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Some operational matrices are given for these polynomials and are also used to obtain the numerical solution. By this

approach, the problem is transformed into a nonlinear algebraic system. Convergence analysis is given, and some
experimental tests are studied to examine the good accuracy of the numerical algorithm. The proposed technique is
compared with some other well-known methods.
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1. Introduction

Various approximations by orthonormal families of functions have been
investigated in the physical sciences, engineering, etc. This type of
numerical approximation can also be used in optimal control problems and,
in general, to approximate solutions of dynamical systems. Integral
equations arise in many physical problems, diffusion problems, concrete
problems of physics and mechanics, and some other problems of
engineering, different applications of potential theory, synthesis problems,
mathematical modelling of economics, population, geophysics, antennas,
genetics, communication theory, radiation problems concerning the
transport of particles, etc 2IBUABIONT] There are various problems such
as differential, integral, and partial integro-differential equations which use
polynomial series and orthogonal functions to approximate their numerical
solutions [BIIIONMII2I[3][14] Spectral methods are methods based on
polynomial approximation; we can see that the convergence of the
approximations is exponential when the functions to be approximated are
analytic, which means that the order of convergence is limited by the choice
of the regularity of the exact solution. In many scientific fields, systems are
described by partial differential equations (PDE). In 151 Fakha et al. used the
Legendre collocation technique for solving parabolic PDEs. Radial basis
functions are also used for the approximate solutions of nonlinear parabolic
type Volterra partial integro-differential equations 4] 1 6] Brunner et al.
studied the numerical solution of parabolic Volterra integro-differential
equations on unbounded spatial domains. For more applications, we can
see I7II8I91 A method based on the Hermite-Taylor matrix to solve partial
integro-differential equations is given in [2. A matrix method for solving
two-dimensional time-dependent diffusion equations is given by Zogheib
et al. 29 1n 2] the author presented a new technique by using the
Bernoulli operational matrix to solve SDEs. In this article, we use a pseudo-
spectral method based on orthonormal Bernoulli polynomials to
approximate the following PIDEs

t
Ug(E,t) + Aluzz(zvt) = /\2/ Kl(zvtu s,’u(l?,s))ds + A3 (1)
0

T
/ Ks(z,t,s,u(, 5))ds + g(z,t),
0

with initial and boundary conditions
u(z,0) = ho(z), u(0,t) = hy(t), u(b,t) = hy(t), 2

where z € [0,b],¢ € [0,T], A1, A2 and )3 are constants, and the functions
9(z,t), ki (z,t, s,u) and ky (z, ¢, s, u) are supposed to be sufficiently smooth
onT :=[0,b] x [0,T] and D where D := {(z,t,s) : z € [0,b],s,t € [0,T]}.
The existence and uniqueness of equation (1) are given in 21

To approximate the integrals appearing in (1), we use the Gauss Legendre
quadrature on the interval [—1, 1] given by
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1 T
[ f@de =Y wif(z) ®)
- =
2
where z; are the roots of L,;i(z) and w; = —
(1= 2L ()]
j=0,1,...,r. For Gauss Legendre quadrature on [a, b], we have
b o B
/ f(w)dr:b2aijf(b2azj+b;“>. (4)
a =0

2. Orthonormal Bernoulli
approximation

polynomials and

The Bernoulli polynomials B, (z), are given in [221 3nq satisfy the following
relation

Z("“)Bk(z):(nﬂ)z", n=0,1,....
=\ kK

The Bernoulli polynomials form a complete basis over the interval [0, 1]@.
In this paper, we use the shifted OBPs P; r(t) and P;(z) over (0,7 and
[0, d] as follows

i (G (L)1)« o
—0,1,...
Bnp(-) = (Pos(-)s Pro(-)s -, Pup () (6)

contains the first N + 1 orthonormal Bernoulli polynomials. Any function
u € L2(0,b] has a best approximation ¢ € span {®y (. )} such that

