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Abstract. Using one result of general relativity, namely the finiteness of the speed of gravity, it is
considered how the finiteness of this speed can change behavior of two-body system, for example, wide
binary stars. For such a system, when bodies move in circular orbits, one property of these orbits
makes it possible to calculate the exact positions of the bodies at retarded time and, therefore, the
forces acting on the bodies at the present instant, but taking into account the effect of gravitational
retardation, namely, that these forces were created by sources located in retarded positions.

For Keplerian orbits, the effect of the gravitational retardation leads to an increase in the angular
momentum of the two-body system. As applied to binary stars, the increase in the angular momentum
over time can explain a disruption of wide binary stars into two single ones.

This effect has not previously been described in the scientific literature.

1. Introduction

Let us consider one aspect of the two-body problem, namely, how the Keplerian solution for this
system changes if interaction between the bodies propagates at a finite speed. A similar problem
is well known in astronomy, it is the problem of binary stars. When the stars rotate around each
other, their average linear velocity is not small (average velocity of stars of pulsar PSR B1913+16 is
estimated at 2 · 105 meters per sec.). Thus, it would be reasonable to expect that the effects caused
by the finiteness of the speed of gravity are taken into account when calculating the motion of such
stars, especially, calculating the periastron shift. However, the retardation effects, when a source of
gravitation force acting on the star is not in the instant position of the source but in its retarded
position, is not considered in the general relativity. Instead, when considering many-body system,
the Lagrangian is expanded in series over the parameters vi/c, where c is the speed of gravity and
vi the linear velocities of massive bodies of the system. This expansion is obtained in original paper
of Einstein, Infeld and Hoffmann, 1938. More detailed and scrupulous derivation of this expansion is
given in the textbook of Fock [1]. With this approach, the coordinates of retarded positions of massive
bodies are not included in the equations of motion.

A factor of the speed of gravity finiteness gives one effect that affects the motion of cosmic bodies.
If the velocity of a moving massive body creating some gravitational field is comparable to the speed
of gravity, then this leads to the so-called ”gravitational force aberration”, since the gravitational
force acting on the test body is directed not from the current location of this moving massive body,
but from its retarded location. Some discussion of ”gravitational force aberration” appeared after
work of Van Flandern [2], who stated that a possible aberration or transformation of the Newtonian
gravitational force of the central type into a non-central type should ensure the instability of the solar
system. This paradox was resolved by Carlip [3]. Meanwhile, all the authors who were involved in this
discussion analyzed only the forms of the gravitational potential, but not the effect of the retarded
position of the source of this potential. The latter is caused by impossibility to determine the exact
position of a massive body at a retarded time tr, since this requires solving the transcendental equation
for this quantity. However, if two bodies revolve in perfect circular orbits, it is possible to find the
exact position of these bodies in their orbits. In this paper, we will analyze how the retardation effect
changes the motion of bodies in the two-body problem.

In order to separate the influence of retardation on motion of binary stars from other effects, it
is advisable to consider behavior of a two-body system in pseudo-Newtonian model, i.e. when the
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metric of the space is flat but the speed of the gravitational interaction propagation is finite and equal
to the speed of light [4]. Since the Einstein field equations are non-linear there is no general, analytic
solution of them available and one has to rely on approximative methods or simple solutions [5]. So
to obtain the most precise solution of two-body problem, post-Newtonian approximation is used.

As will be shown below, the effect of retardation on the motion of binary stars is of the order of
v/c or c−1 so the terms of order c−2 in Lagrangian can be omitted in post-Newtonian approximation.
But up to v/c the Lagrangians of Newtonian gravity and of post-Newtonian approximation of general
relativity coincide. A similar model is also used in [6].

It is necessary to clarify one aspect of the problem considered. Both in classical electrodynamics -
the Darwinian approximation, and in the theory of gravitation - the post-Newtonian approximation
- all expansions of quantities in powers of c−1 begin with terms of order (v/c)2 (excluding the zero
term in c−1). In the presented consideration of the problem, the expansion of force factors begins with
terms of order (v/c). This is a significant difference from other expansions. The appearance of a term
of order (v/c) is due to the fact that the exact position of gravitating bodies at retarded moments of
time will be determined.

