inflammatory

qeios.com doi.org/10.32388/R0NA31.3 13

https://www.qeios.com/
https://doi.org/10.32388/R0NA31.3


cytokines [114]

Increasing B vitamins that require Mg dependent activation is an antifungal strategy  [115]. These B

vitamins include Mg dependent phosphorylation for B1,2,3,5,6 and Mg dependent methylation for B9,12.

Bacteria and Candida compete for luminal Mg. Candida overgrowth can deplete ingested Mg, making less

available for the host. Lower levels of Mg dependent B5 are associated with a higher preference for

sugar  [116]. Mg dependent B5 dependent acetate CoA-transferase is the final enzyme required for the

synthesis of butyrate by gut bacteria [117].

D3 is the primary supplemental form for vitamin D. Most of the benefits of vitamin flow through its Mg

dependent active form 1,25(OH)2D. However, luminal D3  [118] and tryptophan  [9]  inhibit Candida hyphal

morphogenesis and glutamine can prevent acetaldehyde induced damage to intestinal barrier

integrity  [119]. Physical exercise enhances biodiversity  [120]  and associated increases in lactate provide

food for butyrogenic bacteria [121].

Antibiotics indiscriminately eliminate gut microbiota, lowering biodiversity. The microbiome is

established early in life [122]. The use of antibiotics in children under one is rising [123] and this is linked to

greater risk for obesity [124][125], gut dysbiosis [126] and inflammatory bowel disease [127].

Candida is resistant to most broad spectrum antibiotics and their use eliminates many beneficial enteric

bacteria, e.g., lactobacilli. This creates a vacuum that Candida can fill. Peptidoglycan subunits released by

bacteria upon antibiotic treatment can promote C. albicans dissemination from the intestine [128]. Broad

spectrum antibiotics also enhance Candida biofilm formation and dissemination [129]

VI. Conclusion

Levels of circulating estrogen depend on a balanced gut microbiome. Estrogen facilitates immunoevasion

by Candida. Candida upregulates intestinal proteolytic activity and activates PAR2, linked to progression

of ER positive cancers and autoimmunity. This increase in proteolytic activity is opposed by microbial β-

glucuronidase, which deconjugates bilirubin. This enzyme is a biomarker for increased estrobolome

activity. Sustained elevation of estrogen is linked to many hormone dependent cancers, e.g., breast

cancer, colorectal cancer, and AID in the young and dementia in the elderly. Not all ER positive cancers are

gynecologic, e.g., papillary thyroid carcinoma, GBM.
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CO driven gut dysbiosis and low biodiversity upregulate the estrobolome, increase intestinal

permeability, alter tryptophan metabolism, and facilitate biofilm formation. Candida overgrowth is

linked not only to ATM but also to zonulin and oral biofilms (periodontitis). These in turn share linkages

with cancer/dementia/CVD/AID/infectious disease/obesity. However, associations do not prove causation,

although the implications are enticing. Nonetheless, there is circumstantial evidence that the growing

role of refined carbohydrates and low fiber in the western diet may contribute to the epidemic of cancer

and autoimmune disease in young women, dementia, and obesity. Gut dysbiosis of bacterial origin, e.g.,

small intestine bacterial overgrowth (SIBO) without concomitant small intestine fungal overgrowth

(SIFO) and absent antibiotic therapy, does not appear to target females. Candida does, possibly linking

Candida overgrowth and its estrogen enabled immuno-evasion to this epidemic.

There are many intersecting pathophysiologic pathways and discerning a pattern is difficult. Accordingly,

the views discussed are speculative and subject to more definitive clinical correlation.
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