Vv € span{®y; ()}, lu—al < [lu—v],
and

N
u@) i =Y wPy(z) = U % n(z), (7)
i=0

where U = (ug, u1,us,...,uy)’,and u; can be computed by the formula

b
o = / w(@)Piy(a)dz, i = 0,1,...,N. ®)
0

Any function u(z,t) defined over [0,b] x [0,T] can be approximated by
shifted OBPs as follows:

unm(@,t) = ZZuin,b(z)Pj,T(t) =&y (a) Ul (), (9)

N M
i=0 j=0

where U = [u;;] is a matrix of order (N + 1) x (M + 1) with
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b T
iy = / / w(@)Pr1y(2) Py (@)dtde, i = 1,2,...N  (10)
0 0

+1,7=1,2,...,M+1.

3. Pseudo-spectral method for Solving PIDE

In this section, we describe our numerical technique t to solve PIDEs (1). Let
the solution of (1) be approximated by the polynomial uy, s (z, t) such that

N M
unpr(@,t) = D> uiiPip() Pir(t) = By (2) UBrar(t).  (11)

i=0 j=0

In this work, we take N = M. It is easy to approximate the derivatives of the
approximate solution of (1). In view of (11), one can write

d N U 9
E[UN,M(zyt)] = ;;uuﬂ,b(w)a [Pir(t)] (12)
= 0 () U [Br (1),
2 N M
(@8] = 3> ue s Pa@IPr @) (1)

Now we give some relations for the derivatives of the shifted OBPs. We use a
technique used by various researchers for solving different kinds of integral

equations 1212411251 7 et given the vector defined in (6), we can write

Oy N (z) = TN O N (), (14)

where
Uy (z) = [1,2,2%,...,a" 2", (15)

with T, y being a lower triangular square matrix of order N + 1 with
entries

0 0 0 0 0
0 0 0 0 0
B3-1)(3-2) 0 0 0 0
_ 1} 4-1)(4-2) 0 0 0
0 0
0 0
(N-1)(N-2) 0
0 N(N-1)
Then, we get
P N M
e [un,m(,1)] Z ZUHP [Pjr(t)] (18)
i=0 j=0
= *Pb,N(z)TUE[‘PT,M(t)]
= ®yn (2) UTrpr An Ty @ (2),
and
2 N M
ﬁ[uNyM(w t)] ZZ 1]3 3 [P1 s(2)] [Py (t)] (19)
i=0 j=0
92
— @5 ()] U[@7,1 (1))
= o2
= [Thn AR T, ®on ()] U@ (1))
Thus, by substituting (18) and (19) into equation (1) we get
t
Qb,N (z)TUTT,MAJVITITJ}JQT,JW (t) = )\2 /[; kl (.’E, t, 8, u(z, s))ds

