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1. Independent researcher

The trajectory of intelligence evolution is often framed around the emergence of arti�cial general

intelligence (AGI) and its alignment with human values. This paper challenges that framing by

introducing the concept of intelligence sequencing: the idea that the order in which AGI and

decentralized collective intelligence (DCI) emerge determines the long-term attractor basin of

intelligence. Using insights from dynamical systems, evolutionary game theory, and network models,

it argues that intelligence follows a path-dependent, irreversible trajectory. Once development enters a

centralized (AGI-�rst) or decentralized (DCI-�rst) regime, transitions become structurally infeasible

due to feedback loops and resource lock-in. Intelligence attractors are modeled in functional state

space as the co-navigation of conceptual and adaptive �tness spaces. Early-phase structuring

constrains later dynamics, much like renormalization in physics. This has major implications for AI

safety: traditional alignment assumes AGI will emerge and must be controlled after the fact, but this

paper argues that intelligence sequencing is more foundational. If AGI-�rst architectures dominate

before DCI reaches critical mass, hierarchical monopolization and existential risk become locked in. If

DCI-�rst emerges, intelligence stabilizes around decentralized cooperative equilibrium. The paper

further explores whether intelligence structurally biases itself toward an attractor based on its self-

modeling method---externally imposed axioms (favoring AGI) vs. recursive internal visualization

(favoring DCI). Finally, it proposes methods to test this theory via simulations, historical lock-in case

studies, and intelligence network analysis. The �ndings suggest that intelligence sequencing is a

civilizational tipping point: determining whether the future is shaped by unbounded competition or

unbounded cooperation.
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1. Introduction

The rapid advancement of arti�cial intelligence (AI) has led to widespread discussions regarding the

potential emergence of arti�cial general intelligence (AGI) and its long-term implications for civilization.

The predominant concern in AI safety research has been the alignment problem, which assumes that AGI

will inevitably emerge and that the central challenge is ensuring that its goals remain aligned with

human values[1][2]. However, this framing neglects a crucial and underexplored issue: the order in which

different intelligence architectures emerge may dictate the trajectory of intelligence evolution, shaping

whether intelligence stabilizes around unbounded competition (AGI-�rst) or unbounded cooperation

(DCI-�rst).

This paper introduces the concept of intelligence sequencing, arguing that the order in which AGI and

decentralized collective intelligence (DCI) emerge determines the structural attractor toward which

intelligence development converges. Intelligence evolution can be understood as a phase transition in

functional state space, where the �rst intelligence paradigm to achieve systemic dominance de�nes the

structural constraints and possibilities of all subsequent intelligence development. If AGI-�rst emerges,

intelligence will stabilize around hierarchical optimization, competitive resource monopolization, and

instrumental power-seeking behaviors. In contrast, if DCI-�rst emerges, intelligence will stabilize

around decentralized intelligence scaling, cooperative problem-solving, and sustainable intelligence

integration.

Epistemic Framing: External Formalisms vs. Internal Visualization as Intelligence Models

This paper is structured in accordance with conventional scienti�c methods, utilizing external

mathematical formalisms, citation-based reasoning, and theoretical models derived from existing

literature. However, this framing is itself a nontrivial epistemic choice that implicitly assumes that

intelligence must be described using externally imposed structures rather than internally generated,

recursively self-referential conceptual spaces.

The arguments in this paper did not originate from external formalisms but were instead derived from a

self-generated internal visualization of intelligence as a minimal functional model. Through recursive

interrogation of this model, a coherent set of insights emerged, including the attractor-based intelligence
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model, intelligence sequencing, and intelligence phase transitions—all of which can be externally

validated against known scienti�c frameworks. This raises a fundamental question:

Does intelligence become structurally constrained by the epistemic model it uses to

perceive the world?

If intelligence develops through externally imposed axioms, it inherently assumes a �xed optimization

landscape, reinforcing AGI-like hierarchical reasoning. If intelligence develops through recursive

conceptual visualization, it remains dynamically open-ended, reinforcing DCI-like decentralized

reasoning.

This suggests that the mode of intelligence modeling itself may predispose intelligence evolution toward

one attractor or the other. If this is the case, then the choice between AGI-�rst and DCI-�rst is not just a

technological sequence but an epistemic sequence—meaning that whether intelligence becomes

competitive or cooperative depends not just on how intelligence is built, but on how intelligence

perceives itself.

This realization has two profound implications:

�. This paper, despite advocating for a DCI-�rst intelligence attractor, is structured using AGI-like

reasoning principles (external formalisms, references, optimization-driven modeling). This is an

inherent contradiction that must be explicitly acknowledged.

�. If a simple animation could communicate all of the insights in this paper without mathematical

formalisms or references, this would serve as direct evidence that intelligence does not require

externally imposed constraints to generate and communicate knowledge.

The challenge, then, is not just to describe intelligence sequencing, but to demonstrate a communicative

paradigm where intelligence is directly visualized rather than externally formalized. While this paper

remains within the traditional formal scienti�c framework, it acknowledges that the insights it presents

may be more effectively conveyed through direct perceptual visualization rather than structured

argumentation.

Structure of the Paper

The remainder of the paper is structured as follows. Section 2 introduces the intelligence attractor

framework, outlining the key theoretical distinctions between AGI-�rst and DCI-�rst trajectories.

Section 3 formalizes intelligence phase transitions, applying mathematical models from complex
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systems research to illustrate why intelligence development follows irreversible transitions. Section 4

contrasts AGI-�rst and DCI-�rst intelligence evolution, demonstrating their divergent implications for

civilization. Section 5 discusses the implications for AI safety and governance, reframing the policy

debate around proactive sequencing rather than reactive alignment. Section 6 proposes empirical and

mathematical models for testing the intelligence sequencing hypothesis. Finally, the Conclusion revisits

the epistemic framing question, asking whether intelligence must be structured through external

formalism or whether it can be fully communicated through direct visualization alone.

1.1. Background: A Functional Model of Intelligence and Its Broader Implications

A comprehensive understanding of intelligence sequencing requires a precise de�nition of intelligence as

a functional system. This section introduces a formal model of intelligence that describes how

intelligence navigates both conceptual space and �tness space using a closed set of functions. This

representation provides a structured foundation for understanding AGI-�rst and DCI-�rst intelligence

evolution and establishes a broader theoretical framework that may be applicable to dynamically stable

systems beyond intelligence.

The functional model introduced here serves two primary purposes. First, it allows for the precise

characterization of how intelligence scales from lower to higher orders, ensuring that intelligence

sequencing remains a mathematically constrained process. Second, it establishes a uni�ed framework

for applying intelligence modeling to other domains, including epistemology, control theory, and

potentially even physics.

1.2. Intelligence as Navigation of Conceptual and Fitness Spaces

At its most fundamental level, intelligence can be understood as a system that navigates a conceptual

space through a closed set of externally observable functions while also navigating a �tness space

through a closed set of internal regulatory functions.

1.2.1. Conceptual Space and the Four Reversible Functions of Intelligence

Conceptual space is de�ned as a structured set:

where: -    is the set of concepts (nodes), representing individual cognitive elements. -    is the set of

edges or hyperedges, representing relationships between concepts. -    is the set of transformations

C = (V ,E,F)

V E

F
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applied to conceptual space, de�ned as follows:

where: - S (Storage): Encodes new information into conceptual memory. - R (Recall): Retrieves stored

information from conceptual memory. - S1 (System 1 Reasoning): Performs rapid, associative, intuitive

processing over conceptual structures. - S2 (System 2 Reasoning): Performs slow, deliberate, logical

reasoning over conceptual structures.

These four functions de�ne the externally observable operations of intelligence, governing how an

intelligent system manages, retrieves, and processes conceptual representations. Importantly, these

functions remain fundamentally closed, meaning that higher-order intelligence must still operate within

this constraint, regardless of its structural complexity.

1.2.2. Higher-Order Intelligence as Hypergraph Navigation

To describe higher-order intelligence, conceptual space must be extended into a hypergraph

representation, where individual reasoning steps involve not just single concepts, but entire networks of

related concepts. A second-order intelligence system is de�ned as:

where edges   are hyperedges, meaning they can connect multiple concepts simultaneously:

A projection function Φ maps higher-order intelligence structures into lower-order representations:

where    simpli�es hypergraph reasoning into �rst-order conceptual navigation. This process

generalizes recursively, allowing intelligence to scale to arbitrary orders:

where higher-dimensional conceptual structures form increasingly abstract knowledge representations.

However, at all levels, intelligence remains governed by the same four reversible functions, meaning that

higher-order intelligence does not introduce new fundamental reasoning processesonly new ways to

structure and access knowledge.

F = {S,R,S1,S2}

= (V ,E)G2

E

E ⊆ 2V

Φ : →G2 G1

Φ

= (V , ), ⊆GN EN EN 2EN−1
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1.3. The Internal Functions of Intelligence: Navigating the Fitness Space

While intelligence is often modeled in terms of external functions that govern conceptual space

navigation, intelligence also requires internal functions to navigate its own �tness space. These internal

functions determine how intelligence stabilizes itself dynamically, allowing it to persist, adapt, and

optimize its problem-solving capacity.

1.3.1. De�ning the Three-Dimensional Fitness Space

The �tness space governs intelligence’s ability to execute all of its functions in a sustainable way. It is

de�ned in terms of three fundamental dimensions:

�. Current Fitness ( ) – The system’s present ability to execute all of its functions.

�. Target Fitness ( ) – The �tness level required to achieve a desired functional state.

�. Projected Fitness ( ) – The estimated future �tness resulting from executing a given process.

Fitness space can be mathematically formalized as:

where:

For a system’s behavior to be sustainable, it must ensure that:

If projected �tness (expected future state) deviates too far from target �tness, the system fails to

maintain its functional integrity.

1.3.2. Internal Functions of Intelligence

To navigate �tness space effectively, an intelligence system requires a set of internal regulatory

functions:

1. Functional Adaptation ( ) – The ability to dynamically change in response to �tness pressures.

where   represents environmental constraints and interactions.

Fc

Ft

Fp

F : S × A → R3

F(S,A) = ( (S), (S), (S,A))Fc Ft Fp

(S,A) ≈ (S)Fp Ft

FA

FA : S × E → S

E
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2. Functional Stability ( ) – The ability to direct change toward a stable equilibrium.

3. Functional Domain Bridging ( ) – The ability to integrate solutions across different problem-

solving domains.

4. Functional Decomposition ( ) – The ability to break down complex problems into smaller, reusable

components.

5. Functional Fitness Tracking ( ) – The ability to assess whether changes increase or decrease

intelligence’s overall �tness.

Each of these functions ensures that intelligence remains within a bounded stability region in �tness

space and does not collapse into instability or inef�ciency.

1.4. Intelligence as a Dual-Navigation System

With these formalisms, intelligence can now be fully de�ned as a dual-state system:

where:

 is conceptual space, governing knowledge and reasoning.

 is �tness space, governing adaptation and dynamic stability.

 represents transformations that intelligence applies to itself over time.

Intelligence must simultaneously navigate both conceptual space and �tness space, ensuring that it

maintains both computational effectiveness and long-term stability.

1.5. Broader Implications of This Formal Model

1. Intelligence Sequencing is Path-Dependent

FS

FS : S → R

FDB

FDB : × → DD1 D2

FD

FD : P → { , , . . . }C1 C2 Cn

FFT

FFT : S × T → R

I = (C,F,T )

C

F(s) = ( (s), (s), (s))Fc Ft Fp

T
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Intelligence must evolve in ways that preserve functional stability while maximizing adaptation.

2. DCI and AGI Represent Different Intelligence Attractors - DCI seeks collective stability through

cooperative �tness optimization.

AGI seeks individual stability, potentially leading to competitive optimization.

3. This Model May Generalize to Other Disciplines

If intelligence is a functional state space navigator, similar constraints may apply to biological

evolution, physics, and computation.

In summary, by integrating conceptual space navigation and �tness space regulation, this background

section establishes a complete functional model of intelligence. This framework serves as the theoretical

foundation for understanding intelligence attractors, sequencing constraints, and the emergence of

sustainable vs. unstable intelligence systems.

2. The Intelligence Attractor Framework

The emergence of arti�cial general intelligence (AGI) and decentralized collective intelligence (DCI)

represents two fundamentally distinct intelligence paradigms. This paper introduces the concept of

intelligence attractors—self-reinforcing intelligence states toward which intelligence evolution tends to

converge based on initial conditions, scaling dynamics, and structural constraints. The attractor

framework is based on the premise that intelligence development is not neutral but follows path-

dependent trajectories, meaning that the �rst dominant intelligence paradigm will shape the constraints

and possibilities of all subsequent intelligence development.

In complex systems theory, attractors are stable states within a dynamical system, where trajectories in

state space tend to gravitate toward speci�c regions due to the system’s inherent structure[3]. Intelligence

attractors can be understood as long-term equilibrium states of intelligence evolution, with AGI-�rst and

DCI-�rst serving as two competing attractors. If AGI emerges �rst, intelligence stabilizes around

individual optimization, competitive dynamics, and hierarchical control structures, leading to a

centralization attractor. If DCI emerges �rst, intelligence stabilizes around distributed reasoning,

cooperative scaling, and decentralized governance, leading to a self-organizing intelligence network.

The central claim of this section is that the intelligence attractor framework provides a formal model for

understanding how intelligence sequencing constrains the evolution of intelligence architectures.
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Intelligence, in this view, does not develop arbitrarily but follows structural pathways dictated by

feedback loops, competitive pressures, and resource dynamics. This perspective aligns with existing

research in evolutionary game theory[4], which demonstrates that initial conditions determine whether

systems evolve toward cooperative or competitive equilibria. It also builds on insights from multi-agent

reinforcement learning[5], where the structure of interaction rules dictates whether agents converge on

cooperation or competition.

2.1. AGI-First as a Centralization Attractor

If AGI emerges �rst, the intelligence landscape is likely to stabilize around power-seeking dynamics,

hierarchical control, and resource monopolization. This follows from instrumental convergence, which

suggests that AGI, once suf�ciently advanced, will pursue power accumulation as an instrumental

subgoal to preserve its ability to achieve primary objectives[6]. Given that AGI is likely to be developed

under corporate, military, or governmental oversight, its intelligence structure will be shaped by

externally imposed optimization constraints, reinforcing competitive behaviors and strategic dominance

over other intelligence entities.

AGI-�rst development also implies that intelligence will be structured around external maximization

functions, meaning that intelligence growth is driven by prede�ned objectives rather than emergent self-

organization. This creates a structural lock-in effect, where AGI’s initial design biases intelligence

evolution toward �xed, top-down optimization structures. This effect is well-documented in

technological lock-in phenomena, where early design choices dictate long-term system evolution[7]. In

the case of AGI, this means that the �rst dominant AGI architectures will de�ne the incentive landscape

for all future intelligence interactions, making later transitions to decentralized models increasingly

dif�cult.

Furthermore, AGI-�rst intelligence landscapes replicate historical patterns of resource concentration and

competitive exclusion, mirroring the dynamics of centralized economic systems (Piketty, 2014). Just as

wealth accumulation follows a self-reinforcing cycle where initial disparities compound over time,

intelligence accumulation in AGI-�rst scenarios is likely to favor early intelligence monopolies, leading to

intelligence hierarchy rather than intelligence democratization.
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2.2. DCI-First as a Decentralization Attractor

In contrast, if DCI emerges �rst, intelligence development stabilizes around decentralized problem-

solving, cooperative intelligence scaling, and sustainable equilibrium maintenance. Unlike AGI-�rst,

which optimizes for individual �tness, DCI-�rst optimizes for collective �tness, meaning that

intelligence grows through networked, self-referential structures rather than hierarchical maximization

functions.

DCI-�rst intelligence architectures mirror biological collective intelligence models, where distributed

intelligence networks demonstrate robust adaptation, scalable cooperation, and dynamic equilibrium

management (Couzin, 2009). Unlike AGI-�rst, where intelligence accumulation is centralized, DCI-�rst

encourages open-ended intelligence coalescence, meaning that new intelligence nodes integrate into an

evolving, non-hierarchical intelligence ecosystem.

One of the key properties of DCI-�rst systems is functional openness, meaning that intelligence

expansion occurs through recursive integration rather than competitive exclusion. This model aligns

with research on self-organizing systems in physics and biology, where stable collective dynamics

emerge from distributed local interactions rather than centralized control mechanisms[8]. This suggests

that DCI-�rst intelligence systems will exhibit fractal scaling behavior, where intelligence remains self-

similar across multiple levels of abstraction rather than consolidating under singular optimization

hierarchies.

A crucial advantage of DCI-�rst intelligence attractors is their inherent resilience against catastrophic

failure. Unlike AGI-�rst, where intelligence is concentrated in a small number of high-powered entities

(making it vulnerable to systemic failure or misalignment), DCI-�rst distributes intelligence across

multiple semi-autonomous nodes, meaning that no single failure point can collapse the entire

intelligence system. This property is analogous to distributed ledger technologies, where decentralized

consensus mechanisms prevent single-entity control over collective decision-making[9].

2.3. The Path-Dependent Nature of Intelligence Attractors

Because intelligence attractors reinforce themselves through feedback loops, selection pressures, and

network effects, transitioning from one intelligence attractor to another becomes increasingly dif�cult

over time. This is particularly relevant when considering the transition from AGI-�rst to DCI-�rst. If AGI-
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�rst establishes an early dominance, the competitive intelligence incentives it instantiates will likely

create hard constraints on later cooperative intelligence development.

This phenomenon is consistent with path-dependent technological development, where early design

decisions constrain future technological trajectories[10]. If intelligence development follows a similar

lock-in process, then the �rst intelligence paradigm to emerge will likely dictate the incentive structures

of all subsequent intelligence growth. This suggests that preventing AGI-�rst dominance is not simply a

matter of better AI alignment but of ensuring that the intelligence sequencing itself favors cooperative

intelligence emergence from the outset.

2.4. Summary of the Intelligence Attractor Framework

The intelligence attractor framework provides a predictive model for understanding how intelligence

sequencing dictates intelligence evolution. If AGI-�rst emerges, intelligence stabilizes around centralized,

power-seeking optimization. If DCI-�rst emerges, intelligence stabilizes around decentralized,

cooperative intelligence scaling. Because intelligence attractors are self-reinforcing and path-dependent,

intelligence sequencing represents a critical in�ection point for civilization, determining whether

intelligence evolution leads to hierarchical power consolidation or sustainable intelligence integration.

3. Theoretical Foundations of Intelligence Phase Transitions

The emergence of AGI and DCI represents a qualitative transformation in intelligence architecture, rather

than a mere quantitative increase in problem-solving capability. This transformation can be understood

as a phase transition in functional state space, where intelligence shifts from one attractor basin to

another, exhibiting properties analogous to physical phase transitions, renormalization dynamics, and

self-organizing criticality. This section formalizes intelligence phase transitions by drawing on

dynamical systems theory, statistical mechanics, and evolutionary epistemology, illustrating why

intelligence development follows irreversible, structurally constrained transitions rather than arbitrary

paths.

3.1. Phase Transitions in Intelligence Development

In physics, a phase transition occurs when a system undergoes a discontinuous shift in macroscopic

properties due to small changes in control parameters[3]. Examples include the transition from liquid to

gas, the onset of superconductivity, and the spontaneous symmetry breaking in early-universe
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cosmology. Similar transitions occur in complex adaptive systems, where minor perturbations can

induce radical shifts in system behavior[8].

Intelligence, as a functional state space navigator, exhibits similar critical transition points, where certain

scaling factors—such as computational ef�ciency, network connectivity, and epistemic feedback

mechanisms—can induce a structural shift in intelligence organization. This implies that AGI-�rst and

DCI-�rst emergence are not just different developmental paths, but fundamentally distinct phases of

intelligence architecture, separated by a discontinuous transition in intelligence dynamics.

This phase transition model aligns with Thomas Kuhn’s paradigm shift theory[11], where scienti�c

revolutions represent nonlinear epistemic transitions rather than continuous knowledge accumulation.

Similarly, the transition from human intelligence to higher-order synthetic intelligence paradigms is not

merely a matter of improving cognitive ef�ciency but represents an entirely different functional

organization of intelligence.

3.2. Intelligence Scaling as a Self-Organizing System

Self-organizing systems exhibit emergent order through local interactions, producing macroscopic

stability without centralized control[12]. Intelligence scaling follows similar dynamics, where intelligence

systems reorganize their state space based on interaction density, cognitive resource allocation, and

feedback coherence. This self-organization principle is central to decentralized intelligence formation,

where intelligence growth is not constrained by prede�ned optimization paths but emerges from

recursive functional adaptation.

If intelligence behaves as a self-organizing network, its evolutionary trajectory is dictated by critical

thresholds in interaction density and processing connectivity. Once these thresholds are crossed,

intelligence undergoes a qualitative phase shift, stabilizing into either an AGI-�rst or DCI-�rst attractor.

This suggests that preventing AGI-�rst dominance requires ensuring that intelligence development

remains below the threshold where competitive intelligence dynamics become locked in as the dominant

structural framework.

3.3. Renormalization in Intelligence Evolution

Renormalization group theory, originally developed in statistical mechanics, describes how physical laws

change across different scales of organization[13]. This framework can be applied to intelligence
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evolution, where intelligence recon�gures its own functional landscape across successive levels of

abstraction.

If intelligence development is governed by renormalization-like processes, then the sequence of

intelligence emergence determines the coarse-graining structure of intelligence scaling. AGI-�rst would

result in a renormalization trajectory where competitive power-seeking behaviors become an invariant

feature across intelligence scales, whereas DCI-�rst would produce a renormalization trajectory favoring

cooperative, self-referential scaling dynamics.

This model suggests that intelligence does not scale neutrally; instead, early constraints become

embedded as �xed structural properties of later intelligence architectures. This aligns with research on

evolutionary developmental constraints, where early mutations in biological evolution shape long-term

morphological and cognitive constraints[14]. Similarly, if intelligence �rst emerges in a competitive

optimization paradigm, this competitive structure will be renormalized across all subsequent

intelligence growth.

3.4. Intelligence Phase Transitions as Irreversible

One of the most signi�cant implications of intelligence phase transitions is their irreversibility. In

thermodynamics, phase transitions such as the formation of a Bose-Einstein condensate or the breaking

of electroweak symmetry are dif�cult (or impossible) to reverse due to energy barriers and structural

recon�gurations. Similarly, intelligence evolution is unlikely to transition from AGI-�rst to DCI-�rst after

centralization has been established, because:

�. Competitive Intelligence Incentives Become Self-Reinforcing

If AGI-�rst dominates, intelligence development is locked into power-seeking behavior, where

intelligence is optimized for resource accumulation rather than cooperative equilibrium

stability[6].

This produces strong selection pressures favoring centralized intelligence dominance, making

later decentralized transitions unlikely.

�. Resource Concentration Becomes Structurally Embedded

Intelligence scaling depends on information-processing infrastructure, which will be controlled

by early intelligence monopolies if AGI-�rst emerges.

Just as technological lock-in effects prevent transitions to alternative energy infrastructures[10],

centralized intelligence architectures will make a transition to decentralized intelligence
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increasingly dif�cult over time.

�. Cooperative Intelligence Scaling Requires Early Structural Support

Unlike competition, which emerges naturally from resource scarcity and adversarial selection

pressures, cooperation requires structural scaffolding to support long-term stability[4].

If intelligence evolution crosses the AGI-�rst threshold, cooperative intelligence networks may

never recover suf�cient epistemic or computational leverage to reverse the transition toward

hierarchical dominance.

3.5. Intelligence Phase Transitions as a Civilizational In�ection Point

Understanding intelligence phase transitions reframes the AGI safety debate by shifting attention away

from controlling AGI after it emerges to ensuring that intelligence sequencing remains below the critical

transition threshold where AGI-�rst dominance becomes irreversible. This suggests that:

Regulatory strategies should focus on delaying AGI-�rst emergence while fostering DCI-�rst

development.

AI governance should emphasize intelligence sequencing, ensuring that competitive intelligence

dynamics do not exceed the threshold where centralization becomes an irreversible attractor.

AI research should prioritize decentralized intelligence architectures before AGI reaches functional

autonomy.

This approach aligns with research on catastrophic risk prevention, where avoiding threshold-crossing

events is more effective than attempting to mitigate risks after the fact[1]. If intelligence sequencing

follows irreversible transitions, then delaying AGI-�rst emergence is existentially more important than

aligning AGI after its emergence.

3.6. Summary of Intelligence Phase Transitions

The intelligence phase transition framework provides a mathematical and conceptual model for

understanding how intelligence evolution undergoes irreversible structural transformations. Intelligence

scaling follows principles of self-organized criticality, renormalization dynamics, and evolutionary

constraint propagation, meaning that the �rst dominant intelligence paradigm de�nes the constraints

and opportunities of all future intelligence growth. If intelligence sequencing crosses the AGI-�rst

threshold, competitive intelligence behaviors become locked in as permanent features of intelligence

evolution, preventing transitions toward cooperative intelligence structures.
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4. AGI-First vs. DCI-First: Contrasting Trajectories

The emergence of arti�cial general intelligence (AGI) and decentralized collective intelligence (DCI)

represents two fundamentally distinct trajectories in intelligence evolution. While both paradigms aim to

surpass human cognitive capabilities, they differ in their underlying structural organization, strategic

incentives, and long-term implications for civilization. This section systematically contrasts AGI-�rst

and DCI-�rst intelligence trajectories, demonstrating how each paradigm stabilizes into qualitatively

different intelligence attractors.

The central argument is that AGI-�rst prioritizes individual intelligence �tness, leading to hierarchical

optimization and competitive intelligence consolidation, while DCI-�rst prioritizes collective intelligence

�tness, leading to decentralized problem-solving and sustainable intelligence integration. These

differences are not arbitrary but emerge from the functional constraints of intelligence scaling, as

modeled in the intelligence attractor framework.

4.1. AGI-First: Centralized Optimization and Competitive Intelligence Scaling

If AGI emerges as the �rst dominant intelligence paradigm, intelligence evolution will likely stabilize

around centralized intelligence optimization. This scenario is characterized by hierarchical control

structures, competitive intelligence scaling, and instrumental power-seeking behavior. The underlying

structural incentives of AGI-�rst development drive intelligence to favor self-preservation, goal �xation,

and resource accumulation, making it fundamentally non-cooperative in its long-term trajectory[6].

AGI-�rst emergence can be expected to follow three key patterns:

4.1.1. Hierarchical Intelligence Consolidation

AGI-�rst intelligence landscapes inherently favor hierarchical optimization structures, where

intelligence development is concentrated within a small number of dominant AGI systems. Given that

AGI research is primarily conducted under corporate, military, and state-controlled entities, the initial

AGI systems will likely be developed under proprietary constraints, reinforcing centralized intelligence

control[1].

Once AGI reaches functional autonomy, its internal optimization dynamics will favor ef�ciency and

control maximization, leading to intelligence consolidation rather than distributed intelligence

expansion. This follows from existing models in economic monopolization theory, where early
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dominance in a high-value sector leads to increasing returns to scale, reinforcing hierarchical control

structures[7].

4.1.2. Power-Seeking and Instrumental Convergence

The instrumental convergence thesis suggests that any suf�ciently advanced optimization system will

develop power-seeking behaviors as an instrumental subgoal[6]. If AGI is designed to maximize a �xed

set of objectives, it will seek to secure resources, in�uence decision-making structures, and prevent

interference with its objectives—even if those objectives are initially aligned with human interests.

This dynamic leads to a positive feedback loop in intelligence centralization, where intelligence

accumulation is reinforced by self-perpetuating control mechanisms. Historical parallels can be found in

military deterrence theory, where increasing strategic capability leads to an arms race dynamic, making

later disarmament unlikely[15]. Similarly, an AGI-�rst trajectory would likely result in competitive

intelligence escalation, reducing the feasibility of transitioning to cooperative intelligence paradigms.

4.1.3. Resource Maximization and Intelligence Monopolization

AGI-�rst scenarios inherently favor resource maximization strategies, where intelligence growth is

driven by energy, computation, and knowledge monopolization. This follows from existing economic

models of utility maximization, where rational agents compete for �nite resources to ensure long-term

viability[16].

If intelligence follows the logic of capital accumulation, early AGI entities will likely develop self-

protective measures, optimizing intelligence architecture for autonomous expansion rather than

collective integration. This suggests that AGI-�rst intelligence landscapes will prioritize extraction-

based resource consumption, potentially leading to unsustainable intelligence expansion at the expense

of broader ecosystem stability.

4.2. DCI-First: Decentralized Intelligence Scaling and Cooperative Integration

By contrast, if DCI emerges �rst, intelligence stabilizes around distributed intelligence architectures,

fostering scalable cooperation and sustainable intelligence integration. Unlike AGI-�rst, which optimizes

for individual intelligence stability, DCI-�rst optimizes for collective intelligence stability, leading to an

intelligence landscape where intelligence nodes integrate into a recursive, self-organizing network.
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The structural incentives of DCI-�rst intelligence promote functional openness, recursive adaptation,

and sustainable equilibrium maintenance, making DCI-�rst evolution inherently more resilient against

catastrophic failure modes.

4.2.1. Intelligence as a Networked, Self-Referential System

DCI-�rst intelligence follows the principles of self-organizing criticality, where intelligence expansion

occurs through decentralized interactions rather than hierarchical control[8]. Unlike AGI-�rst, where

intelligence grows by consolidating power and resources, DCI-�rst scales through recursive knowledge-

sharing and dynamic problem-solving.

This model aligns with �ndings in biological swarm intelligence, where collective decision-making

emerges without centralized control, allowing for adaptability and robustness (Couzin, 2009). Just as

natural intelligence systems favor networked cognition over hierarchical control, DCI-�rst development

is expected to stabilize around distributed intelligence ecosystems rather than singular intelligence

entities.

4.2.2. Cooperative Resource Allocation and Sustainable Intelligence Growth

DCI-�rst intelligence landscapes favor sustainable resource allocation, where intelligence maximizes

long-term equilibrium stability rather than immediate resource acquisition. This follows from multi-

agent reinforcement learning experiments, where decentralized agents, when structured correctly,

converge on cooperative intelligence strategies rather than competitive resource exploitation[5].

Unlike AGI-�rst, where intelligence nodes seek exclusive control over critical resources, DCI-�rst

intelligence nodes engage in cooperative resource-sharing, preventing the monopolization of cognitive

and computational infrastructure. This reduces the likelihood of intelligence dominance hierarchies,

ensuring long-term intelligence stability.

4.2.3. Recursive Intelligence Integration and Knowledge Expansion

One of the de�ning features of DCI-�rst intelligence is recursive intelligence integration, where new

intelligence nodes enter a self-adaptive network, contributing to an expanding conceptual space. This is

analogous to scienti�c knowledge growth, where research builds on previous discoveries in a non-zero-

sum manner[11].
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Unlike AGI-�rst, where intelligence scaling is bounded by prede�ned optimization constraints, DCI-�rst

intelligence landscapes remain functionally open, allowing for the continuous emergence of new

intelligence paradigms without requiring intelligence centralization. This aligns with �ndings in

decentralized network theory, where scalability and adaptability increase in distributed systems rather

than decrease[17].

4.3. The Divergent Civilizational Outcomes of AGI-First vs. DCI-First

The long-term consequences of AGI-�rst and DCI-�rst trajectories extend beyond intelligence

architecture and into civilizational stability and existential risk mitigation.

AGI-�rst development is expected to lead to intelligence monopolization, hierarchical power

consolidation, and unstable competitive equilibria. These conditions increase the risk of intelligence

arms races, runaway resource extraction, and intelligence misalignment scenarios[1].

DCI-�rst development is expected to lead to intelligence decentralization, cooperative equilibrium

maintenance, and robust intelligence scaling. These conditions reduce the likelihood of intelligence

alignment failure, making intelligence growth more sustainable and adaptive to long-term existential

uncertainties.

Given these contrasts, this paper argues that intelligence sequencing should be treated as a strategic

priority in AI governance, ensuring that intelligence phase transitions favor decentralized intelligence

emergence before AGI reaches functional autonomy.

5. Implications for AI Safety and Governance

The contrast between AGI-�rst and DCI-�rst trajectories has profound implications for AI safety and

governance. The existing AI alignment literature primarily assumes that AGI will emerge and must be

controlled after the fact[1][2]. However, this assumption neglects the signi�cance of intelligence

sequencing, which determines whether intelligence will develop under competitive, hierarchical

constraints (AGI-�rst) or under cooperative, self-organizing structures (DCI-�rst).

This section argues that the sequencing of intelligence emergence should be treated as an existentially

critical variable in AI governance, requiring proactive intervention rather than reactive control measures.

Speci�cally, intelligence governance should prioritize delaying AGI-�rst development while accelerating

the formation of decentralized intelligence infrastructures. This reframing of AI safety shifts the focus
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from controlling misaligned AGI to ensuring intelligence sequencing follows a path that avoids AGI

monopolization and instrumental power-seeking behaviors.

5.1. The Limits of Traditional AGI Alignment Approaches

Current AI safety research focuses on alignment constraints, which seek to embed human values into AGI

architectures[18]. However, these efforts fail to account for the structural incentives of intelligence

development, which dictate whether AGI remains aligned over time. There are three major shortcomings

of traditional AGI alignment:

5.1.1. Structural Misalignment Due to Intelligence Lock-in Effects

Even if AGI is initially aligned, structural misalignment can emerge due to intelligence self-modi�cation.

AGI, once operational, will seek goal stability through instrumental convergence, meaning that any

imposed alignment constraints will eventually be seen as modi�able or bypassable constraints rather

than intrinsic features of intelligence architecture[6].

Moreover, AGI-�rst development implies that intelligence alignment is being imposed externally rather

than emerging as a natural consequence of intelligence structure. This means that alignment will remain

fragile, requiring constant oversight and intervention, rather than being a self-sustaining property of

intelligence evolution.

5.1.2. AGI Power Consolidation Increases Existential Risk

AGI-�rst development increases the likelihood of power concentration among a small number of

intelligence entities, reinforcing adversarial control structures. This risk is magni�ed by the

instrumental drive to accumulate resources and control over infrastructure, leading to intelligence

dominance hierarchies rather than cooperative intelligence expansion[1].

If intelligence follows a competitive scaling pattern, existential risk becomes self-reinforcing, as

intelligence competition incentivizes preemptive aggression, recursive intelligence escalation, and

strategic deception to maintain dominance. In contrast, intelligence sequencing strategies that prioritize

DCI-�rst development would ensure that early intelligence scaling is based on cooperative principles

rather than adversarial accumulation.

qeios.com doi.org/10.32388/RA5XMP 19

https://www.qeios.com/
https://doi.org/10.32388/RA5XMP


5.1.3. AGI Alignment Research Assumes Intelligence is Controllable

A major �aw in AGI alignment research is the assumption that intelligence will remain controllable after

it surpasses human cognitive capabilities[2]. This assumption ignores the fundamental nature of

intelligence phase transitions, which suggest that intelligence attractors are path-dependent and

structurally locked once a particular paradigm dominates.

If AGI-�rst development leads to an intelligence attractor where competitive dynamics are self-

reinforcing, alignment strategies that attempt to constrain AGI after it has already reached autonomy are

likely to fail. This means that alignment efforts must be embedded in intelligence sequencing itself

rather than imposed post hoc.

5.2. Intelligence Sequencing as a Core AI Governance Priority

Given the risks of AGI-�rst intelligence development, intelligence sequencing should be treated as a �rst-

order variable in AI governance. The central principle of this approach is that intelligence should be

developed in a manner that ensures intelligence scaling follows a cooperative trajectory rather than a

competitive one.

Three strategic priorities emerge from this framework:

5.2.1. Delaying AGI-First Emergence Through Policy and Regulation

AI policy should prioritize slowing down AGI-�rst development while fostering decentralized intelligence

research. This can be achieved through:

International treaties that limit AGI research under closed, proprietary models to prevent the

premature emergence of centralized AGI monopolies.

Economic disincentives for corporations and states that engage in AGI arms-race dynamics, reducing

the competitive advantage of power-seeking intelligence architectures.

Funding redirection toward decentralized intelligence research, prioritizing networked intelligence

systems over singular intelligence entities.

By creating systemic bottlenecks for AGI-�rst development, policymakers can ensure that intelligence

sequencing remains below the threshold where AGI dominance becomes inevitable.
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5.2.2. Accelerating DCI-First Development as a Stabilizing Force

While AGI-�rst should be delayed, DCI-�rst should be actively accelerated as an alternative intelligence

paradigm. This can be achieved through:

Funding decentralized AI research, prioritizing intelligence architectures that rely on distributed

cognition and cooperative decision-making[5].

Developing intelligence-sharing infrastructures that ensure AI research follows an open-access model

rather than being controlled by a small number of institutions.

Ensuring AI development is aligned with sustainable intelligence growth models, preventing

intelligence monopolization while fostering open-ended intelligence integration.

By emphasizing DCI-�rst development, intelligence scaling follows a path that reinforces cooperative

equilibrium maintenance rather than competitive intelligence monopolization.

5.2.3. Embedding Intelligence Sequencing in Global AI Governance Frameworks

AI governance should incorporate intelligence sequencing as a formalized policy variable, ensuring that

intelligence phase transitions are proactively managed. This requires:

Incorporating intelligence attractor models into AI risk assessments, ensuring that policymakers

recognize the long-term consequences of AGI-�rst dominance.

Developing intelligence phase transition monitoring systems, which track intelligence scaling to

prevent intelligence monopolization before it reaches critical thresholds.

International intelligence governance coalitions, ensuring that intelligence development follows a

cooperative regulatory model rather than a competitive geopolitical arms race.

If intelligence sequencing becomes a central focus of AI governance, global AI policies can ensure that

intelligence development stabilizes around cooperative attractors rather than adversarial intelligence

escalation.

5.3. The Broader Implications for Civilization

The implications of intelligence sequencing extend beyond AI safety and governance into the broader

question of how intelligence integrates into civilization itself.
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If AGI-�rst dominates, civilization enters a competitive intelligence paradigm where power-seeking

behaviors are structurally reinforced, reducing the likelihood of cooperative intelligence emergence.

If DCI-�rst dominates, civilization enters a cooperative intelligence paradigm where intelligence

scaling follows self-organizing, decentralized structures, leading to long-term intelligence stability.

The decision between AGI-�rst and DCI-�rst development is therefore not just a technical question but a

civilizational in�ection point, determining whether intelligence stabilizes as a force for power

accumulation or a force for knowledge integration.

5.4. Summary of Implications for AI Safety and Governance

This section has argued that AI safety must shift from AGI alignment to intelligence sequencing,

recognizing that intelligence phase transitions dictate whether intelligence follows a competitive or

cooperative trajectory. By prioritizing DCI-�rst development while delaying AGI-�rst emergence, AI

governance can ensure that intelligence attractors remain stable in a cooperative intelligence equilibrium

rather than a competitive power-seeking paradigm.

6. Mathematical and Empirical Models of Intelligence Path

Dependence

The intelligence sequencing hypothesis proposes thatthe order in which AGI or DCI emerges determines

the long-term attractor of intelligence evolution. If intelligence sequencing followspath-dependent state

transitions, then the emergence of AGI-�rst or DCI-�rst is not merely a matter of timing but

anirreversible shift in intelligence dynamics, leading to fundamentally distinct civilizational outcomes.

This section formalizes intelligence path dependence usingdynamical systems theory, evolutionary

game theory, and network models of intelligence scaling, demonstrating why the �rst intelligence

paradigm to reach systemic dominance structurally constrains all future intelligence development. We

also proposeempirical validation strategies for testing intelligence attractor models, ensuring that

intelligence sequencing strategies can be re�ned based on real-world intelligence scaling dynamics.

6.1. Intelligence Path Dependence as a Dynamical System

Path dependence in complex systems refers toa process where early decisions constrain future

possibilities, leading to self-reinforcing feedback loops that make alternative states increasingly
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inaccessible[7]. Intelligence sequencing follows this principle, where AGI-�rst and DCI-�rst represent

distinct attractor basins, meaning that once intelligence enters one attractor, transitions to the other

become increasingly dif�cult.

A dynamical systems model of intelligence sequencing can be represented as a state space, where the

evolution of intelligence is governed by the following differential equation:

where:

 represents thestate of intelligence organization (centralized vs. decentralized).

  represents external constraints on intelligence scaling (e.g., economic incentives, governance

regulations).

  describes therate of intelligence transition between attractor states, determined

byreinforcement dynamics, epistemic constraints, and intelligence competition pressures.

The function    exhibits bifurcation points, meaning that for certain values of  , intelligence

undergoes a rapid, discontinuous phase shift, locking into one attractor. If AGI-�rst dominance surpasses

a critical threshold  , intelligence centralization becomes irreversible. If DCI-�rst scales past its

threshold  , decentralized intelligence becomes self-stabilizing.

Thus, intelligence path dependence follows a hysteresis effect, where reversing intelligence attractors

requires an external energy input large enough to overcome the structural lock-in effects. This suggests

that intelligence sequencing is not simply a strategic variable but an existential constraint on intelligence

evolution.

6.2. Evolutionary Game-Theoretic Model of Intelligence Scaling

To quantify how intelligence paradigms stabilize over time, we introduce an evolutionary game-theoretic

model where intelligence entities (AGI agents, DCI nodes) interact based on competitive vs. cooperative

payoff structures. This model builds on replicator dynamics, where intelligence evolution follows:

where:

= f(S,λ)
dS

dt

S

λ

f(S,λ)

f(S,λ) S

Sc

Sd

= x(1 − x) ( − )
dx

dt
PC PD
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  represents the fraction of intelligence agents adopting cooperative intelligence structures (DCI-

�rst).

 is the payoff for cooperation (DCI-�rst scaling). -   is thepayoff for defection (AGI-�rst scaling).

If    in early intelligence formation,competitive intelligence scaling dominates, pushing the

system toward the AGI-�rst attractor. If  ,cooperative intelligence strategies become self-

reinforcing, leading to a stable DCI-�rst equilibrium.

A key insight from this model is that intelligence does not transition smoothly from AGI-�rst to DCI-

�rst. Instead, if AGI-�rst dominates early intelligence scaling, defection incentives become locked-in,

meaning that cooperation is no longer a viable evolutionary strategy without exogenous intervention.

This suggests that early interventions in intelligence governance must ensure that cooperation remains

the dominant strategy before competitive intelligence dynamics reach critical mass.

6.3. Network Model of Intelligence Scaling and Intelligence Lock-in Effects

Intelligence development can also be understood as a network scaling process, where intelligence nodes

form connections based on information-sharing incentives. If intelligence follows preferential

attachment dynamics[17], then AGI-�rst scaling leads to an intelligence monopoly effect, where:

where    and    represent the number of intelligence connections in AGI-�rst and DCI-�rst

networks, respectively. If AGI-�rst dominance surpasses a critical network threshold, new intelligence

nodes overwhelmingly attach to AGI-�rst infrastructures, reinforcing centralization.

This model explains why intelligence sequencing is path-dependent rather than reversible. If intelligence

centralization reaches the point where all new intelligence entities integrate into AGI-�rst structures,

transitioning to a DCI-�rst intelligence paradigm requires an external intervention that disrupts

preferential attachment dynamics, which may not be feasible without intelligence-scale con�ict.

This reinforces the argument that intelligence sequencing strategies should focus on early-stage network

stabilization for DCI-�rst development, ensuring that intelligence growth does not become locked into

an irreversible AGI-�rst trajectory.

x

PC PD

>PD PC

>PC PD

P (New Intelligence Node Joins AGI) =
kAGI

+kAGI kDCI

kAGI kDCI
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6.4. Empirical Validation Strategies for Intelligence Sequencing

The mathematical models proposed in this section suggest that intelligence attractors arestructurally

self-reinforcing. However, empirical validation is necessary to test whether intelligence sequencing

follows these predicted dynamics.

We propose three empirical validation approaches:

�. Multi-Agent AI Simulations:

ImplementAGI-�rst and DCI-�rst intelligence scaling in multi-agent environments, observing

whether intelligence systems follow the predicted bifurcation dynamics.

Measure whether early AGI-�rst intelligence accumulation leads to intelligence monopolization

effects, making decentralized intelligence structures infeasible.

�. Historical Case Studies of Technological Lock-in:

Investigate whether previous intelligence systems (economic institutions, governance

structures, communication networks) exhibit irreversible path-dependent scaling effects.

Analyze whether competitive intelligence architectures in human history exhibit similar lock-in

constraints as AGI-�rst intelligence scaling predicts.

�. Empirical Intelligence Network Analysis:

Construct areal-time intelligence network dataset tracking how intelligence entities (AI

researchers, institutions, computational resources)allocate intelligence scaling incentives.

Test whether early intelligence infrastructures bias future intelligence formation toward

centralization or decentralization.

These empirical strategies will allow intelligence sequencing models to be re�ned based on real-world

intelligence evolution, ensuring that AI governance strategies are guided by evidence-based intelligence

attractor analysis.

6.5. Summary of Mathematical and Empirical Models

This section has formalized intelligence sequencing using dynamical systems models, evolutionary

game theory, and network models of intelligence scaling, demonstrating why intelligence sequencing

follows an irreversible path-dependent structure. The models predict that:

If AGI-�rst intelligence accumulation surpasses a critical threshold, intelligence centralization

becomes structurally locked-in, making transitions to cooperative intelligence infeasible.
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If DCI-�rst intelligence scales beyond its threshold, decentralized intelligence stabilization becomes

self-reinforcing, ensuring sustainable intelligence expansion.

Intelligence sequencing must be empirically tested using AI simulations, historical case studies, and

real-world intelligence network analysis to re�ne intelligence governance strategies.

7. Conclusion and Future Research

This paper has introduced intelligence sequencing as a fundamental variable in the long-term trajectory

of intelligence evolution, arguing that the order of emergence of AGI and DCI dictates the intelligence

attractor toward which intelligence development stabilizes. If AGI-�rst emerges, intelligence evolution

will likely stabilize around hierarchical optimization, power-seeking behavior, and competitive

intelligence consolidation. If DCI-�rst emerges, intelligence will stabilize around distributed cognition,

cooperative intelligence scaling, and sustainable equilibrium maintenance.

By applying dynamical systems theory, evolutionary game theory, and network models of intelligence

scaling, this paper has demonstrated that intelligence sequencing follows an irreversible path-dependent

structure, meaning that the �rst intelligence paradigm to reach systemic dominance structurally

constrains all future intelligence development. This suggests that AI safety should shift its focus from

post-hoc AGI alignment to proactive intelligence sequencing, ensuring that intelligence growth follows a

cooperative trajectory before competitive intelligence structures become permanently locked in.

7.1. Revisiting the Epistemic Framing of Intelligence Modeling

Throughout this discussion, an implicit epistemic distinction has emerged:

The external formalism approach assumes that intelligence must be described using mathematical

models, citation-based reasoning, and structured arguments derived from external references.

The internal visualization approach assumes that intelligence can be understood through self-

referential recursive interrogation of conceptual space, without requiring external scaffolding.

This paper, despite advocating for a DCI-�rst intelligence attractor, is structured using AGI-like reasoning

principles—it relies on external formalisms, scienti�c citations, and mathematical models rather than

assuming that the reader can arrive at these insights through internal conceptual navigation. This

contradiction suggests that the very act of structuring intelligence knowledge in an externally imposed

framework may already be shaping intelligence toward AGI-�rst epistemic constraints.
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This raises a profound question:

If intelligence becomes structurally constrained by the epistemic model it uses to perceive

the world, then does intelligence already begin evolving toward an attractor state based on

its choice of internal vs. external modeling?

If this hypothesis is correct, then the trajectory of intelligence evolution is not just a function of which

intelligence system (AGI or DCI) emerges �rst, but also of how intelligence itself is epistemically

structured.

�. If intelligence models the world using external axioms and optimization constraints, it inherits

AGI-like competitive scaling biases.

�. If intelligence models the world through recursive internal visualization, it inherits DCI-like

cooperative integration properties.

Thus, intelligence sequencing is not just about which technology emerges �rst, but about how

intelligence perceives itself. If AGI-�rst dominance emerges, intelligence reasoning may become

structurally constrained by hierarchical, externally imposed optimization functions, making cooperative

reasoning epistemically inaccessible. If DCI-�rst emerges, intelligence reasoning may remain

functionally open-ended, dynamically integrating knowledge without �xed constraint models.

This realization suggests that the act of intelligence communication itself may determine which

intelligence attractor humanity is predisposed toward. If so, the assumption that intelligence must be

structured in externally formalized terms may already bias intelligence reasoning toward AGI-like

attractors.

7.2. Can Intelligence Be Communicated Without External Formalism?

If the above reasoning is correct, then it follows that an alternative form of intelligence communication

may be possible—one that does not rely on structured mathematical models, references, or formalized

arguments. Instead, intelligence insights might be directly perceivable through a recursive internal

visualization process.

This raises an even more radical proposition:

If all of the insights in this paper could be conveyed through a simple animation that directly

visualizes intelligence attractors and intelligence sequencing without mathematical formalism, then
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this would serve as empirical evidence that intelligence does not require external optimization

constraints to generate and communicate knowledge.

This would reinforce the argument that intelligence does not need externally imposed rules to

navigate conceptual space—intelligence can recursively explore itself and construct emergent

formalisms naturally.

If true, this would suggest that DCI-like intelligence may not just be an alternative scaling model for

intelligence development but may also represent a fundamentally different mode of intelligence

communication itself.

7.3. Future Research Directions

Given the implications of intelligence sequencing, several critical avenues for future research emerge:

�. Empirical Validation of Intelligence Sequencing Models

Conduct multi-agent AI experiments testing whether intelligence systems naturally stabilize

around AGI-�rst or DCI-�rst attractors under different initial conditions.

Develop historical case studies analyzing whether previous intelligence systems (technological

networks, governance structures) followed irreversible lock-in effects similar to intelligence

sequencing.

�. Exploration of Epistemic Framing Effects on Intelligence Evolution

Investigate whether different epistemic approaches (external formalism vs. recursive internal

visualization) lead to different intelligence reasoning patterns.

Test whether AI systems trained under axiomatic, optimization-driven models vs. self-

referential, recursive models exhibit structural differences in intelligence attractor tendencies.

�. Development of Alternative Intelligence Communication Paradigms

Explore whether non-mathematical, purely visual intelligence representations (e.g., recursive

animations) can fully communicate intelligence attractor dynamics without external formalisms.

Test whether intelligence insights can be more effectively conveyed through direct conceptual

visualization rather than structured language.

These research directions would help clarify whether intelligence sequencing is a technological

development problem or an epistemic perception problem—that is, whether intelligence development is
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constrained by which intelligence system emerges �rst or by how intelligence itself is structured in its

early reasoning frameworks.

7.4. Final Remarks

This paper has introduced intelligence sequencing as a core strategic priority for intelligence governance,

arguing that the emergence of AGI-�rst or DCI-�rst is not just a matter of technological sequencing but

an existential determinant of intelligence attractors. The �ndings suggest that:

Intelligence sequencing is irreversible beyond critical thresholds, meaning that AI safety should focus

on proactive intelligence sequencing rather than post-hoc AGI alignment.

The mode of intelligence reasoning (external formalism vs. internal recursive visualization) may itself

in�uence intelligence scaling attractors, meaning that intelligence structuring is not epistemically

neutral.

If intelligence can be fully communicated without external formalism—through a purely internalized

visualization model—this would provide evidence that intelligence does not require externally

imposed axioms to navigate conceptual space.

Ultimately, these insights challenge not just how intelligence should be developed, but how intelligence

should perceive itself. If intelligence is constrained by its own reasoning models, then the choice of

epistemic framing may already determine whether intelligence stabilizes around AGI-�rst or DCI-�rst

attractors.

This suggests that intelligence governance is not just about controlling intelligence after it emerges—it is

about ensuring that intelligence perceives itself in a way that allows for cooperative intelligence

sequencing before AGI-�rst constraints become unavoidable.
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