Also, the use of the flat metric makes it possible to avoid cumbersome calculations caused by
gravitational space curvature and to estimate only effect of the finiteness of the speed of gravity.
For such an estimation, it is necessary to determine retarded positions of bodies depending on the
observation time. Let us do that in the next section.

2. Determination of retarded position of the bodies in their orbits

It should be noted that any factor caused by the effect of gravitational retardation cannot be greater
v′/c, where v′ is the average velocity of the moving bodies. Because for cosmic bodies this ratio is less
0.001 (Sec. I), a force caused by retardation should be treated as perturbation in this system. It allows
to consider the effects of retardation as corrections of order of small parameter v′/c to unperturbed
motion of rotating bodies.

Therefore, as first step in analyzing the problem it should be considered a behavior of the system
when the retardation effects are absent. For this purpose, let us consider the classical problem of two
bodies, heavy and light, with masses mh and ml orbiting each other under the force of gravity. The
indexes ‘h’ and ‘l’ correspond to the heavy and light bodies. The Lagrangian of this system is

L =
1

2
mhṙ

2
h +

1

2
mlṙ

2
l − γ

mhml

|rh + rl|
, (1)

where |rh + rl| is the distance between bodies that is much greater the sizes of the bodies so that the
latter can be considered as concentrated at two points. γ is the gravitational constant. Equations of
motion of these bodies are

mh
d2rh
dt2

− γ
mhml(rh + rl)

|rh + rl|3
= 0 ;

ml
d2rl
dt2

− γ
mhml(rh + rl)

|rh + rl|3
= 0 . (2)

It is known that both bodies rotate around the common center O of their orbits in such a way
that at any instant the bodies are being in opposite (each other) points of the orbits, and therefore,
|rh + rl| = rh + rl = r.

By introducing,

rh =
ml

mh +ml
r ; rl =

mh

mh +ml
r ,
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the equations of motion, Eqs (2) are reduced to

mh
d2rh
dt2

− γ
mhml

rh + rl
= 0 → mhml

mh +ml

d2r

dt2
− γ

mhml

r2
= 0 →

d2r

dt2
− γ

mh +ml

r2
= 0 ,

ml
d2rl
dt2

− γ
mhml

rh + rl
= 0 → mhml

mh +ml

d2r

dt2
− γ

mhml

r2
= 0 →

d2r

dt2
− γ

mh +ml

r2
= 0 . (3)

One can see from Eqs. (3) that both equations of motion of the massive bodies are reduced to one
equation. Thus, a solution of the same form describes the motion of bodies in two-body system.
Physically it means that the bodies move in similar orbits.

Solution of Eq. (3) describes the motion of a fictitious body along a circular orbit, as well along
any Keplerian orbit [7]. For simplicity, let us assume that an orbit of the fictitious body is perfect
circle (the outer orbit in Fig. 1). Then the heavy body moves along the inner (purple) orbit and the
light body moves along the intermediate (red) orbit in such a way that the heavy and light bodies are
always being in opposite points to each other one other points relative to the center O of the orbits.
Let us assume that the fictitious body is always opposite the light body, but in an outer orbit. If
at the moment t = 0 the bodies are at the points A (heavy body), B (light body) and C (fictitious
body), then one geometric property of the ideal circle allows one to determine the positions of the
bodies at some retarded time t′. Suppose that the fictitious body has a velocity v and at t′ it is at
the point C ′. Also assuming that this body emits a light signal in the direction p. O and when this
signal approaches the center of the orbits, the fictitious body will be at the point C. Since the times
of passage of the light signal and motion of the fictitious body are equal, one can write

r

c
=

ℓCC′

v
→ ℓCC′

r
=

v

c
,

where r is the radius of the external orbit and ℓCC′ the length of the arc CC ′. Since the angle (in
radians) ∠COC ′ is determined as a ratio of the length of the arc to the radius of the circle, if one
knows the ratio v/c one is able to determine the exact position of the body at the retarded time
tret = r/c, it is at the crossing the circle and the ray drawn from p. O under the angle α = v/c.

Correspondingly the retarded positions of the heavy and light bodies are exactly determined. Since

α =
v

r
=

vh
rh

=
vl
rl

,

one has
ℓAA′ = rh · α ; ℓBB′ = rl · α .

Now let us calculate the force as a gradient of the gravitational potential. According to Jefimenko, a
factor of finiteness of c gives ’effective prolongation’ of the volume of moving massive body creating the
gravitational potential (Eq. (4-1.8) of [4]). Therefore, Newtonian gravitational potential VN changes
to

VN (r) =
γmM

r
→ V (rr) =

γmM

rr −
vr · rr

c

,

where m the mass of the test particle, M the mass of the massive body, and vr is its velocity calculated
at the retarded time. Therefore rr is the distance between the retarded position of the body and the
point of the test particle location. Since for the circular orbit v⊥r and (v ·r) = 0, one is able to use the
form of the potential ’at rest’, V (rr) = (γmM)/rr, with the only difference, namely the distance rr is
the distance between the retarded position of the body creating the potential V (rr) and the present
position of the body experiencing the action of this potential. So when the heavy body, being at the
retarded position, p.A′, creates some potential, a ’wave’ of this potential reaches the light body when
the latter is at p.B. Since the gravitational force acts along the line B′A one finds that due to the
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Figure 1. Positions of the rotating bodies at the present and retarded times.

effect of retardation, the gravitational force is now not of central type. Despite both bodies continue to
rotate around the common center of the orbits, a small tangential component appears in the system.
A presence of this tangential component changes properties of two-body system. Let us consider this
change. First, it is necessary to determine the radial and tangential components of the gravitational
force acting along the line AB′ (A is the present position of the heavy body, B the regarded position
of the light body), and the line A′B.

The distances |AB′| and |AB| are

|AB′| =
√
(rh + rl cosα)2 + r2l sin

2 α ≈ (rh + rl)−
rhrl

2(rh + rl)
α2 ,

|A′B| =
√
(rl + rh cosα)2 + r2h sin

2 α ≈ (rh + rl)−
rhrl

2(rh + rl)
α2 .

In the first order of α these distances are equal to r. Then the forces acting between the bodies are

Fl→h = γ
mhml

|AB′|2
nAB′ ; Fh→l = γ

mhml

|A′B|2
nA′B .

where Fl→h is the attractive gravitational force acting by the light body to the heavy one (and wise
verca for Fh→l), nAB′ . nA′B are the unit vectors along these lines. With accuracy to α, the radial
components of the forces are

Fr,l→h = γ
mhml

|AB|2
= γ

mhml

r2
; Fr,h→l = γ

mhml

|AB|2
= γ

mhml

r2
.
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But different tangential components act on the heavy and light bodies,

Fθ,l→h = γ
mhml

r2
· sin∠BAB′ ≈ γ

mhml

r2
vrl
cr

= αγ
mhml

r2
mh

mh +ml
,

Fθ,h→l = γ
mhml

r2
· sin∠A′BA ≈ γ

mhml

r2
vrh
cr

= αγ
mhml

r2
ml

mh +ml
. (4)

The equations of motion for the bodies are now

mh
d2rh
dt2

− γ
mhmlnr

r2
− γα

mhmlnθ

r2
mh

mh +ml
= 0 →

d2r

dt2
− γ

(mh +ml)nr

r2
− γα

mhnθ

r2
= 0 ,

ml
d2rl
dt2

− γ
mhmlnr

r2
− γα

mhmlnθ

r2
ml

mh +ml
= 0 →

d2r

dt2
− γ

(mh +ml)nr

r2
− γα

mlnθ

r2
= 0 . (5)

It can be seen from Eqs. (5) that - in contrast to the classical two-body problem - changing the
coordinates Eq. (2) does not reduce the equations of motion to identical form. This means that there
may be no similarity of orbits. Moreover, according to Eq. (4) non-zero internal force

∆F = Fθ,l→h − Fθ,h→l = αγ
mhml

r2
mh −ml

mh +ml
, (6)

appears in the closed two-body system which contradicts the law of the total momentum conserva-
tion. In this connection, it is appropriate to note that similar example in classical electrodynamics
is analyzed by McDonald [8] who shows that nonzero internal force due to asymmetry of the electro-
magnetic interaction gives very small oscillations of the center-of-mass of the system but does not give
’perpetual motion’.

To avoid consideration of such possible small oscillations of the center-of-mass of two-body system,
let us assume mh = ml for further analysis. This assumption yields identical form for equations of
motion of both bodies,

d2r

dt2
− µnr

r2
− α

µnθ

2r2
= 0 , (7)

where µ = γ(mh +ml).
Up to the first order α = v/c, this equation, written separately for the radial and tangential

components, has the form

d2r

dt2
− r

(
dθ

dt

)2

= − µ

r2
; (8)

r
d2θ

dt2
+ 2

dr

dt

dθ

dt
=

µα

2r2
. (9)

Using θ̇ = ω the above system can be written as

d2r

dt2
− rω2 = − µ

r2
; (10)

r
dω

dt
+ 2ω

dr

dt
=

µα

2r2
. (11)

By introducing new unknown, L = r2ω, Eq. (11) becomes,

1

r

dr2ω

dt
=

µα

2r2
→ dL

dt
=

µα

2r
. (12)

A system of equations similar to Eqs. (10) and (11) had been actively investigated in celestial me-
chanics. It was found (including experimentally) that the most effective transfer of a spacecraft from
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one planet of the solar system to another planet is carried out by applying a small tangential (to the
circumplanetary orbit of the spacecraft) force to the apparatus [9, 10].

The presence of the small parameter α means that a thrust in tangential direction is very low and
if the zero approximation (α = 0) correspond to the circular orbit, a very low thrust gives the spiral
orbit of low pitch.

It should be noted that a problem of the body motion in a near-circular orbit due to a small
tangential force parallel to the linear velocity vector of the body has a very close analogue with so the
called ’Satellite paradox’ [11]. In this paradox, the satellite falls to the Earth due to the drag force
created by the friction of the satellite’s surface in very rarefied air at high altitudes. Despite the drag
force acts opposite to the velocity vo, the latter increases. This is due to the fact that the prevail
condition for the motion of the satellite is the equality of the centrifugal force to the gravitational
force [11],

msatv
2
o

r
= γ

msatM

r2
,

where r is the radius of the orbit, msat is the mass of the satellite and M the mass of the Earth. So
when r decreases (the satellite falls), vo increases.

Since the tangential force per mass of the rotating body Fθ =
µα

2r2
acts in opposite direction to

the drag force in the satellite paradox, one can expect that in the considered system the velocity of
rotating bodies will decrease but the distance between them increases. Let us assume that the linear
velocity decreases with time as v(t) = v0 − Cαt, where v0 is the linear velocity of the fictitious body
in the orbit at t = 0, C is some dimensional constant (meter/sec2), which will be determined below.
Then from the condition to the instantaneous equilibrium for the fictitious body

ar =
v(t)2

r(t)
=

µ

r(t)2
→ [v0 − Cαt]2

r(t)
=

µ

r(t)2
, (13)

where ar is denoted as a radial (centrifugal) component of the body acceleration.
One can find the time dependence of the radius–vector r(t) on time from the above equation

r(t) =
µ

[v0 − Cαt]2
, (14)

Let us find the expression for the angular momentum using Eq. (14),

L(t) = r(t)v(t) =
µ

[v0 − Cαt]
, (15)

This expression will be used to determine C from Eq. (7). Since α is small parameter, let us expand
L(t) in series over α,

L(t) ≈ µ

v0
+

µCαt

v20
→ dL

dt
≈ µCα

v20
.

Inserting it to Eq. (7), one obtains

µCα

v20
=

µα

r(t)
.

In the zeroth order over α, r(t) ≈ µ/v20. Then

µCα

v20
=

µv20α

µ
→ C =

v40
µ

. (16)

The value of this parameter is small. For example, for the system ’the Sum – the Earth’, C ≈ 0.012.
Now let us find equation of the body trajectory. Its angular speed is

ω =
v(t)

r(t)
=

[v0 − Cαt]3

µ
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and, therefore, the angle θ(t)

θ =

t∫
0

[v0 − Cαt]3

µ
dt =

v30
µ
t− 3Cv20

2µ
αt2 +

C2v0
µ

α2t4 − C3

4µ
α3t4 .

With accuracy to α1 terms,

θ =
v30
µ
t− 3Cv20

2µ
αt2 . (17)

Expressing the time variable via the angle from the above equation and inserting to Eq. (14), one
obtains the equation of the body trajectory

r(θ) =
9µv20(

2v20 +
√
v40 − 6Cµαθ

)2 =
µ

v20

9

(2 +
√
1− 6αθ)2

.

Since r(t = 0) = r0 = µ/v20, the equation of the trajectory is

r(t) =
9[

2 +
√
1− 6αθ(t)

]2 r0 . (18)

Because of increase of θ, the radii of the of the orbits and therefore the distance between the bodies
increates with time. But Eq. (18) correctly describes behavior of the bodies only for 6αθ(t) ≪ 1.

3. Conclusions

In this work, it is considered how retardation of a gravitational force affects the behavior of two-body
system. This effect can be estimated because, due to one property of a circular orbit, the retarded
positions of rotating bodies are exactly determined.

It is shown that retardation of the gravitational interaction gives tangential component of the grav-
itational force and since the bodies when rotating always move in opposite directions, the tangential
component leads to acceleration of the bodies so their circular orbits should be transformed into spiral
orbits with a very small pitch (Eqs. (17) and (18)).

When the bodies move in spiral orbits, the angular momenta of these bodies increase. Formally, this
contradicts one of the basic principles of classical mechanics - Noether’s principle. The gravitational
force, in Newton’s interpretation, is conservative and the interaction of bodies in a closed system by
means of this force cannot give any change in the system parameters defined by spatial symmetry,
including the angular momentum. However, gravitation interaction propagates with finite speed equal
to the speed of light. Therefore, the gravitational force is a retarded force. Noether’s theorem is
formulated for forces of instantaneous type. Thus, the fact that the angular momentum of the system
increases due to the retarded force does not contradict Noether’s theorem.

The effect of such an increasing angular momentum can explain one aspect of the evolution of binary
stars. According to Raghavan and co-authors [12], the overall observed fractions of single, double,
triple, and higher order systems are 56%±2%, 33%±2%, 8%±1%, and 3±1%, respectively, counting
all confirmed stellar and brown dwarf companions. So the number of stars forming two-body systems
is greater than the number of single stars (33%× 2 > 56%). Meanwhile, there is an assumption (not
confirmed reliably) that at an early stage of star formation, these cosmic bodies form many-body
systems of double, triple etc. stars. Single stars are formed during the evolution of wide binary stars,
when the latter are disrupted into two single stars [13]. One of factors which can provide disruption
of wide binary stars into two single ones is an increase in the angular momentum of these stars by
analogue with Eq. (15). For the evolution of wide binary stars, this mechanism can be dominant
since it is of order of v/c in contrast to the mechanism of energy dissipation due to radiation of the
gravitational waves that is of order of (v/c)5.
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However, the effect of increasing the angular momentum of typical binary stars is quite small and can
be detected over large periods of time - several centuries. Therefore, this effect cannot be determined
by direct observation of stars, but only by the statistics of the distribution of single and double stars.

Regarding ’aberration of the gravitational force’, it should be noted that in the stationary mode
of two-body rotation, this aberration cannot be detected experimentally for the bodies of the solar
system since velocities of any body in this system are too small comparatively to the speed of gravity
and the mass of the Sun is much greater the mass of the planets. Therefore, motion of the planets is
like a motion of bodies around a very massive body fixed in space and retardation can be neglected
when considering behavior of planets in the solar system [14].

In addition, consideration of this problem provides a fascinating example of unusual behavior of a
mechanical system if parts of this system are connected by a retarded interaction. To the author’s
knowledge, consideration of similar example is absent in scientific literature.
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