+ A\ [Tb,NA}va:;&v(bb,N(x)]TU[QT,M(t)]]
T
+ )\2/ ky(z,t,s,u(z, s))ds
0

with z € [0,b] and ¢ € [0,T], We collocate equation (20) at points ¢;,

i—j gL (i-1)(i+j-2\ .~ -
[Tyxl, = )=V =D ()5, ifixg, j=0,1,...,r; which are the Gauss-Legendre noeuds on the interval
e 0, ifi < j. [0, T defined by (3), then we obtain
The matrix T;, y is invertible. From equation (14), we have r . t;
@, (2) UTr i A Ty pr B0 (t5) = Az/ Ky (z,tj,8,u(z, s)
[7] [7] 0
B 2o (2) =T o ¥ (z) = Tow A (o) (1) 0 Do AT, @)U 1)
= Tb,NANTbT]\II‘}b,N(w)y T
+ )\3/ Ky (z,tj,s,u(z, s)
where Ay is a square matrix of order N + 1 given by 0
000 .. 0 0 0 0 The integrals appeared in equation (21) are approximated by using Gauss-
100 0 0 0 0 Legendre quadrature as follows
0 20 0 0 0 0 t; 1
0 0 3 0 0o 0 o / Ki(z,t,5,u(z,8))ds = Y BuKa (2, t, b, ulm, k), (22)
Ay = , 0 k=0
0 0 0 0
ti+t; t;
N-2 0 00 wherel,c:—]+]z’C and g, =—F L k=0,1,2,...,7.
0 N—-1 0 0 2 (= @) (L, 1y (21))?
0 0 N 0 are Gauss Legendre nodes and weight on [0, ¢,].
and r 2
Ky (z,tj,s,u(z,s))ds = Zkag(m,tj,sk,u(m,sk)), (23)
0 —
i i =
— T )4 T, N AL T 17
gz 2oV (@) =Ton oo Wn(2) = Thn Ay ¥ (2) (17) T4 Ta, T
where S§p = ———— and wp = —mm—— —
= Tb NA ‘bbN(z) 2 (1 - zk)Z[Llr2+1 (ﬁk)]z
- . . k=0,1,2,...,r, are nodes and weight of Gauss Legendre quadrature on
where Ay is a square matrix of order N + 1 given by [0, T'). Substituting equations (22) and (23) in equation (21) we get
&y () UTr0 Anr Ty ®ra ()
+ X1 [T AR T @ (@) U@ (4)]] =
1
E ﬁkKl(zv tj? lk7 u(zv lk))
k=0
geios.com doi.org/10.32388/R4546K.2 2
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Ty
+)wrKo (2,5, s, u(@s 58)) + 9 1;)-
=)
Let RES(x,t;) the residual function given by

RES(2,t;) = ®,n(2)" UTrp Au Ty 3, P (t) (24)

+ A [[Tb,NA}VTb}\l,‘Pb,N(m)]TU[‘I’T,M (t])]]

T
=X ZﬂkKl(zvtjalk:u(zylk)) -
=0

T2
3wk (@t sk ulz, 51)) — gla, ) = 0.
k=0

Using relation (9) and the initial and boundary conditions given in (6), we
get

@byN(w)TU':I)T,M(O) - ho(i) = 07
Sy v (0)"URT(t) — ha(t) =0
4 n ()T U7 (t) — ho(t) = 0.
Now, we extract the below (N + 1) x (M + 1) algebraic system

RES(s;tj)) =0,2<i<N,2<j<M+1,

@byN(I)TUQT,M(O) - ho(si) =0,1<i<N+1,
By n (0)TUBD () —ha(t) =0,2<j< M+1
O, N (0)TURT M (t) — ha(t;) =0,2< j< M +1,

where s; = are respectively the nodes of Gauss-

: T+ Tz,
b+2b£l?, andtj: +Tz;

Legendre quadrature on [0, b] and [0, T'], with z; as the corresponding nodes
on[-1,1].

4. Error bound of the present method

In 2681 the error estimates for some orthogonal systems are given in the
norms of the Sobolev spaces H*(f), with Q = I¢ c R? and T being a
bounded open interval of R. In this section, we consider orthogonal
approximations in multiple dimensions. Let k= (ki,ks;...,kq),

L GL
k| = Z?:1 k;, k; be any non-negative integers, and 95® = kiuk For
Oy ... 0t
1 > 0, we define the Sobolev space

H*(Q) = {3, 08® € L’(), 0 < [K] < p}, (25)
with the norm
d 2
k,
CTED S | (HD/)@ daz, (26)
KeN ky +hy+. . kg<p 2 \j=1

where D; = % If {®;}3°, is the system of orthonormal in L*(I) with
z\7 B

deg®; =k then the system {®i}, ya, where ®;(z) = [}, &) (zV) is

complete and orthonormal in L?(Q) and any u € L*(Q) is as follows

u = Z uk@k, up = (u, ‘I>)C>, (27)
keN?
with |[u]|2 = 3, e [us]*. Setting,
Sy = Sn(Q) = {span}{®; : k € N, max(k) < N}, (28)

Sy is the set of all polynomials of degree at most N in each variable

z0, j=1,...,d. Let Py : L*(Q) — Sy be the orthogonal projection on

Sy in L(Q).

Theorem 1. 28l For any real 11 > 0, there exists a constant C such that
v = Prullo < ON7*lully, Yu € H*(Q). (29)

For the error estimation of u — Py in the Sobolev space, we need the
following lemmas.

Lemma 1. 1261 For any real pu and 7 such that 0 < r < p, there exists a constant
C such that

geios.com

[ull, < CN*C)[ull,, Yu € Sy. (30)

Lemma 2. For the two real r and p with 0 < r < u — 1 there exists a constant
Csuchthatforj=1,...,d

(PvD; — D;Py)ul, < CNO =32 |y, Yu € H*(Q).  (31)
The following theorems give the error estimation of the approximation of

Theorem 2. For the two real p and r with 0 < r < u, we can get a constant
C such that

l[u = Pyull, < CNUH ul,, Yu € H* (), (32)
where
- >
e(r,y):{2r n—1/2, r>1
3r/2—p, 0<r<1

Proof 1. For r = 0, 32 reduces to 29. Now suppose that 32 holds for any integer
r < m — 1 by inductive hypothesis. Then

d
l[u = Prullm <D [Dju — DjPxullm-1
j=1

j=

d d
< Z Dju— PyDjullm1 + Z |PvDju — DiPyullm-1,
= =

by taking the inductive hypothesis for D; € H#~! and by using 31, we get

d
llu = Prullm < O'N"=17D S I Djul| oy + "N [l
=1

llyss
we have e(m — 1, u — 1) < e(m, p), then we get the result 32.

Theorem 3. Suppose that u(z,t) € H*(Q) and u(z,t) € H*(Q) with
u > 0 be the exact and the numerical solution of equation (1), respectively. Also,
suppose K and K, satisfy the following uniform Lipschitz conditions

[K1(z,t,8,u1) — Ki(2,t,8,u2)| < lur — ual,
Ko (z,t,8,u1) — Ko (z,t,8,uz)| < la|ur — upl.

(33)

Then, for any real ¢, and r such that 0 < r < y the error bound E); of the present
method is given by

1 EN [l ey (34)
< [(€+MO)NEH32 4 (g + 12 ) eN U | v,
where

r>1

(rp) = 2r —p—1/2,
anm = 0<r<1.

3r/2 — u,
Proof 2. Using equation 1, we get
[lue (2, t) + Muge (2, t)

¢ T
7)\2/ Kl(w,t,s,u(z,s))dsf)\g/ K(z,t,s,u
0 0

BNl o) =

_ (ﬁt(x,t) + Aittae (2, 1)

¢ T
— )\2/ K (z,t,s,u(z,s))ds — )\3/ Ks(z,t,s,u(z,s
0 0

e () — @ (2, 8)] (@) + Mlltae (@) = Uaz|| i)

/\2\|/Ot (Kl(z,t,s,u(m,s)) - Kl(m,t,s,ﬁ(z,s)))t

IN

+

T \
ol [ (sz,t,s,u(z,s)) ~ Ko(at, iz, 5))
0

lue (2, t) — e (2, )l gri) + Mlltiea(2,t) — ool gr(g)

t
X [ (et s, u(e,6) ~ KaGastos, @),

/

IN

+

T
2 [ lKa(ets,u(e,9) - Koty ia, )|
0
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since K and K satisfied Lipschitz conditions, then we have
BN ) < llue(@,t) — (@, )| ) + Mlluae (@, ) — ool g

t
+ l)\/ u(z,s)) —u(z,s rey ds
o [ liute, ) - e, )l (36)
T
s [ ute,9) = (e o) s,
by using Lemma 31 and theorem 2, we get

BN |7y < CNE 32 [u]| gy + MCNEH3)[y| o)

t T
+ b / N ul| gy ds + s / eNCH | ul| e ds
0 0

< [(o + ,\10> N@ron3/2) (zm + 12A3)cN6<““’] [[ull gy, (37)

where

2r—p—1/2, r>1

elr =
(.10 {37‘/2—#, 0<r<1.

Then if u is infinitely smooth, then ||| Ex || ') — 0as N — oo.

5. Numerical implementation of the proposed
algorithm

In this section, some numerical test equations are considered to show the
accuracy of the presented algorithm, where we have calculated the
maximum absolute errors at different times. In these examples, the linear
and nonlinear algebraic systems are solved by the Newton iterative method
and using MATLAB software.

Example 1. Consider the PIDEs

ut (z,t) — uze(z,t) = g(z,t) — /0 e tu(x, s)ds, (38)

with initial and boundary conditions wu(z,0) =z, u(0,t) =0,
z € [0,1],u(l,t) =et, t € [0,1], and g(z,t) = (2t — 2> — t*z) exp(—at).
z(exp(—t) — exp(—=zt))
z—1
The analytical solution for this example is u(z,t) = ze *'. The numerical
experiments are given in table (1).

geios.com doi.org/10.32388/R4546K.2
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t N=3 N=4 N=5 N=6
0.0625 2.4918E-4 1.6010E-5 7.4614E-7 2.5947E-8
0.1250 3.1382E-4 1.4463E-5 3.7456E-7 6.8578 E-9
0.1875 2.6376 E-4 6.1076 E-6 1.2642E-7 1.3100 E-8
0.2500 1.5539E-4 2.3487E-6 3.5723E-7 9.0718 E-9
03125 6.4499E-5 7.4193E-6 2.7735E-7 29712E-9
03750 1.4299E-5 8.0728E-6 1.1176 E-7 1.0793E-8
0.4375 2.5590E-4 6.6364E-5 2.1644E-7 9.4010E-9

0.500 3.5960E-4 1.1409E-5 3.4232E-7 8.3644E-9
0.5625 4.6127E-4 1.8037E-5 6.0631 E-7 1.6629 E-8
0.6250 6.2660E-4 2.6913E-5 1.0077E-6 3.0685E-8
0.6875 8.2174E-4 3.8470E-5 15912E-6 5.3212E-8
0.7500 1.0486E-3 5.3175E-5 24089E-6 8.7621 E-8
0.8125 1.3090E-3 7.1535E-5 3.5395E-6 2.1009 E-7
0.8750 1.6050E-3 9.4094E-5 5.0403E-6 3.0975E-7
09375 1.9385E-3 1.2143E-4 69854E-6 4.4474E-7

Table 1. Errors using the OBP method for test (1).

Example 2. Let given the nonlinear equation

1
w(z,t) = ugz(z, t) + g(z,t) — / u?(z,s)ds, (39)
0
with conditions wu(z,0) = 22, uw(0,t) =t3, € [0,1]u(l,t) =1 +1,
t € [0,1]. The function g(z,t) is obtained from the analytical solution
u(z,t) = t* + 22. The numerical results are presented in figure 1.

Maximum the

Figure 1. Exact (left) and approximate (right) solutions for example 2 for (N =
M=3).

Example 3. 27 et consider the following partial integro-differential equation

w(2,t) — Uge (2, t) = g(z,t) — /0 e’(t’s)u(z,s)ds (40)

with conditions

u(z,0) =0, =€ 0,1], u(0,t) = sin(t),

t € [0,1],

u(1,t) =0,

geios.com
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With g(z,t) = (1 — z?) cos(t) + 2sin(t). The exact solution is given by
(2% — 1) cos(t) + zsin(t) — e
z2+1
u(z,t) = (1 — ) sin(t). The numerical results of example 3 are summarized in
table 2 and figure 2. Table 3 gives a comparison between the proposed method

in 1221 and cardinal Chebyshev functions 28 Better accuracy than the other
methods.

Example 4. In this example 2], we take a diffusion problem as

t
t— 1
u(z,t) = uge(z,t) + g(z,t) — / s+ u(z, s)ds, (41)
o z+1
z7t e [07 1]7
. . S 1-2°
where g(z,t) is determined such that the solution is u(z,t) = T

numerical results for this example are summarized in Figure 3. Our numerical
tests are better than that given by the Legendre multi-wavelets collocation
method 271
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t N=3 N=4 N=35 N=6
0.0625 2.2589E-4 42169E-5 14692E-6 1.5646E-7
0.1250 3.2716 E-4 4.9342E-5 14308E-6 1.2011E-7
0.1875 3.3538E-4 39105E-5 8.5875E-7 5.3754E-8
0.2500 2.8047E-4 2.2820E-5 3.0315E-7 1.2997E-8
03125 1.9333E-4 1.0381E-5 19737E-7 4.1951E-9
0.3750 9.6781E-5 1.1357E-5 14119E-7 1.5299 E-8
04375 1.0161E-4 8.9784E-6 1.6239E-7 1.4767E-8

0.500 1.2012E-4 6.8816E-6 2.3785E-7 1.0269 E-8
0.5625 1.1537E-4 6.8278 E-6 2.0673E-7 1.2452E-8
0.6250 1.0561E-4 1.0505E-6 1.3352E-7 1.4616E-8
0.6875 7.0710E-5 9.1550E-6 2.0449E-7 1.2901 E-8
0.7500 9.5995E-5 6.0418E-6 2.5585E-7 1.1463 E-8
0.8125 14199E-4 63528 E-6 2.2374E-7 1.5682E-8
0.8750 1.1942E-4 1.2261E-5 2.2730E-7 5.8400 E-9
09375 7.4179E-5 8.711E-6 2.8581E-7 2.0667 E-8

Table 2. Errors of the present method using the OBP method for test (3).

LMW Collocation Method [27]

Chebyshev CF [28]  Present Method

t N=8 N=16 N =32 N=8 N=8
0.0625  7.4383 E-5 4.6240 E-6 1.2106 E-5 22070 E-8 2.5266 E-10
0.1250 1.2593 E-10
0.1875 7.5155E-5 1.2275 E-5 2.4685E-5 LISI4E-9 4.6585 E-11
0.2500 3.1922E-11
03125 1.4643E-4 2.5696 E-5 3.5745E-5 4.8570 E-8 2.8864 E-11
0.3750 1.3091 E-11
04375  7.5929 E-5 4.2169 E-5 4.5563 E-5 14616 E-9 1.2449 E-11
0.500 1.0695 E-11
0.5625 1.2180 E-4 6.0743 E-5 5.3926 E- 5 1.7855 E-9 1.2261 E-11
0.6250 9.3796 E-12
0.6875 1.0567 E-4 8.1933 E-5 6.0499 E- 5 1.0870 E-7 6.6454 E-12
0.7500 1.3368 E-11
0.8125 4.7215E-5 1.0738 E- 4 6.4915 E-5 5.3619E-9 1.1561 E-11
0.8750 1.5320 E-11
0.9375  2.1869 E-4 1.3833 E4 6.6396 E-5 3.8717E-7 1.2016 E-11

Table 3. Errors of the present method using the OBBP method for test (3).

Exact solution

Approximate solution (N=M=6)

Figure 2. Exact (left) and approximate (right) solutions for example 3 for (N =
M= 6).

geios.com

doi.org/10.32388/R4546K.2

Maximum absolute errors at different time of the present method

Figure 3. Errors, Exact (left) and approximate (right) solutions for example 4
for (N=M = 6).

Example 5. We are given a linear problem as follows 1271

w(2,) :um(z,t)Jrg(:c,t)7/O/u(av,s)ds, atel, (42)

1-—2?
2
and u(1,t) = 0, where g(z, t) is determined such that

subject to the  following conditions: u(z,0) =
cosh(t)
2 -+ sinh?(¢)

u(0,¢)

(1 — 2?) cosh(t)

2 + sinh? (%)
example are given in Tables 4-5 and Figure 4 The numerical experiments
obtained for this example are better than that given by the Legendre multi-

the analytical solution is u(z,t) = . The results for this

wavelets collocation method 1221,
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t N=4 N=5 N=8
0.0625 2.3407E-4 5.1581E-6 3.1127E-7
0.1250 2.7731E-4 3.7329E-6 1.5271E-7
0.1875 2.2190E-4 2.1161E-6 5.2969 E-8
0.2500 1.2981E-4 1.5113E-6 4.0246E-8
03125 59121 E-5 1.3529E-6 4.0669 E-8
0.3750 6.5468E-5 9.7856 E-7 1.8271E-8
04375 53368E-5 2.8124E-7 1.6847E-8
0.500 4.0608 E-5 1.0203E-6 1.7874E-8
0.5625 4.0269E-5 1.6929E-6 1.7609 E-8
0.6250 6.2131E-5 1.3648E-6 1.7117E-8
0.6875 54164E-5 7.2680E-7 1.0399E-8
0.7500 3.7198E-5 1.8706 E-6 2.1713E-8
0.8125 3.7310E-5 2.2765E-6 1.8944E-8
0.8750 7.1458E-5 1.6466 E-6 2.6507 E-8
09375 4.7623E-5 2.8961E-6 2.1335E-8

Table 4. Errors of the present method using the OBBP method

for test (5).

Example 6. Here, we take the following PIDE

t
e (2,8) + g (2,1) = gl 1) — / ¢ tu(z, s)ds
0

1 Exact solution

Figure 4. Errors, Exact (left) and approximate (right) solutions for example 5

for (N=M=8).
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[

0.5
t

Legendre multiwavelets Method [27] Present Method

t N=8x8 N=16x16 N =64x64 Present method N=8
0.1 1.8049 E-6 9.2110 E-7 1.1342 E-7 2.2094 E-7
0.2 1.3464 E-5 2.3295E-6  4.3291 E-8 4.5662 E-8
0.3 7.2956 E-5 1.9806 E-6  1.8598 E-7 4.2211E-8
0.4 4.4007 E-5 17830 E-5  5.6575 E-7 9.7235 E-9
0.5 3.7671 E-4 7.7404 E-5 4.0517 E-6 1.7920 E-8
0.6 4.5192E-5 9.5238 E-6 1.0850 E-6 1.7605 E-8
0.7 2.3648 E-5 2.0197 E-5 1.1987 E-6 7.2310E-9
0.8 8.3275E-5 2.3185E-5  1.5333E-6 2.0556 E-8
0.9 1.0790 E-4 1.1975E-5  7.5777E-7 1.8646 E-8
1.0 34302 E-4 8.6424 E-5  4.5429E-6 2.5563 E-8

Table 5. Errors using the OBBP method for test (5).

with u(z,0) ==z, w(0,t) =0, z€[0,1],u(l,t)=¢e*, te[0,1], where
g(z,t) is determined such that u(z,t) = z exp(—=xt) is the analytical solution.
We remark that when N increases, the error decreases. The errors obtained by
our method for N = 10 are presented in 5 and give better results than those
given by the Hermite-Taylor matrix method for N = 12 9 and radial basis
functions N = 40 141

Figure 5. Errors, Exact (left) and approximate (right) solutions for example 6
for (N = M = 10).

6. Conclusion

In this article, a new numerical approach was proposed. This approach was
utilized to solve partial integro-differential equations with Volterra and
Fredholm types. The matrices of orthonormal Bernoulli polynomials were
derived and used to obtain the approximate solution of PIDEs. After, we take
Gauss-Legendre nodes in the intervals [0, b] and [0, as collocation points.
The approach was applied to obtain numerical solutions of some test
problems. The numerical results show the high accuracy of the scheduled
algorithm. The presented method is easily implementable and simple and
can be used for different types of PIDEs and also for differential equations.
Many test problems were inserted and compared with other algorithms to
appreciate the good efficiency of the proposed methodology. The proposed
algorithm can be employed in more dimensions.
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