
7 February 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

LemmaHead: RAG Assisted Proof
Generation Using Large Language
Models

Tianbo Yang1, Mingqi Yang2, Hongyi Zhao2, Tianshuo Yang3

1. School of Engineering and Applied Science (SEAS), University of Pennsylvania, United States; 2. Independent researcher; 3. University

of Michigan, United States

Developing the logic necessary to solve mathematical problems or write mathematical proofs is one

of the more di�cult objectives for large language models (LLMS). Currently, the most popular

methods in literature consists of �ne-tuning the model on written mathematical content such as

academic publications and textbooks, so that the model can learn to emulate the style of

mathematical writing. In this project, we explore the e�ectiveness of using retrieval augmented

generation (RAG) to address gaps in the mathematical reasoning of LLMs. We develop LemmaHead,

a RAG knowledge base that supplements queries to the model with relevant mathematical context,

with particular focus on context from published textbooks. To measure our model’s performance in

mathematical reasoning, our testing paradigm focuses on the task of automated theorem proving

via generating proofs to a given mathematical claim in the Lean formal language.

1. Introduction

Formal proof generation is one of the foundations of advanced mathematics. Despite the recent

advancements in large language models (LLMs), automating the process of generating and verifying

formal mathematical proofs remains a signi�cant challenge. Formal proofs are important for

verifying the correctness of mathematical reasoning, and automating this process can assist

mathematicians, educators, and students in exploring complex problems with greater e�ciency and

accuracy. Our goal is to enable LLMs to generate formal proofs from mathematical problems while

ensuring correctness through validation. By leveraging retrieval-augmented generation (RAG) to

Qeios

qeios.com doi.org/10.32388/RFA8LE 1

https://www.qeios.com/
https://doi.org/10.32388/RFA8LE


provide the model with authoritative mathematical references, we aim to improve reasoning accuracy

and facilitate formal proof generation.

2. Background

Mathematics, particularly at advanced levels such as those encountered in Olympiad competitions,

presents a formidable challenge due to its reliance on rigorous reasoning, precise notation, and

creative problem-solving strategies. Traditional computational tools are good at numerical

calculations and symbolic manipulations but struggle to handle the detailed logical structures and

formal proofs required in high-level mathematics. This limitation underscores the need for systems

that can not only understand but also generates and verify formal mathematical proofs.

Recent advances in natural language processing (NLP) and large language models (LLMs) have

demonstrated remarkable capabilities in reasoning, contextual understanding, and text generation.

Models like GPT-4 have shown promise in solving mathematical problems, but their utility for formal

proof generation remains constrained by a lack of structured access to authoritative mathematical

knowledge and the challenges of formal proof representation in languages like Lean. Furthermore, the

absence of a robust veri�cation mechanism complicates e�orts to ensure the validity of generated

proofs, which are essential in mathematical reasoning.

To address these challenges, our project leverages retrieval-augmented generation (RAG) to enhance

the LLM’s ability to generate accurate, contextually grounded mathematical proofs. By integrating

authoritative mathematical resources, such as textbooks on algebra, geometry, and number theory,

into a structured knowledge base, we aim to provide the model with precise, contextually relevant

references. This structured approach not only improves the reasoning quality of the LLM but also

bridges the gap between informal mathematical language and formal proof systems like Lean.

3. Related Work

Extensive previous research inspired the methodology of this research. From Ahn et al.(2024)[1]’s

review over LLM application over math problem solving, LLM Prompt and In-text example are

highlightened for their signi�cant impact over performance. Empirical evidence from other reseach

also proposed the signi�cance of relevant in-text context. Didolkar et al.(2024)[2]  shows proposes a

theoritical framework that LLM performance can be boosted through case speci�c skills and provide

qeios.com doi.org/10.32388/RFA8LE 2

https://www.qeios.com/
https://doi.org/10.32388/RFA8LE


empirical evidence through math problem solving. Inspired by this research, we continued the

experiment on providing more relevant context in prompt to improve LLM performance in this

scenario. Building on these insights, Dong et al.(2024)[3]  integrate reinforcement learning

mechanisms with LLMs to enable automated theorem proving, showing the importance of reward-

based approaches for proof generation. Frieder et al.(2023)[4] further investigate LLMs like GPT-4 and

Claude 2, demonstrating the ability to ”search” for relevant information when tackling mathematical

problems, bridging gaps between formal systems and LLM reasoning. Lewis et al.(2020)[5] introduce

RAG models that combine parametric memory from pre-trained seq2seq models with non-parametric

memory accessed through dense vector retrieval, demonstrating its ability to address tasks requiring

explicit knowledge access and manipulation. Liu et al.(2023)[6]  construct a robust benchmark for

evaluating proof generation models, providing a foundation for measuring LLM performance in

formal reasoning tasks. Zheng et al.(2021)[7]’s paper provides the miniF2F dataset, which illustrates a

uni�ed cross-system benchmark for formal Olympiad-level mathematical problems.

4. Methodology

We use OpenAi API to access GPT-4 as our baseline LLM model. In the control group, we directly

prompt GPT-4 to generate formal proofs in the Lean language, before running the generated code in

Lean to verify its correctness. Our experimental group is divided into three separate pipelines

integrating GPT-4 with our LemmaHead RAG knowledge base, allowing it to provide mathematical

context for the LLM to use to augment its response. The �rst pipeline makes a simple query to

LemmaHead for mathematical context, while the other two pipelines employ enhanced query

generation (EQG) and iterative proof augmentation (IPA) to more fully leverage the bene�ts provided

by LemmaHead.

For evaluation, we compare the performance of the baseline GPT-4 with our RAG-assisted models.

Our evaluation metric is the rate at which the models successfully generate a correct proof in the Lean

formal language. This makes it easy to check the correctness of the generated proofs using a proof

veri�cation algorithm.

4.1. Datasets

For evaluation, we compare the performance of the baseline GPT-4 with our RAG-assisted models on

the MiniF2F dataset. MiniF2F consists of 488 informal problem statements drawn from the AIME,

qeios.com doi.org/10.32388/RFA8LE 3

https://www.qeios.com/
https://doi.org/10.32388/RFA8LE


AMC, and the International Mathematical Olympiad (IMO), as well as material from high-school and

undergraduate mathematics courses [7]. These problems are divided equally into a validation set and a

test set.

4.2. Constructing the LemmaHead Retrieval-Augmented Generation (RAG) Knowledge

Base

A key component of our approach involves building a retrieval-augmented generation (RAG) pipeline

that supplies the Large Language Model (LLM) with relevant mathematical references. These

references are drawn from a corpus of authoritative textbooks commonly used in preparation for

Olympiad-level mathematics competitions. The selected textbooks includes essential domain

knowledge —inequalities, number theory, algebra, and functional equations—and provide problem

statements, theoretical results, example solutions, and methodological insights. Our goal is to

incorporate this textual data into a structured RAG database, enabling the model to leverage these

foundational materials to improve reasoning quality and answer accuracy.

4.2.1. Data Extraction and Normalization

A signi�cant challenge arose during the digitization of these textbooks, as conventional PDF-to-text

extraction tools struggled to accurately capture mathematical expressions and special symbols

intrinsic to Olympiad-style problem statements and proofs. To address this, we employed a multi-

stage pipeline centered around a vision-based approach. First, we segmented the PDFs into individual

page images, ensuring each page’s layout and content—especially diagrams, equations, and notations

—were preserved. Next, we utilized a GPT-based image recognition capability to read each page image

and transcribe the content into a LaTeX-formatted text. By converting visual data directly into LaTeX,

we maintained the �delity of complex equations and structural relationships among mathematical

objects, allowing for subsequent processing and embedding with minimal loss of information.

4.2.2. Chunking and Structuring the Content

To ensure the RAG database is semantically coherent and contextually meaningful, we carefully

designed a chunking strategy. Rather than separating problems from their corresponding solutions—

a fragmentation that could dilute the contextual integrity—we preserved these pairs within the same

chunk. This way, each chunk re�ects a self-contained logical unit, such as a single problem and its

qeios.com doi.org/10.32388/RFA8LE 4

https://www.qeios.com/
https://doi.org/10.32388/RFA8LE


solution, or a cohesive theoretical exposition, rather than interleaving multiple unrelated items. To

facilitate this, we crafted system prompts guiding the GPT-based parser to split the LaTeX-rendered

text into logically distinct segments. Instructions emphasized the identi�cation and preservation of

thematic boundaries, ensuring that theoretical discussions, worked examples, and problem-solution

pairs were isolated into discrete, context-rich chunks. This segmentation preserves the integral

meaning of each source item, making it easier for the retrieval module to surface relevant pieces of

information at inference time.

4.2.3. Populating the RAG Database

With the textbook content segmented into coherent LaTeX-based chunks, each unit was then

embedded using the CHROMA RAG framework. Through GPT-based embedding functions, we

transformed each chunk into a vector representation that captures its semantic essence. These

embeddings, stored in the CHROMA database, serve as the backbone of our retrieval process. At

inference time, when the LLM encounters a new Olympiad-level problem—such as one drawn from an

AMC or International Mathematical Olympiad (IMO) scenario—it queries the RAG database. The

database returns the top semantically relevant segments, such as proven lemmas, known inequalities,

classic examples, or similar problem structures and their respective solution patterns. By

incorporating these retrieved references into the prompt, the model gains immediate, contextually

grounded knowledge. This provides the LLM with a strong foundation upon which it can reason more

e�ectively, apply established theorems, recall problem-solving strategies, and ultimately improve its

performance on challenging mathematical tasks.

qeios.com doi.org/10.32388/RFA8LE 5

https://www.qeios.com/
https://doi.org/10.32388/RFA8LE


4.3. Constructing the RAG pipelines

Figure 1. Basic RAG pipeline

With the RAG knowledge base constructed, we can now integrate it with GPT-4 and Lean to complete

our automated proof generation pipeline. The basic process is shown in �gure 1.

For each problem in the MiniF2F dataset, we obtain its informal problem statement (in LaTex) and use

it to generate a query to LemmaHead. LemmaHead then returns the relevant mathematical context

based on a similarity search using word embeddings. Next, we combine informal problem statement

with the retrieved context to get an augmented prompt to GPT-4. GPT-4 is �rst prompted to generate

an informal proof (in latex), and then asked to convert the informal proof into a formal Lean proof.

Finally, we run the the generated formal proof in the Lean environment to verify its correctness.

4.3.1. Enhanced query generation (EQG)

To better utilize the LemmaHead knowledge base, we apply enhanced query generation (EQG). In the

RAG pipeline with EQG, we �rst prompt GPT-4 to generate a list of keywords of mathematical

concepts, theorems, lemmas, and propositions needed to solve the problem as described by the

informal problem statement. Using these keywords, we produce an enhanced query to LemmaHead

qeios.com doi.org/10.32388/RFA8LE 6

https://www.qeios.com/
https://doi.org/10.32388/RFA8LE


that targets mathematical knowledge relevant to the problem. This enhanced query drastically

improves the quality and comprehensiveness of the context returned from LemmaHead.

Figure 2. RAG pipeline with enhanced query generation

Our second RAG pipeline tests the impact of EQG on the overall task of RAG assisted proof generation.

The process is illustrated in �gure 2.

4.3.2. Iterative proof augmentation (IPA)

Both the basic RAG framework and RAG with EQG rely on GPT-4’s ability to perform zero-shot

context retrieval and proof generation. However, our experiments demonstrate that the LLM’s ability

to perform either task is highly unreliable. To address this weakness, we propose iterative proof

augmentation (IPA), a technique for iteratively improving query and proof generation. Each time after

generating an informal proof, we perform EQG by prompting GPT-4 again to generate a list of

qeios.com doi.org/10.32388/RFA8LE 7

https://www.qeios.com/
https://doi.org/10.32388/RFA8LE


keywords of mathematical concepts, theorems, lemmas, and propositions needed to solve the

problem, with both the original informal problems statement and the newly generated informal proof

as context. These keywords are then used to query LemmaHead to provide higher quality context,

which is further used by the LLM to write an improved version of the informal proof. The process is

repeated for   iterations.

In our experiments, we arbitrarily set   and observed signi�cant improvements in the quality and

correctness of both informal and formal generated proofs. IPA is the basis for our third RAG pipeline,

illustrated in �gure 3.

Figure 3. RAG pipeline with iterative proof augmentation

σ

σ = 5

qeios.com doi.org/10.32388/RFA8LE 8

https://www.qeios.com/
https://doi.org/10.32388/RFA8LE


5. Experimental Results

We test our models on both the validation and test datasets of MiniF2F. The problems in MiniF2F are

given as informal statements in LaTex form  [7], so no pre-processing is needed. We measure the

Pass@1 rate of each model, which is the correctness rate of the generated formal Lean proof after only

1 attempt by the model. Thus, no model can try multiple times to generate a proof.

Table 1 displays the models’ performances in the MiniF2F validation set, while table 2 shows their

correctness rates on the test set. Besides our models, we included the performances of two state-of-

the-art LLM proof generators for comparison. Human-guided GPT-4 is a model whose context is

supplemented with human written informal proofs  [6], while GPT-  is a GPT-3 model �netuned on

large quantities of mathematical data [7].

GPT-

4

RAG-assisted

GPT-4

RAG-assisted GPT-4

with EQG

RAG-assisted GPT-4

with IPA

Human-guided

GPT-4

GPT-

9.4% 2.3% 25.2% 40.0% 11.5% 23.9%

Table 1. Correctness rates of formal proof generators on the MiniF2F validation dataset [6], [7]

GPT-

4

RAG-assisted

GPT-4

RAG-assisted GPT-4

with EQG

RAG-assisted GPT-4

with IPA

Human-guided

GPT-4

GPT-

9.0% 2.5% 27.6% 32.4% 8.6% 24.6%

Table 2. Correctness rates of formal proof generators on the MiniF2F test dataset [6], [7]

As shown in the table, RAG-assisted GPT-4 with IPA substantially outperforms the state-of-the-art

models in terms of Pass@1 rate on both datasets, while RAG-assisted GPT-4 with EQG slightly

outperforms GPT- . An interesting observation is that basic RAG-assisted GPT-4 without any

improvements drastically underperforms even compared to GPT-4 without RAG. This may be due to

f

f

f

f

qeios.com doi.org/10.32388/RFA8LE 9

https://www.qeios.com/
https://doi.org/10.32388/RFA8LE


poor querying of LemmaHead resulting in unrelated context being extracted, demonstrating that RAG

can actually be detrimental to the performance of LLM proof generators if context retrieval is not

handled properly.

6. Conclusion

In this paper, we developed LemmaHead, a RAG knowledge base that supplements queries to the

model with relevant mathematical context, and demonstrated the potential of RAG-assisted LLM

proof automation. With the addition of EQG and IPA, we have shown that RAG-assisted LLM proof

generation can substantially outperform state-of-the-art proof generators.

Although our methodology showed promising results relative to state-of-the-art models, we have not

addressed the limitations fundamental to current LLM-based automated proof systems. Currently,

even the most advanced language models such GPT-4 struggle with the task of zero-shot and few-

shot mathematical proof writing, especially for di�cult IMO-level problems. There are two

de�ciencies that comprise this issue; the �rst is that LLMs often lose track of the crucial information

when generating long proofs, resulting in the �nal output being incomplete. Newer models are much

better at generating complete proofs, but they still struggle with the second problem: logically putting

together a correct proof. To address these limitations, we proposed IPA, but this technique multiplies

the inference time of the model by the number of iterations.

In our experiments, we only tested RAG-assisted proof generation with IPA for a small number (5) of

iterations due to computational constraints. Even so, we observed a substantial improvement in

Pass@1 correctness rates, and that these rates seem to increase with more iterations. For further

research, we would like to test the performance of IPA for large numbers of iterations. We hypothesize

that there is a limit to the potential of IPA due to diminishing returns in improvement for increasing

the number of iterations. Furthermore, we would also like to explore RAG-assisted proof generation

with models other than GPT-4, such as Llama, Gemini, and Claude.

References

1. ^Ahn J, Verma R, Lou R, Liu D, Zhang R, Yin W (2024). "Large Language Models for Mathematical Reas

oning: Progresses and Challenges". arXiv preprint arXiv:2402.00157. Available from: https://arxiv.org/a

bs/2402.00157. EACL 2024 Student Research Workshop, 8 pages.

qeios.com doi.org/10.32388/RFA8LE 10

https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2402.00157
https://www.qeios.com/
https://doi.org/10.32388/RFA8LE


2. ^Didolkar A, Goyal A, Ke NR, Guo S, Valko M, Lillicrap T, Rezende D, Bengio Y, Mozer M, Arora S (2024).

"Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving". arXiv preprint

arXiv:2405.12205. Available from: https://arxiv.org/abs/2405.12205.

3. ^Dong K, Mahankali A, Ma T (2024). "Formal Theorem Proving by Rewarding LLMs to Decompose Pro

ofs Hierarchically". ArXiv.org. Available from: https://arxiv.org/abs/2411.01829.

4. ^Frieder S, Trimmel M, Alawadhi R, Gy K. "LLM vs ITP." In: Proceedings of MathAI 2023; 2023. Availabl

e from: https://mathai2023.github.io/papers/19.pdf.

5. ^Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, Küttler H, Lewis M, Yih W-T, Rocktäschel

T, Riedel S, Kiela D (2020). "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks". Ar

Xiv.org. Available from: https://arxiv.org/abs/2005.11401.

6. a, b, c, dLiu C, Shen J, Xin H, Liu Z, Yuan Y, Wang H, Ju W, Zheng C, Yin Y, Li L, Zhang M, Liu Q (2023). "FI

MO: A Challenge Formal Dataset for Automated Theorem Proving". ArXiv.org. Available from: https://ar

xiv.org/abs/2309.04295.

7. a, b, c, d, e, fZheng K, Han JM, Polu S (2022). "MiniF2F: A Cross-System Benchmark for Formal Olympiad

-Level Mathematics". ArXiv.org. Available from: https://arxiv.org/abs/2109.00110. ArXiv:2109.00110 [C

s].

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/RFA8LE 11

https://arxiv.org/abs/2405.12205
https://arxiv.org/abs/2411.01829
https://mathai2023.github.io/papers/19.pdf
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2309.04295
https://arxiv.org/abs/2309.04295
https://arxiv.org/abs/2109.00110
https://www.qeios.com/
https://doi.org/10.32388/RFA8LE

