
14 July 2025, Preprint v3  ·  CC-BY 4.0 PREPRINT

Research Article

Simplifying Academic Knowledge: Why

and How

Michael Wood1

1. University of Portsmouth, United Kingdom

Academic knowledge is often dif�cult, or time-consuming, to understand. AI and other computer

technologies have an important role in helping people use academic knowledge: for example, they

facilitate just-in-time learning and enable computer-intensive approaches like simulation. But if the

knowledge itself could be simpli�ed, or made more user-friendly, so that it is easier to learn,

understand, and use, without sacri�cing its power and usefulness, this would be of enormous help to

many stakeholders. Experts and researchers could reach the frontiers of their discipline quicker and

have more time to advance the frontiers of knowledge. Polymaths could draw on a wider and deeper

range of expertise. Students would need less time to study or could take their studies further. And

society might be richer and wiser. Sometimes simpli�cation may not be possible, but often it is,

although in most corners of academia, searching for simpler versions of established ideas is right off

the agenda. I distinguish three approaches to simplifying knowledge: conceptual re-engineering,

changing jargon and symbolism, and the judicious use of “black boxes” to hide some aspects of the

knowledge. User-friendliness is rarely taken seriously as a criterion for judging academic knowledge: I

argue that it should be.
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1. Introduction

It is a well-worn platitude that life is getting more complicated. In the academic world, this is re�ected in

the increasing amount and complexity of the knowledge that academics discover or create, and pass on

by teaching, books, articles, and other media. This places obvious constraints on what we can achieve,

both in academic work and in day-to-day life. The access of lay people to knowledge on, for example,

medicine, is limited by the time and background expertise necessary to understand the latest ideas.
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Experts only have a limited amount of time to master their discipline, which in practice may mean that

they only have time to master one narrow specialism, but probably not aspects of other �elds of study

relevant to their work. And polymaths, like Leonardo da Vinci, are no longer really possible if each sphere

of expertise takes decades to acquire.

There are several obvious approaches to this problem: improving learning and educational methods,

using technology to enhance the effectiveness of human thought processes via computer technology

(including AI, which I discuss below) or smart drugs, increasing the time devoted to education, and, in the

long term, more extreme possibilities like genetic engineering, to make us, or our successors, more

capable of understanding and making use of increasingly complicated domains of knowledge.

In this article, I want to explore the possibility of tackling the problem from the other end by simplifying

knowledge itself.

The word possibility is important. I am not arguing that simpli�cation is always possible, but just that it

is sometimes, perhaps often, possible, and it has large potential bene�ts. Throughout my university

teaching and research career, I often felt that it ought to be possible to create a simpler and better version

of knowledge that I was teaching and using – there are references to some of these ideas in Section 6

below.

I had dif�culty formulating an appropriate title for this article. The word "simple" provides a convenient

slogan, but the idea is not a simple one. People typically interact with academic knowledge by learning

about it; they may have a deep, or a shallow, or a mistaken, understanding of it; and then they may make

use of it, or simply enjoy it, in a variety of ways across a narrow or wide domain. The word "simple" is

relevant to all these aspects. It may or may not be simple to learn and understand and use;

misunderstandings may or may not be likely. It is important that the simplicity of a piece of knowledge

should be judged against the background of its usefulness, the domain in which it can be applied, and the

background knowledge of the users in question.

In many ways, the phrase “user friendliness” gives a more accurate picture of what I have in mind

because this implicitly takes account of the “user”. Matrix algebra may be “friendly” from the perspective

of a mathematician, but not from the perspective of most other people. But the phrase “user-friendly” is

usually used in relation to software and users with a relatively low level of expertise, whereas the term

“simple” is a word that makes sense in relation to beginners, and it is widely espoused as a goal in

science: even Einstein is said to have recommended keeping things as simple as possible (but not

simpler). Earlier phrases I wondered about were "empower the ignorant" and "empower the masses".
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These are both consistent with what I have in mind but suggest that the market for the idea is limited to

the ignorant, the lazy and the stupid, which is not at all what I intend. Geniuses should also be able to

expand their reach further. I will stick with the word "simple", but please bear in mind that my

interpretation of this word is not simple.

There are many books and articles giving simpli�ed versions of scienti�c ideas for non-experts. Popular

science is a thriving genre. However, in general, these are not equivalent to the original science in terms

of the ability to make predictions and understand the rationale behind the science. What I am interested

in here are simpli�cations which have at least the same power as the original. A popular science account

of quantum mechanics will give the reader a rough idea, but will be far short of the ability to make

detailed predictions.

Despite searching on Google and Google Scholar and asking ChatGPT, I found very little on the general

idea of simplifying academic knowledge. There were articles on, for example, simplifying knowledge

bases for computer systems, and simplifying text to make it easier to understand, but nothing on the

general problem of simplifying academic knowledge. This did not seem to be on anyone’s agenda. I think

it should be.

In an earlier paper [1]  I focused on the idea of simplifying knowledge from the educational perspective,

and the barriers to the idea that are likely to be imposed by educational systems. In the present article, I

want to extend this argument and take a more general perspective.

2. Knowledge and its propagation

What do I mean by knowledge? To some philosophers, knowledge is "justi�ed true belief", but this is too

narrow for my purposes here. Knowledge may concern, for example, how to do something, in which case

the criterion of truth may not apply. And I will include hypotheses, theories and models which might not

be considered “truths”. I am concerned with academic knowledge, which I will de�ne as knowledge of the

kind that is learned, taught, discovered, or invented in the academy (colleges and universities and similar

institutions). In general, this knowledge is, in some sense, dif�cult: otherwise, we would not need special

institutions to deal with it. The context in which it is actually learned, taught, discovered or invented is

irrelevant. Such knowledge may be communicated by teaching, textbooks, research papers, practical

examples, YouTube videos, etc. The recipient may be a student, a fellow researcher or any other interested

party, whether in an academic institution or not. The only restriction is that the recipient should be

human: communicating with monkeys or computers is a different ball game which is not my concern
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here. Knowledge is not the act of communication, or what's in the knower's head, but the content that is

communicated, or, more precisely, that is intended to be communicated: as we all know, sometimes

people misunderstand some academic knowledge, and sometimes they forget essential points. So, the

content of textbooks, academic papers etc. is the knowledge. Tacit knowledge – ideas which are not made

explicit but may be essential to a full understanding – could be included if this is part of the intention

behind, for example, videos and practical examples.

For the purpose of this article, I am excluding knowledge held in, or implicit in, computer systems.

Statistical computer packages, and large language models (LLMs) like ChatGPT, obviously incorporate a

lot of knowledge in some sense, but if there is no intention to communicate this directly to humans, it

does not count as knowledge in the sense of this article. Knowledge in books and articles, of course, does

count because these are designed to be read by humans. (There is, of course, a strong argument that the

knowledge in LLMs should be made simpler for humans to understand, but this is not my concern in this

article.)

There are various words connected with knowledge whose appropriateness depends on the context and

type of knowledge we are considering. By what criteria should it be evaluated: truth, correctness, beauty,

usefulness, resistance to misinterpretation? Does it have an audience or users? There are obviously many

types of knowledge, and the terminology appropriate to one type may not be appropriate for other types.

It is helpful to divide—in rough terms—the development and propagation of knowledge into three stages.

The �rst stage is the initial invention, or discovery, of new ideas—which I will call the leading edge. In

due course, these new ideas are passed on to other workers in the discipline and taught to students of the

discipline. This is the stage at which the standard ideas of the �eld are absorbed from textbooks, teaching

or by some other means. I will use the phrase textbook stage as a convenient label, although textbooks

may not be involved in practice. A few people at the textbook stage will go on, after a suitable

apprenticeship, to make new innovations at the leading edge. Finally, aspects of the expertise may be

picked up, possibly in a distorted or popularised form, by the general public: I will call this third stage the

common sense stage. What is the relevance of simplicity to these three stages?

It seems likely that thinkers at the leading edge of their �eld will strive for simplicity. If the problem is

dif�cult, �nding a simple way to look at it may be the only way forward. Some examples of this are

discussed below. There is also an assumption, often implicit, among some pioneers in disciplines such as

physics that simple laws are more likely to be true than complicated ones. For example, the Nobel prize

winner Roger Penrose, in his Complete guide to the laws of the universe  [2]  observes that “Maxwell’s

qeios.com doi.org/10.32388/RHTT8D.3 4

https://www.qeios.com/
https://doi.org/10.32388/RHTT8D.3


theory had gained in strength” not only because of empirical support but also because it is “subsumed

into a mathematical scheme of remarkable elegance and essential simplicity”.

However, there may be exceptions to this striving for simplicity. If the problem is not dif�cult, making

ideas simple may run the risk of making the pioneers appear rather ordinary. Making ideas dif�cult may

be a way of keeping outsiders out, keeping the club exclusive and ensuring the necessity of teachers and

teaching institutions [3]. It is tempting to formulate a law of simplicity at the leading edge of a discipline:

If the problem is hard, it may be helpful to �nd a perspective which makes it easier, but if

the problem is easy there may be an incentive to make it look hard.

My main concern in this article is with the textbook stage. Becoming an expert means becoming familiar

with the jargon, notation, conventions and key ideas of the discipline. But there are, I will argue below,

often unrecognised opportunities to simplify knowledge at this stage.

Finally, some of this expertise may �lter through to the common sense level, where it may be absorbed

without formal education. This is obviously more likely if the knowledge is simple, but there is a danger

that some knowledge may be absorbed in a distorted form—I will return to this problem in Section 8

below.

In practice, these three stages may be more confused than this summary might imply. There are often

several leading edges if the pioneers disagree about the best way forward. And at the textbook stage, the

trainee experts may have different backgrounds, motives and technology from the original pioneers and

from other trainee experts, so they may learn different versions of the knowledge.

It is also important to note that simpler versions may answer a slightly different, possibly more relevant,

question. There is an example of this in Section 6.1 on statistics below. On a more radical level, changes to

the core concepts of a discipline—Thomas Kuhn’s “scienti�c revolutions” [4] – often result in a simpler

“paradigm”. There are some examples of this at the beginning of the next section.

2.1. Some examples of how knowledge has been simpli�ed in the past

One of the clearest historical examples of simpli�cation is the adoption of the modern system of

numerals in place of earlier systems such as the Roman one: e.g., 2025 instead of MMXXV. The modern

system obviously makes arithmetic far easier and caters for arbitrarily large numbers (with the Roman

system, you need to invent more and more symbols as the numbers get larger). As well as being simpler,

the modern notation is also far more powerful in terms of what you can do with it.
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Similarly, Copernicus's idea that the planets revolve around the sun was far simpler and made it far easier

to understand the motions of the planets than systems like the Ptolemaic model [5], which necessitated

an intricate system of wheels within wheels. In both cases, the newer framework has reached the

common sense level, so it is easy for modern readers to appreciate how much more complicated the older

frameworks were.

This is not the case with many other areas of science. Take Newton's law of motion: F=ma. To those

without the appropriate expertise to understand what the symbols stand for, this may not seem remotely

simple. However, to those with the necessary expertise who appreciate the power and scope of this

equation, its simplicity is staggering. Together with a few other laws from the same stable, it can be used

to predict how stones move if thrown, how the planets move around the sun, how much energy you need

to ride a bike, and so on. Before Newton, there was no general framework for making predictions like

these; it would have been necessary to use different rules of thumb in each scenario. It is in this sense

that this equation, and others like it, are simple. However, many people do not have the necessary

background to appreciate the simplicity of this equation, which raises the question: could this expertise

be made even simpler? I think the scope here is limited, but it might be helpful to write the equation in

Modi�ed Excel format as suggested in Section 6.2 below.

Much of the point of mathematics, of course, is to produce simple models of complex real-world

phenomena, but this is sometimes at the expense of leaving out some aspects of the real world—such as

air resistance when predicting the �ight path of a projectile—so the model may only be an

approximation. In addition, this simplicity is only useful if the models can be understood by potential

users.

In the late 1940s and 1950s, so-called Feynman diagrams were introduced

“as a bookkeeping device for simplifying lengthy calculations in one area of physics—

quantum electrodynamics, or QED, the quantum-mechanical description of

electromagnetic forces.... With the diagrams’ aid, entire new calculational vistas opened for

physicists. Theorists learned to calculate things that many had barely dreamed possible

before World War II … By using the diagrams to organize the calculational problem,

Feynman had thus solved a long-standing puzzle that had stymied the world’s best

theoretical physicists for years.” [6]

qeios.com doi.org/10.32388/RHTT8D.3 6

https://www.qeios.com/
https://doi.org/10.32388/RHTT8D.3


This is an example where I, and I suspect most readers of this article, do not have the necessary

background knowledge to appreciate either the problem or its solution. But it is an example of the value

of simplicity at the leading edge of research. Kaiser goes on to say that Schwinger, who invented an

alternative to Feynman diagrams, “sniffed that Feynman diagrams had ‘brought computation to the

masses.’” The diagrams, he insisted, were “pedagogy, not physics”. Which, of course, fails to take account

of the fact that physics is of little use if nobody can understand it. Bringing computation to the masses

sounds like a good thing to me.

Computer software development is another interesting area where simpli�cation is very much part of the

goal. This has progressed from machine code, which involves telling the computer exactly what to do in

strings of 0s and 1s, to tools like App Inventor [7]  which has simpli�ed the process of writing apps

(programmes) for Android phones to such an extent that their claim that "anyone can build apps with

global impact" is almost reasonable (although "anyone" is perhaps too strong).

These are a few examples of how knowledge has been simpli�ed in the past. The important question, of

course, is how present-day academic knowledge might be simpli�ed. This sort of expertise often seems

set in stone, unchangeable, but this attitude deserves to be challenged. I will discuss some possibilities

below, but �rst I will discuss the general rationale for simplifying knowledge, the approaches that might

be taken, and consider the obvious objection that AI removes the need for simplifying knowledge: if

something is too complicated, can’t we just ask an AI for help?

3. Why simplify academic knowledge?

There must be a limit to the amount of knowledge that any individual can cope with, or at least a point

beyond which it becomes increasingly dif�cult. This may be because of the number of neurons in our

brains or, more likely, the time we have to absorb new information or the effectiveness of the �ling

system for retrieving stored ideas and memories. As the amount and complexity of academic knowledge

increase, this limit will inevitably impose restrictions on what we can achieve. So simplifying knowledge

so that it takes less bandwidth means that, in principle, we can progress further.

In science, as the examples in the previous section illustrate, simplicity is a key criterion for evaluating,

and so creating and choosing, theories. Theories that are too complicated are less useful. As an extreme

example of this problem, Khamsi [8] quotes Keith Devlin: "I think that we’re now inescapably in an age
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where the large statements of mathematics are so complex that we may never know for sure whether

they’re true or false." Obviously, it would help if these statements could be made simpler.

Simplicity is also an important criterion in the design of technological artefacts, and academic

knowledge can be regarded as such an artefact. In his TED talk, Whitesides [9] makes the point that there

is almost no drive for simplicity in the academic world, whereas in "the real world of people who make

things... there is an intellectual merit to asking: How do we make things as simple as we can, as cheap as

we can, as functional as we can and as freely interconnectable as we can?" He also uses the word

"stackable" - electronic components are simple in the sense that they are suf�ciently reliable and

predictable to be assembled into devices like mobile phones, and blocks of stone can be stacked to build a

cathedral. If we think of academic concepts and theories as "things", I would say there is enormous merit

in asking just the same questions of academic creations.

If we take an evolutionary perspective on knowledge in general, the main criterion that new ideas have to

satisfy is that they should be useful, either in the biological sense of enhancing the capacity of the

organism to survive and breed or in the cultural sense of their usefulness to individuals and groups - and

knowledge is likely to be more useful if it is simple (other things being equal). Unfortunately, incremental

evolution may increase complexity  [10], which suggests the idea that intelligent design for simplicity

might be bene�cial. And, of course, simpli�cation is a natural and necessary part of the way human

beings make sense of the world. Concepts like "animal" and "rock" enable us to manage our environment

without plunging into all the overwhelming complexity of the different types of animals and rocks -

unless, of course, circumstances demand more precise categories.

In a sense, this is a continuation of a trend that has been going on for at least the last 3000 years. In this

period, human brain size has been decreasing which, according to DeSilva et al [11], may be the result of

“the externalization of knowledge and advantages of group-level decision-making due in part to the

advent of social systems of distributed cognition and the storage and sharing of information.” According

to this hypothesis, now that we have computers, books and large communities of other people to help us,

we no longer need to think as hard and can make do with smaller brains.

Or, of course, we can do more with the brains we have. Just what this might lead to in the future is, of

course, an open question. Stephen Wolfram  [12], in an article entitled "What If We Had Bigger Brains?

Imagining Minds beyond Ours", concludes in a rather feeble �nal sentence, “And it’ll take progress in our

whole human intellectual edi�ce to be able to fully appreciate what it is that minds beyond ours can do.”
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4. Don’t AI and other computer technologies solve the problem?

There has recently been a lot of publicity following the release of various “large language models” (LLMs),

which are the latest result of the long-running search for arti�cial general intelligence (AGI). These

models can interact with the user in natural language and provide help with, or undertake, a wide range

of problems and tasks. If the user does not understand something, or wants some help writing

something, they can ask the “chatbot” to explain or help with the task, just like a patient teacher. The

present generation of chatbots does sometimes get things wrong (these errors are dubbed

“hallucinations”), but in time they are likely to get more reliable.

Doesn’t this solve the complicated knowledge problem?

To some extent, yes. Digital technologies, from calculators onwards, are designed to do tasks which

would otherwise require some human input, and so lessen the burden of dealing with our increasingly

complicated web of knowledge. Statistical computer packages perform statistical calculations and relieve

users of the burden of working through detailed algorithms. Word processors format documents and

offer tips on grammar and spelling. Google Search will �nd information about many things far more

easily than was possible a few years ago. The present AI tools have taken this process further. Technology

must always have had an impact on what is worth knowing and how knowledge can be simpli�ed.

Calculators and computers have reduced the need for human beings to understand the detail of

arithmetical and statistical algorithms, and going back a few years, the invention of writing must have

in�uenced the nature of communities' knowledge, as must the introduction of printing presses.

But none of these tools simpli�es the underlying knowledge. The calculator or the statistical computer

package will do the sums, but the human being in charge still needs to understand something about the

process and what the answers mean. The AI may take the user through a complicated argument, but the

human user still needs to understand the answer and follow the argument in some sense to establish its

credibility and relate it to other things. Clearly, the simpler the knowledge is, the easier these processes

are likely to be.

But… there are a few quali�cations to the above paragraph. First, it may be possible to take the

requirement of human understanding out of the process or part of it – some of these possibilities are

explored in Sections 4.3 and 5.3 below. And second, an AI may be able to come up with genuinely creative

ideas which do simplify the knowledge, as opposed to explaining it in simple terms. In principle, it seems
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unlikely that the current crop of LLMs would be able to do this because they are based on the analysis of

vast quantities of text which, by de�nition, encode existing ideas, not innovative new ones. But LLMs are

notorious for defying expectations.

The next three subsections outline ways in which computer technologies may avoid the need for

simpli�cation. Then I will turn to approaches to simplifying knowledge.

4.1. Just-in-time learning

I asked an LLM (ChatGPT), “Can AI be used to make knowledge simpler?” and the response was:

AI can simplify complex knowledge by:

Summarising dense information (like research papers) into key points.

Explaining dif�cult ideas in plain language, like how a good teacher would.

Using analogies and examples tailored to who’s asking, making ideas easier to grasp.

Creating visual aids like diagrams or simple charts that explain complicated systems.

Answering questions interactively, so people can learn step-by-step at their own pace.

Kind of like having a personal tutor who can explain quantum physics with pizza slices if you want.

This is not really simplifying knowledge, but rather making it easier to learn things when you want them.

The fact that the LLM can speed up the process of learning just about anything means that it may not be

necessary to learn, and probably forget, lots of things just-in-case (JIC) they are needed because it is

practicable to learn them if and when they are needed. This is just-in-time (JIT) learning, which is similar

in principle to just-in-time manufacturing, the system whereby components arrive as they are needed,

thus avoiding the need to carry extensive stocks.

De�brillators, or, strictly, automated external de�brillators (AEDs), are another example of this principle.

They are for treating cardiac arrests, and they are designed to be used by people without training: the

device speaks to the person operating it and tells them what to do. This person is thus told what they

need to know when they need to know it.

The trade-off between learning well in advance just-in-case the knowledge is needed, and learning just-

in-time when needed, always was an important consideration. Just-in-time learning avoids the problems

of forgetting, of learning lots of things that are never needed and perhaps failing to learn things that do

turn out to be necessary. On the other hand, the just-in-time approach may lead to a shallower

understanding and may simply not be possible. However, with the expanding amount of human
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knowledge and smarter tools to implement it, the balance seems likely to swing increasingly in favour of

the just-in-time approach.

4.2. Simulation and trial and error

What proportion of three-child families comprises three girls? For readers familiar with probability

theory, the answer is obviously one in eight (1/8 or 12.5%). But if you are not familiar with probability

theory, you could simulate the situation by tossing three coins lots of times and checking how many

times you get three heads (letting a head represent a girl): the answer will be about one in eight.

Now imagine you know how to multiply but not divide and you want to know what you need to multiply

6 by to get 42. Not knowing about division, you might start by guessing the answer is 5 and work out 5

times 6 and get 30. Obviously too small, so try, say, 8. Too big. With luck, you will eventually home in on 7.

These are elementary examples of tricks mathematicians and statisticians use when the problem is too

dif�cult to come up with a neat formula – which does actually happen a lot. From the perspective of

someone without the necessary mathematical background, these methods have two big advantages.

First, they get the answer without using any extra technical concepts. Second, they are generally more

transparent because you can see how they work.

I have called methods like these crunchy methods because you crunch through problems without using

clever mathematical trickery [13]. In practice, computers are a must for implementing methods like these.

Simulation, for example, is widely used in weather forecasting, in statistics  [14][15], and in many other

domains.

4.3. Complete automation

Some problems, which would previously have required human input, can now be dealt with entirely by AI

and other computer systems. These are the “holes” in human knowledge which are discussed in Section

5.3 below.

5. How to simplify knowledge

When I asked ChatGPT, “How can knowledge be simpli�ed?” the response started, “Knowledge can be

simpli�ed by transforming complex information into clearer, more accessible forms without losing its

essential meaning. This often involves the following strategies”, the �rst one being the “Use of Analogies

and Metaphors”. These points are largely concerned with pedagogy, rather than simplifying the
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knowledge itself. But the �nal statement from ChatGPT was, “the goal of simpli�cation isn't to "dumb

down" knowledge, but to make it more usable and transferable across contexts”, which is certainly

consistent with my argument here.

Simple should not be assumed to mean inferior. The alternative framework suggested for the exponential

function in Section 6.3 below can easily be converted to the standard functions and vice versa. In the

history of science, new simple methods are often much more powerful—for example, the decimal system

for numerals and Copernicus's and Newton's innovations discussed in Section 2.1 above.

I have identi�ed three broad approaches to simplifying knowledge, which are outlined in the three

subsections below, starting with the most radical.

5.1. Conceptual re-engineering

There is a tendency for the way a subject developed historically to become entrenched as the one truth, as

the only viable possibility. The theory of the exponential function (Section 6.2 below) was developed over

250 years ago, and the modern approach, which is mirrored in textbooks and other teaching materials,

largely follows the historical development. The widespread use of signi�cance tests and p-values is

probably largely due to the in�uence of Ronald Fisher in the 1920s, but textbooks and courses still follow

his lead despite the problems discussed in Section 6.1 below.

Normally the training of experts—whether formally by courses in schools, colleges, and universities, or

informally by picking up the basics of a discipline by reading textbooks or research papers—follows the

path taken by the innovators on the leading edge. The hierarchy of concepts used, the jargon, and the

methods of research and argument are likely to mirror the historical development of the discipline. When

they reach the leading edge, the typical expert understands thoroughly all the steps taken to reach the

pinnacle, so this may well seem like the only possible route up.

However, this may not be the only route up. Having got to the top, the view may reveal easier routes up, or

even better mountains to climb. The followers may also be able to avoid some of the problems of the

pioneers by using the ropes left by them: the followers may be able to jump over a few hurdles without

worrying about what lies in the chasm below. In short, there might be alternative, easier routes which the

followers could take. However, this may not be obvious to those who have reached the leading edge, for

whom the route they took may seem the only way up. This is likely to apply to senior academics whose

work provides the basis of academic curricula: they are unlikely to be receptive to the idea of simplifying
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academic knowledge. And this attitude is likely to be re�ected in textbooks, which are likely to follow the

pioneers’ route on the left of Fig. 1 rather than the two easier routes.

Figure 1. Three routes up two mountains

But... you may object that trainee experts should familiarise themselves with the "proper" version of the

expertise. Anything else is giving in to the temptation to cut corners. To which the answer is: what's

wrong with cutting corners?

I will refer to this idea of changing the conceptual basis of a discipline as conceptual re-engineering by

analogy with business process re-engineering. When this process involves a whole discipline, it is often

referred to as a scienti�c revolution or a paradigm shift. For example, according to Roger Penrose, in

Einstein’s theory of relativity, “Gravitation is not to be regarded as a force … Instead, gravitation

manifests itself in the form of spacetime curvature” [16]. This is a fairly drastic conceptual change. There

are some examples of this on a more limited scale in Sections 6.1 and 6.3 below.

One possible aim of conceptual re-engineering may be to reduce the amount of prerequisite

understanding as much as possible. When I have dif�culty understanding something, the problem is

often that to make progress I need to understand something else, and when I try to understand the

something else I may come across another thing I don’t follow, and so on. There is thus a hierarchy of

things to be learned. Obviously, the shallower this hierarchy is, the better.

Figure 2 below shows two different structures for a domain of knowledge: the circles represent bits of

knowledge, and the arrows represent the fact that the circles at the start of the arrow must be grasped

before the ones at the end. Obviously, Structure 2 has the advantage that people can just choose the bits

they are interested in, whereas Structure 1 requires knowledge of all the circles to get to the top.
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Figure 2. Different prerequisite structures

I discuss two examples of conceptual re-engineering in Sections 6.1 and 6.3 below.

5.2. Changing jargon and notation

Researchers at the leading edge of a discipline often need to invent names for concepts and notation

systems to facilitate communication. For workers at the leading edge of the �eld, the precise nature of

this jargon is probably not a big issue because they will absorb it by repeated exposure. For newcomers,

on the other hand, jargon is often a problem. Sometimes it is overly complicated, sometimes it has no

relation to the audience's frame of reference, and sometimes jargon may be likely to mislead.

Consider the conclusion that "orthoptists in the GSC [German-speaking countries] preferred using

spectacles plus occlusion as their �rst-choice treatment, signi�cantly more than their UK counterparts

who preferred spectacles only as their �rst choice (p<0.001)"  [17]. Interpreted as ordinary English, the

word "signi�cantly" implies that the difference between the GSC and the UK is a large one. Statistically,

however, this is not the meaning at all: the word signi�cantly means that the results obtained in the

study were unlikely to have arisen if there were no systematic differences between the GSC and the UK—a

convoluted concept that makes the misinterpretation of the word "signi�cantly" almost inevitable. It

implies nothing whatsoever about the size or importance of the difference. This problem is discussed in

more detail in Section 6.1 below.

The design of transparent jargon to avoid such problems should be a �ourishing area of research—which,

to the best of my knowledge, it isn't. Names invented by leading-edge researchers have a tendency to
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stick when more user-friendly alternatives might be helpful. Often concepts are named after their

originator or some key person in the history of the �eld. Bayesian statistics, for example, is named after

Thomas Bayes, an eighteenth-century clergyman who �rst came up with the theorem on which this

approach to statistics is based (although it was not published until after his death). A name like Updating

Probability Methods would give a better impression of the nature of the Bayesian approach, which

involves updating probabilities as you acquire more data.

Similar issues apply to the symbols used in a discipline—see, for example, Section 6.2 below.

5.3. Black boxes or holes in understanding

A person's understanding of almost anything typically has holes in it. Nobody knows everything about

how to make a pencil or how a computer works. Ideas can be simpli�ed by leaving out inessential details

– the holes in the knowledge that the human understands. Knowledge is holey, and the location and

nature of the holes deserve careful consideration. And the bigger the holes, the simpler the resulting web

of knowledge becomes.

This is an essential approach to simplifying knowledge. The discipline of statistics is a good illustration

of how planning holes can be a vital tool for reducing the burden of human understanding. The t-test in

statistics serves as a good illustration of what is possible. The original pioneers would have invented the

mathematics behind the technique, and the early users would (probably) have been familiar with the

mathematics. But then the results of the mathematics were summarised in tables so that users just

needed to understand what the answers from the tables meant and the circumstances in which they

could be meaningfully used. They then do not need to be familiar with the mathematics, which is then

treated as a “black box” whose inside is hidden from view, or a hole in their understanding of the process.

Computer packages such as SPSS take this process further – the human partner then does not need to

know how to use the tables, or even whether the t-test is appropriate, because the computer package will

tell them. The more holes there are, and the bigger they are, the simpler the knowledge becomes – but

the simpli�cation is only useful to the extent to which the interface between the human and the hidden

technique allows the technique to be meaningfully used. Planning these holes in human understanding,

and the interface between the knowledge hidden in the black boxes and what the human understands, is

obviously vital.

Statistics is one of the examples discussed below (Section 6.1) because it provides a good illustration of all

three categories of approach to simplifying knowledge.

qeios.com doi.org/10.32388/RHTT8D.3 15

https://www.qeios.com/
https://doi.org/10.32388/RHTT8D.3


6. Some examples of how current knowledge might be simpli�ed

One comment on an earlier version of this article posed the question: “How can I simplify quantum

chromodynamics? I don't know.” Which, of course, is the point. I don’t know either, but somebody,

someday, may come up with the answer – which must be a good thing! If it were easy, it would have been

done already because, as I acknowledged in my law of simplicity at the leading edge of a discipline

(Section 2 above), when even the experts acknowledge that something is dif�cult, they are likely to look

for ways to make it easier.

The next three subsections outline some ideas for simplifying a few areas of knowledge which are widely

used across a variety of academic disciplines. These are intended to illustrate the principle that

simpli�cation is possible and may be useful, not to establish how widespread this possibility is. I think

there will be many similar examples in other areas, so the combined effect of simpli�cations across the

whole web of knowledge should be substantial.

As well as the suggestions in the next three subsections, many of my publications  [18]  suggest

simpli�cations in several areas, including quality management, statistics and decision analysis.

6.1. Statistics: the strength of evidence for a hypothesis

Statistical concepts like correlation coef�cients, standard deviations, regression analyses, signi�cance

tests and so on, are widely used but often with little understanding of their background or rationale.

Mistakes, misunderstandings and general baf�ement are common. It is an area crying out for

appropriate simpli�cations. One particularly problematic area is signi�cance testing (p-values), which is

the subject of this subsection. It illustrates all three of the approaches to simplifying knowledge outlined

above.

The p-value, or signi�cance level, is a very widely used way of deciding if the evidence for a hypothesis

stacks up. Low p-values indicate that the chance explanation, based on a “null hypothesis”, is unlikely, so

it is assumed that the hypothesis of interest must be right. In most contexts, the mathematics behind the

calculation is complicated, but this is usually done by a computer package, so it is not an issue for the

researcher. The knowledge has been simpli�ed by treating the mathematical algorithms as black boxes

(see Section 5.3 above).

However, p-values may be, and very often are, misinterpreted. This problem is very widely acknowledged

(see, for example, [19]), but just as widely ignored. In many domains of study, p-values (otherwise known
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as signi�cance levels) are still the gold standard for assessing statistical hypotheses. In other areas, the

problems are acknowledged, and journals will not accept articles citing p-values, but there is no generally

accepted alternative.

The �rst, obvious, remedy would be to use more transparent jargon, or at least to avoid misleading

jargon, as suggested in Section 5.2 above. The word “signi�cant” in ordinary English means large or

important, whereas the statistical meaning is (roughly) “unlikely to have arisen by chance”. There is a

strong case for avoiding the term “signi�cant”. I [20] suggested that the p-value could be described as the

plausibility of the null (chance) hypothesis, which has the advantage of giving a rough idea of the

meaning: low p-values suggest that the chance hypothesis is not plausible.

However, a more serious problem with p-values is that they do not tell you what you probably want to

know – which is how likely the hypothesis of interest is, as opposed to how plausible the null (chance)

hypothesis is. This requires some conceptual re-engineering (Section 5.1 above).

One suggestion is to cite con�dence intervals instead of p-values  [21]. I have suggested  [22]  building on

this concept to calculate con�dence levels for hypotheses which could be called “tentative probabilities”.

Then, instead of qualifying the conclusion that "patients treated by female surgeons were slightly less

likely to die within 30 days” with the statement “p = 0.04” [23], we could qualify it by writing “con�dence

level, or tentative probability = 98%”. Unlike the p-value, this gives the reader a direct assessment of how

likely the hypothesis of interest is to be true. "Con�dence" is a standard statistical term with a meaning

similar, but not identical, to probability. The advantage of the term "tentative probability" is that it makes

it clear that we should not have too much con�dence in the idea because it depends on assumptions that

may not be fully satis�ed. I published this proposal in a research methods journal. The reaction of a

reviewer for a statistical journal was withering – the problem being that con�dence is considered a

completely different concept from probability. My suggestion is more of a conceptual change, or

paradigm shift, than it might initially appear.

6.2. Modi�ed Excel notation for mathematical formulae

The formula below is an example of standard mathematical notation. (This is the formula for the normal

probability density for which Excel has a built-in function, but this is irrelevant here because I am just

using it as an example of mathematical notation.)

f(x) =
1

σ 2π
−−√

e
− 1

2
( )

x−μ

σ

2
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To a mathematician, this is beautifully concise. However, people without a mathematical background are

likely to have a few issues. What is e and how does it relate to the symbols above and to the right of it?

What do the symbols mean? And how can we type it into a computer so that we can work out what it

comes to in speci�c situations? And if you are not familiar with the Greek alphabet, the Greek letters pose

an additional challenge.

My suggested simpli�cation to help with problems like these is a modi�ed Excel notation. The only

modi�cation in this particular example is the use of three different types of brackets, which help to

clarify how the brackets match up. The equivalent formula is (npd is the normal probability density, sd is

standard deviation, and pi is the ratio of the circumference of a circle to its diameter, which is

approximately 3.142):

The key points are:

�. The formula is a sequence of symbols that can easily be typed on an ordinary keyboard, which

means that it can easily be made compatible with computer software like Excel, and it is possible to

search for the meanings of function names like EXP and operations like ^ and * with a search

engine.

�. The variables (for which I’ve used lower-case letters) and function names (upper case) are designed

to be recognisable words or abbreviations. Greek letters, and symbols from other scripts, are avoided

because users may not be familiar with them, which may make them dif�cult to remember and

incorporate into their thought processes.

�. In conventional notation, the expression “sd” would be interpreted as “s” multiplied by “d”. To avoid

this sort of misinterpretation, we always use * to denote multiplication.

This is an example of changing the notation as suggested in Section 5.2. The concepts are unchanged; all

that is changed is the notation used to describe the function. This idea could be extended to cater for a

wider range of mathematical concepts – integrals, vectors and so on.

6.3. Exponential or compound growth and decline

I used to teach reliability theory to M.Sc. students. One of the key formulae is the reliability function for

the exponential distribution:

npd = {1/[sd*SQRT(2*pi)]}*EXP{-0.5*[(x-mean)/sd]^2}
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or in Excel format (λ is the failure rate, which I'll call fr, and t is the length of a time interval):

This formula involves the exponential function, ex: it was easy to explain to the students how to work it out

with a calculator or the spreadsheet Excel. Calculators typically have a button for ex, and Excel has a built-

in function EXP. What was not so easy was to explain what the function meant and where it came from.

Historically (according to Wikipedia), the concept of e was introduced by Jacob Bernoulli in 1683, and the

symbol e was �rst used by Leonhard Euler in 1727 or 1728. It has mathematically interesting and powerful

connections to logarithms, calculus, in�nite series, imaginary numbers, and the normal distribution in

statistics (see Section 6.2 above), as well as its role in modelling exponential growth.

Most of my students, however, had either never met all this mathematics or had long since forgotten it

and had no wish to revisit it. So, I was forced to present the calculator or computer as a black box: you put

some numbers in and you get the answer out, but you really do not know what is inside the box.

Does treating the exponential function as a black box matter? No, in the sense that my students were

happy with my explanation of what this reliability function meant: they could put numbers for the

variables into the black box and get an answer out that they understood reasonably well.

But it is possible to re-engineer the reliability function so that its origin and meaning are clearer, and so

that it would not involve the exponential function. The exponential function, ex, is helpful for analysing

growth or decline—such as compound interest, or the growth of populations of people or bacteria, or the

decline in the numbers of components that are still operational. It crops up in many mathematical

formulae. My suggestion is that if this mathematics were to be reformulated with the Compound Growth

Multiplier (CGM) as its core concept instead of ex, its meaning and rationale would be far clearer to people

like my MSc students, and it could be completely disentangled from theories of calculus, logarithms,

in�nite series and so on.

To see how this would work, let’s take a simple example. If you invest some money at an interest rate of

2% per year, over a period of 40 years it will generate interest and at the end of 40 years the total amount

of money will have grown by a factor of 80% (40 x 2%). This is simple interest, so we can call 80% the

Simple Growth Multiplier (SGM). However, if the interest is added to the investment throughout the 40

years so that you get interest on the interest – known as compound interest – the Compound Growth

R(t) = e−λt

R(t) = EXP(−fr ∗ t)
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Multiplier would be 122.6%, which is considerably more than the 80% you would get from simple interest

because you are getting interest on the interest as it is earned. How we can work out CGM from SGM is

straightforward and is explained in the Appendix: logarithms, in�nite series, calculus and so on do not

appear in this story. The answer can be looked up in a table like Table 1, which could easily be built into

Excel, or other software, as a standard function. The calculation of compound growth depends on

whether interest is added on every year, or month or day: CGM represents the limiting case as the time

intervals get smaller and smaller, as explained in the Appendix.

SGM CGM SGM CGM SGM CGM SGM CGM

-1 -0.632 0 0.000 1 1.718 2 6.389

-0.8 -0.551 0.2 0.221 1.2 2.320 2.2 8.025

-0.6 -0.451 0.4 0.492 1.4 3.055 2.4 10.023

-0.4 -0.330 0.6 0.822 1.6 3.953 2.6 12.464

-0.2 -0.181 0.8 1.226 1.8 5.050 2.8 15.445

Table 1. Compound Growth Multipliers (CGM) from Simple Growth Multipliers (SGM)

These �gures refer to the growth, not the total at the end of the time period. And, obviously, to convert to

percentages they should be multiplied by 100: e.g. the bottom row in the second column means that an SGM of

80% corresponds to a CGM of 122.6%.

To see how this applies to reliability, imagine we have 1000 components with a failure rate of 1% per hour

and we want to know what percentage will still be working after 40 hours. This is the reliability at 40

hours. The assumption behind the exponential distribution is that the failure rate is constant throughout

the time period: the component does not wear out and become less reliable. At �rst sight, the obvious

answer is that 40 × 1% or 40% will have failed, so 60% will still be working. However, this ignores the

fact that as time progresses there will be fewer working components because some have failed, so the

number failing will also decline. This is like compound interest, except that there is a decline, not growth.
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From Table 1, if SGM is -40% (-0.4, the negative sign indicating decline), then CGM = -0.33. So the

proportion remaining is 1 – 0.33 = 0.67 = 67%, which is the reliability after 40 hours.

In general terms, the reliability formula would be:

The advantage of this formulation over the traditional exponential function is that it would be easy to

explain to beginners how the �gures in Table 1 are calculated – see the Appendix for more details. And it

is in no sense an approximation: CGM and SGM are related to the traditional concepts by these

relationships (LN is the Excel function for the natural logarithm):

The relationship between SGM and CGM can be used whenever the growth of something is proportional

to its size: this is what is meant by exponential growth. To take another example, according to Wikipedia,

the world population is increasing by about 1.1% each year, which means that over 800 years SGM will be

800 × 1.1% = 880% or 8.8. From Figure 3 in the Appendix, CGM will be over 6000 (6633 to be more

precise, using the �gures the graph is based on). This means that the population will be over 6000 times

its present level of 7.8 billion. If, of course, the population keeps growing at 1.1% per year.

The words “compound” and “simple” are derived from �nancial terms relating to interest. There may

well be better labels that are more natural in many contexts. As discussed in Section 5.2, jargon deserves

to be designed with care.

7. Some further issues about simplifying knowledge

7.1. The inertia of established knowledge

Any change to the established order may meet with resistance just because that is what people are

familiar with, courses are set up to teach it, and so on. Any changes will just feel wrong. If it works, don't

change it, is often excellent advice, but it ignores the fact that occasionally change might help. So-called

"normal science" is often a good idea, but sometimes a "paradigm shift" may be bene�cial.

My �rst article on the general topic of simplifying knowledge was inspired by the title of a Telegraph

leader column: "Maths should be hard" [24]. My point is exactly the opposite: Maths should be as easy as

R(t) = 1 + CGM(−fr ∗ t)

CGM(SGM) = EXP(SGM) − 1, SGM(CGM) = LN(CGM + 1)

EXP(X) = CGM(X) + 1, LN(X) = SGM(X − 1)
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possible. However, this is often seen in the educational world as letting "standards" slip, or “dumbing

down”. The business model of colleges, universities and many experts implicitly depends on keeping

knowledge hard so that the need for their services is maintained. If knowledge were too easy, university

courses and expensive experts might no longer be necessary. Or they would need to adapt their game to

work at a level which is genuinely hard.

The peer review system could have been invented to discourage change. Almost by de�nition, the peer

reviewers used by journals to vet articles are steeped in conventional ways of looking at their subject and

so may not be receptive to alternatives. There is a strong case for supplementing peer reviews with

reviewers from outside the discipline [25].

7.2. Changes in technology may change the best approach

This is entirely obvious. Computers and calculators mean that the simplest way of doing arithmetic no

longer needs long multiplication, log tables or slide rules. Arti�cial intelligence and Internet search

engines may have made some human knowledge redundant, but the interface between these

technologies and human knowledge is worth very careful consideration.

It is important to remember that there are many different means of communicating knowledge: words,

symbols, icons, graphs, videos, etc. Within each type of medium, such as words on a page or screen, there

may be different genres: philosophical arguments, stories, and so on. Some things we take for granted

now, like time-series line graphs, are comparatively recent inventions and would have bewildered

audiences a couple of hundred years ago. Kramer  [26]  discusses the use of icons (e.g. the concept of

“future” might be “the icon of a clock surrounded by a clockwise arrow”) and points out that “on

smartphones and computers, writing icons can now be faster than writing alphabetic words” [27].

In the future, new possibilities are likely to surface and become accepted as technology progresses and

habits change, and the need to make knowledge more accessible becomes more urgent.

7.3. Keep it short

I have three books on my desk as I write this. Richard Dawkins's The God Delusion is 400 pages long. I've

dipped into it, and it looks interesting, and I'm sure God is a delusion, but I am not prepared to read 400

pages on the topic. It's far too long. On the other hand, Bertrand Russell's History of Western Philosophy,

and the third book on my desk—a maths textbook—are OK because these are collections of relatively brief

expositions of particular topics.
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Many books are too long. In the days when most people read things on physical pages, the book was a

convenient size to sell and read. Now, of course, the advance of technology means that we can be more

�exible over the length of documents. A similar argument applies to many (by no means all) academic

articles, which would bene�t from more focus on the main argument and less on reviewing the �eld:

interested readers can easily be given links to suitable review articles. But habits often last well past the

point at which they cease to make sense, and authors who want to make their mark feel the need to

expand their efforts to �ll a decent-sized book or article.

Suppose Richard Dawkins had reduced The God Delusion to 50 pages. Then I would have the time to read

it and eight similar works in the time it would have taken me to read the 400-page tome. This principle is

the basis of the app and website Blinkist.com, which provides summaries of books with the slogan "More

knowledge in less time." Wikipedia is also an important source of summaries of ideas for people who do

not have the time or inclination to consult the original. But, of course, there are dangers in taking this

principle too far.

7.4. Don’t forget the aesthetic dimension

In the science of physics, beauty is sometimes seen as a guide to truth. If it's beautiful, it's more likely to

be true according to some physicists, although others will say that the universe is messy, so a good

physical theory should re�ect this. But regardless of one's view about this, it does seem to me undeniable

that beautiful theories are likely to have the advantage of being more pleasurable to develop and use.

Ideas that are fun and inspiring will almost inevitably be absorbed more ef�ciently and used more

productively than those that are seen as dull and boring. If the discipline of statistics is seen as boring

and ugly, people will make little effort to master it. If, on the other hand, it could be made fascinating and

elegant, everyone would be better off.

8. The problem of over-simpli�cation

Obviously, the simpler knowledge is, the better, provided the simple version is at least as good as the

complicated version. However, it is possible that sometimes the simple version may be a lot worse: it may

be a very rough approximation, misleading, useless, or simply wrong.

Simple statements like "The Swiss are much happier than Nigerians", or "Exposing yourself to strong

sunlight is a bad idea" or "There are two types of social research - quantitative and qualitative", or

"Britain could derive a huge amount of energy from renewable sources" are—for many purposes—
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oversimpli�ed and potentially very misleading. Some Swiss are doubtless much more miserable than

some Nigerians: the generalisation just refers to averages. People who don't expose themselves to any

sunlight run the risk of vitamin D de�ciency. If you think there are only two types of social research, you

will probably identify the analysis of subjective feelings with the qualitative pole, ignoring the fact that

there is a whole industry based on assessing subjective feelings on 1–5 scales analysed with quantitative

statistics. And it is not enough to know that the potential of renewables is "huge"; we also "need to know

how it compares with another 'huge,' namely our huge consumption"  [28]. The use of adjectives like

"huge" oversimpli�es the problem: "to make such comparisons, we need numbers, not adjectives."

Politicians need neat soundbites like "we must balance the budget" because "the economy is like a

household", which of course it isn't. This is an oversimpli�cation, but any more nuanced view would be

unlikely to have as much impact on the electorate. Which is a problem.

In 2008, the world economy plunged into a crisis triggered, according to Nate Silver [29], largely by over-

simpli�ed, and horribly inaccurate, measures of risk. Banks and other �nancial institutions buy and sell

securities like mortgages, and they obviously need an estimate of the risk of losing their money on these

transactions. In practice, estimating these levels of risk is a complicated task, so they simpli�ed the

problem by using the assessments of rating agencies—these organisations categorise risk into bands.

AAA, for example, is intended to mean a probability of default of 0.12%, but during the crisis, 28% of

these securities defaulted. This led to losses far greater than expected, and to the necessity to bail the

banks out and all the other consequences of the crisis.

Even organisations whose job was to manage �nancial risk felt the need to use simpli�ed measures

provided by a third party. And the reason that these risk assessments were wrong was that the rating

agencies over-simpli�ed the task of making these assessments. They made an assumption—that the

component risks were independent of each other—which was a long way from the truth, leading to a

massive underestimation of the risk of default. This was an elementary mistake, but without it, the task

of assessing risk becomes dif�cult and the answers become vaguer, so the temptation to make the

simplifying assumption was probably overwhelming. Perhaps with a more thorough understanding of

how probability theory works, these mistakes would have been less likely.

There are many ways in which we can oversimplify things, but it is worth mentioning one that seems to

appeal to the academic mindset: over-extending appealing concepts. One such example is the idea of

statistical signi�cance (Section 6.1 above). And, as should be apparent from what I have said above, the

concept of simplicity itself is far more multifaceted and problematic than my use of it as a slogan might
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make it appear. Many subdivisions into two or three categories (simple/complex, qualitative/quantitative,

left-wing/right-wing, heavy drinker/light drinker/teetotaller) run a serious, and often unacknowledged,

risk of over-simpli�cation.

Over-simpli�cation is certainly a problem. But the cause is often that a more appropriate understanding

is too complicated to make sense of, so we may have little option but to go for the crude and unhelpful

over-simpli�cation. