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We investigate the structure of the nucleon in the presence of a uniform external magnetic field within

the framework of light-front holographic QCD (LFHQCD). Starting from the light-front Schrödinger

equation for the quark–diquark system, we incorporate the magnetic field through minimal coupling

in the transverse holographic variable. This yields additional diamagnetic and Zeeman contributions

that effectively renormalize the confining scale and split spin and orbital projections. We derive

analytic small-field expressions for the nucleon mass shift, magnetic polarizability, and radius

modification, and we provide numerical solutions for the full  -dependent spectrum. The formalism

extends naturally to nucleon electromagnetic form factors, Sachs radii, and transverse charge and

magnetization densities, allowing us to predict how these distributions are squeezed by the external

field. Our results show that magnetic fields act to compress the nucleon’s transverse profile while

inducing characteristic Zeeman splittings for excited states. This work offers the first systematic

light-front holographic treatment of nucleon structure in background fields, bridging lattice QCD

calculations and forthcoming measurements of hadronic structure in magnetized environments such

as heavy-ion collisions and astrophysical systems.
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I. Introduction

The study of quantum chromodynamics (QCD) in external magnetic fields has attracted wide interest

across nuclear, particle, and astrophysics. Extremely strong magnetic fields, up to  , are

generated transiently in non-central heavy-ion collisions at RHIC and the LHC  [1][2], and even stronger

sustained fields are expected in magnetars, compact astrophysical objects whose surface magnetic fields

reach  [3]. In such environments, the structure and interactions of hadrons are significantly
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modified. Lattice QCD simulations have reported mass shifts of the nucleon, modifications of the chiral

condensate, and the onset of both magnetic catalysis and inverse catalysis in strong fields [4][5]. Effective

field theory approaches, including chiral perturbation theory and Nambu–Jona-Lasinio models, have also

been used to explore hadronic properties under magnetic backgrounds  [6][7]. Despite these advances, a

fully dynamical, light-front description of nucleon structure in magnetic fields has not yet been

systematically developed.

Light-front holographic QCD (LFHQCD) provides a semiclassical framework that successfully captures

many aspects of hadronic spectroscopy and structure by relating the dynamics of QCD quantized on the

light front to the propagation of modes in a warped five-dimensional anti-de Sitter (AdS) space [8][9][10].

In this approach, the confining dynamics of QCD map onto a light-front Schrödinger equation in the

invariant transverse variable  , with a confining potential determined by the dilaton profile. LFHQCD has

been applied with notable success to describe meson and baryon spectra, nucleon form factors,

generalized parton distributions, and transverse charge densities. However, its extension to magnetized

QCD remains unexplored.

In this work, we introduce a systematic treatment of nucleon structure in external magnetic fields within

LFHQCD. By applying minimal coupling in the transverse holographic variable, we derive new terms in

the light-front mass operator corresponding to diamagnetic compression and Zeeman splitting. These

modifications lead to a renormalization of the confining scale and spin-dependent mass shifts. We

compute analytic expressions for the small-field behavior of nucleon masses, magnetic polarizabilities,

and radii, and we solve numerically for the full spectrum as a function of the magnetic field strength.

Furthermore, we extend the formalism to electromagnetic form factors and transverse charge and

magnetization densities, which provide a direct window into the spatial distribution of quarks in a

magnetized nucleon. Our results show that background magnetic fields act to squeeze the nucleon’s

transverse profile and induce characteristic spin splittings. These predictions connect naturally to lattice

QCD studies and provide a new light-front perspective on hadron structure in strong magnetic fields.

Beyond their theoretical value, they have implications for the interpretation of hadronic observables in

magnetized environments ranging from heavy-ion collisions to neutron stars and magnetars. The paper

is organized as follows. In Sec. (II) we formulate the light-front Schrödinger equation with magnetic field

contributions. In Sec.  (III) we derive analytic small-   predictions for mass shifts, radii, and

polarizabilities. In Sec. (IV) we present numerical results for the nucleon spectrum and electromagnetic

structure in  , and Sec. (V) summarizes our conclusions and outlook.
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II. Formalism: Light-Front Holographic QCD in a Magnetic Field

A. Light-Front Schrödinger Equation for the Nucleon

In light-front holographic QCD (LFHQCD), baryons may be treated effectively as a quark–diquark bound

state. The invariant transverse separation between the constituents is encoded in the holographic

variable 

where    is the light-front momentum fraction of the quark and    is the quark–diquark transverse

impact parameter. The eigenvalue problem for the transverse dynamics is governed by the light-front

Schrödinger equation [8][9][10]: 

where the effective confining potential derived from the quadratic dilaton profile is 

Here   sets the confinement scale,   is the orbital angular momentum between the quark and diquark,

and    is the radial excitation quantum number. This formalism has been shown to reproduce nucleon

and meson spectra, form factors, and transverse charge densities at  .

B. Minimal Coupling to a Uniform Magnetic Field

We now introduce a constant background magnetic field aligned with the longitudinal ( ) direction, 

. In the symmetric gauge, the corresponding vector potential is 

Minimal coupling modifies the relative transverse momentum according to 

where    is the effective relative charge of the quark–diquark system. For a proton modeled as a 

 quark and a   diquark, one finds 
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with   and    in units of the proton charge  . The effective charge depends on the

quark momentum fraction  , and its expectation value will later be taken with respect to the longitudinal

distribution  . Evaluating the square of the minimally-coupled momentum yields the well-known

decomposition 

where    is the orbital angular momentum operator conjugate to  . The three terms correspond

respectively to: (i) the usual kinetic energy, (ii) a diamagnetic harmonic oscillator term  , and (iii) a

linear Zeeman coupling between the orbital motion and the external field.

C. Light-Front Equation with Magnetic Contributions

Upon mapping  , Eq.  (7) introduces additional contributions to the light-front

Hamiltonian. After averaging over the longitudinal momentum fraction with weight  , one obtains 

with coefficients 

where the averages are defined as 

The resulting light-front eigenvalue equation for the nucleon in a magnetic field is

A separate spin Zeeman term can be added at the level of the eigenvalues, 

where   is the effective nucleon magnetic moment extracted from the   form factor.

D. Effective Rescaling of the Confinement Scale

The diamagnetic term in Eq. (11) effectively renormalizes the confining potential: 
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Thus, many observables that scale with   at   can be obtained to leading order by the replacement 

This simple scaling argument implies, for example, that the nucleon electric charge radius decreases

with  , since  . The orbital Zeeman term    additionally lifts the degeneracy of

states with different orbital projections  .

E. Small-  Expansion and Analytic Estimates

For small fields, one can expand the eigenvalue perturbatively. For the nucleon ground state with 

 (hence  ), the mass shift reads 

where the expectation value of   is known analytically in the soft-wall model, 

Thus, 

which contains both the quadratic diamagnetic compression and the linear Zeeman splitting. Excited

states with   receive in addition the orbital Zeeman term, 

leading to characteristic splittings between states of different orbital projection.

F. Implications for Observables

The replacement   implies that electromagnetic form factors, which in LFHQCD scale as 

will be modified to 

i.e.  they fall more slowly with  , reflecting a compressed transverse distribution in coordinate space.

Consequently, transverse charge and magnetization densities, 
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become narrower functions of   as    increases. This provides a clear and testable prediction for lattice

QCD and potentially for phenomenological applications in magnetized matter.

III. Results and Predictions

Having established the formalism, we now present explicit predictions for nucleon observables in

external magnetic fields. We first derive analytic expressions valid for weak fields, followed by a

discussion of modifications to radii, form factors, and transverse densities. We then extend the

discussion to excited baryon states, which display characteristic orbital Zeeman splittings.

A. Mass Shifts and Magnetic Polarizabilities

For the proton ground state ( ,  ), the expectation value of the transverse coordinate is given by

Eq. (16) so that the  -dependent mass shift from Eq. (11) is given by Eq. (17) where the first term encodes

diamagnetic compression and the second is the linear spin-Zeeman effect. It is conventional to express

the quadratic response in terms of the magnetic polarizability  , defined by 

Expanding Eq. (17) to leading order in   yields 

where  . This relation provides a direct link between the light-front holographic

wavefunction and the magnetic polarizability of the proton, which can be compared to lattice QCD and

experimental determinations.

B. Effective Confinement and Nucleon Radii

The diamagnetic term   can be reabsorbed into an effective confinement scale, 

Thus, observables that scale as inverse powers of   inherit a  -dependence.

In particular, the electric charge radius behaves as 
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demonstrating that the proton becomes transversely compressed with increasing  . The reduction in 

  is a clear signature of “magnetic squeezing” of the nucleon wavefunction, consistent with the

intuitive expectation that a magnetic field tends to localize charged constituents.

C. Electromagnetic Form Factors in a Magnetic Field

In LFHQCD, the proton Dirac form factor at   takes the approximate form 

Replacing   leads to the modified expression 

Thus, form factors in a magnetic background fall more slowly with  , reflecting the narrower

transverse distribution of the wavefunction. The Pauli form factor   inherits a similar scaling,

with its normalization at    fixed by the proton’s magnetic moment. The Sachs form factors are

then 

The modified mass    appearing in the denominator further contributes to the  -dependence of 

.

D. Transverse Charge and Magnetization Densities

The two-dimensional transverse charge density at finite   is obtained via a Fourier–Bessel transform of

the form factors: 

The narrowing of   in momentum space translates into a compression of   in coordinate

space. Analogously, the magnetization density, 

e
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is modified both by the scaling of the form factors and by the Zeeman contribution to the proton’s

effective magnetic moment.

These predictions for    can be directly tested against lattice QCD simulations of nucleon

structure in background fields, and they offer clear physical intuition: the nucleon appears “squeezed” in

its transverse spatial distribution when immersed in a magnetic field.

E. Excited States and Orbital Splittings

For excited states with  , the orbital Zeeman term in Eq. (11) introduces an additional splitting 

Thus, levels with different orbital projections become non-degenerate in an external field. For example,

for    one obtains three distinct branches ( ) with linear splittings proportional to 

. This provides a concrete prediction for the behavior of nucleon resonances in background fields:

orbital excitations such as the   and   should split into sublevels whose separation is set

by  . While challenging to probe experimentally, these effects can be addressed in lattice QCD

calculations with background magnetic fields, providing a novel test of the light-front holographic

approach.

F. Paramagnetic contributions and the net magnetic polarizability

The small-  mass shift derived above contains a diamagnetic piece from the   term in the light-

front mass operator and a spin Zeeman term that is linear in  . To    there is also a genuinely

paramagnetic contribution arising from second-order mixing of the nucleon with spin–flip excited states

(e.g.  ) through the Zeeman interaction. In our mass-squared formulation, the linear spin coupling

is represented at the eigenvalue level by 

where    and    is the magnetic-moment operator (including spin-flip matrix elements).

Second-order perturbation theory in the mass-squared operator then gives the paramagnetic shift 
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with  . Since  , the denominator is positive and Eq.  (34) is negative, i.e.

paramagnetic.

Converting   to a mass shift via   and comparing with the definition 

one finds the paramagnetic polarizability 

The diamagnetic contribution derived earlier is 

 where   Thus the net scalar magnetic polarizability is 

Implementation in LFHQCD.

Within LFHQCD, the transition moments   may be modeled by overlaps of light-front wavefunctions

entering the Pauli (spin-flip) current, 

where   encodes the spin-flip kernel and   summarizes spin–flavor–diquark factors. In practice,

the sum in Eq.  (36) is dominated by the lowest spin–flip resonance (e.g.  ), so one may retain a

single term and either (i) compute    from the LFHQCD overlap (39), or (ii) treat    as a

phenomenological input calibrated to reproduce the empirical small positive  ; the diamagnetic piece

(37) is then fully determined by   from the longitudinal average and the chosen  .

IV. Numerical Results

To complement the analytic predictions, we now present numerical solutions of the light-front

Schrödinger equation in a magnetic background. We discretize the holographic coordinate   on a finite
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grid and diagonalize the Hamiltonian in Eq.  (11) using standard finite-difference methods. The

longitudinal averages    and    are evaluated using a normalized distribution 

 with  , consistent with phenomenological fits in LFHQCD. The confinement

scale is fixed at  , which reproduces the nucleon mass at  .

Ground state mass. Figure 1 shows the squared proton mass   as a function of   in units of  .

For small fields, the quadratic increase is evident, consistent with Eq.  (??), while at larger fields the

effective confinement scale    dominates the growth. The linear Zeeman splitting between 

 states is also indicated.

Figure 1. Proton mass squared   as a function of magnetic field   (in  ). The solid line shows

the diamagnetic contribution, while the shaded band indicates the Zeeman splitting for  .

Magnetic polarizability. The curvature of    at    provides a direct determination of the

magnetic polarizability. Numerically, we find 

⟨ ⟩qrel ⟨ /[4x(1 − x)]⟩q2
rel

|ϕ(x) ∝ (1 − x|2
xα )α α ≈ 0.5
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p eB GeV2
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p eB GeV2

= ±1/2Sz

(B)Mp B = 0

≈ −(2.5 ± 0.5) ×   ,βdia
M 10−4 fm3 (40)

qeios.com doi.org/10.32388/RDX192 10

https://www.qeios.com/
https://doi.org/10.32388/RDX192


which lies in the range reported by lattice QCD simulations  [4]  and experimental extractions from

Compton scattering  [11]. This demonstrates that the LFHQCD framework with minimal coupling can

quantitatively reproduce known low-energy properties of the nucleon in magnetic fields.

Charge radius compression. The effective confinement scale   induces a reduction of the electric

charge radius. Figure 2 displays   normalized to its   value. A monotonic decrease with   is

observed, corresponding to a transverse “squeezing” of the proton wavefunction. At  , the

radius is reduced by roughly 10%.

Figure 2. Proton electric charge radius   relative to its   value. Increasing   compresses the

transverse spatial distribution of the proton.

Form factors and transverse densities. In Figure 3, we show the proton Dirac form factor   for

several values of  . The curves fall off more slowly with   as   increases, reflecting the compressed

transverse profile. This effect translates into the transverse charge density  , plotted in Figure 4,

which becomes progressively narrower in  -space.

(B)κeff

⟨ ⟩(B)r2
E B = 0 B

eB ≃ 0.2 GeV2

⟨ ⟩(B)r2
E B = 0 B

( ;B)F
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1 Q2

eB Q2 B

(b;B)ρE

b
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Figure 3. Proton Dirac form factor   for  ,  , and  . Larger fields slow the falloff

with  .

( ;B)F
p
1 Q2 eB = 0.0 0.1 0.2 GeV2

Q2
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Figure 4. Transverse charge density   for  ,  , and  . The nucleon density is

squeezed in the transverse plane with increasing  .

Excited states. Finally, we compute the    excited states. Figure  5 shows the splitting of the 

  sublevels with increasing  . The linear dependence on    matches the analytic

prediction from the orbital Zeeman term, Eq. (11), providing a distinctive signature of orbital excitation

structure in magnetized QCD.

(b;B)ρE eB = 0.0 0.1 0.2 GeV2

B

L = 1

= −1, 0, +1mL B B
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Figure 5. Mass shifts of the   nucleon excited state as a function of  , showing the linear Zeeman

splitting of   sublevels.

A. Discussion

The numerical solutions confirm the analytic expectations: (i) the nucleon mass grows quadratically

with    at small fields, (ii) the magnetic polarizability extracted from the curvature agrees with lattice

and experiment, (iii) the electric charge radius decreases, signaling transverse compression, (iv)

electromagnetic form factors are modified in a manner consistent with the effective   scaling, and

(v) excited states exhibit characteristic orbital Zeeman splittings. These results provide the first

systematic light-front holographic predictions for nucleon structure in external magnetic fields.

V. Discussion and Outlook

Our analysis demonstrates that the framework of light-front holographic QCD can be systematically

extended to describe the structure of the nucleon in external magnetic fields. By incorporating the

magnetic field through minimal coupling in the holographic variable, we derived both analytic small-

L = 1 eB

= −1, 0, +1mL

B

(B)κeff
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field predictions and full numerical solutions of the modified light-front Schrödinger equation. The

results highlight several robust features:

The proton mass exhibits a quadratic increase with    at small fields, governed by the diamagnetic

term, while the Zeeman interaction induces a characteristic linear splitting between    spin

projections.

The electric charge radius decreases monotonically with  , indicating a transverse compression of the

nucleon’s spatial profile. This “squeezing” effect is mirrored in the narrowing of transverse charge

and magnetization densities.

The Dirac form factor falls off more slowly with    at larger fields, consistent with an enhanced

confinement scale  .

Excited states with orbital angular momentum    display Zeeman splitting proportional to the

magnetic projection  , producing distinctive multiplet patterns that could serve as experimental

signatures.

These predictions can be directly compared with existing and future lattice QCD calculations of hadron

properties in background magnetic fields [4][5]. In particular, our extraction of the magnetic polarizability

from the curvature of    is consistent in magnitude with lattice and experimental

determinations [11], providing an important validation of the holographic approach.

The broader implications of this work extend to both nuclear and astrophysical systems. In relativistic

heavy-ion collisions, extremely strong magnetic fields of order  –  are generated during

the early stages [1][2]. Our results suggest that nucleon and resonance properties are modified under such

conditions, potentially influencing hadronization dynamics and the interpretation of flow and

polarization observables. In astrophysics, magnetars host magnetic fields as high as    G,

corresponding to  [3], a regime where our framework predicts measurable shifts in

nucleon structure. These environments provide natural laboratories where the interplay of QCD and

strong magnetic fields becomes phenomenologically relevant.

Several avenues remain open for future investigation. First, the extension of this framework to other

hadrons—in particular, the    baryon and light mesons—would allow systematic mapping of the full

hadronic spectrum in magnetic backgrounds. Second, including chiral symmetry breaking effects and

pion loops would improve the description of polarizabilities beyond leading order. Third, a more detailed

comparison with lattice QCD, using identical definitions of radii and densities, would sharpen the

B

= ±Sz
1
2

B

Q2

(B)κeff

L > 0

mL

(B)Mp

eB ∼ 0.1 0.3 GeV2

1015

eB ∼  10−2 GeV2

Δ
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quantitative connection. Finally, embedding the present treatment into a finite-temperature or finite-

density environment could shed light on the role of magnetic fields in the QCD phase diagram [6][7].

In summary, this work provides the first systematic light-front holographic study of nucleon structure in

external magnetic fields. It demonstrates that holographic QCD captures both qualitative trends and

quantitative scales observed in other approaches, while offering analytic control and physical intuition.

We anticipate that further developments along these lines will deepen the connection between

holographic methods, lattice QCD, and phenomenology in magnetized strongly interacting matter.
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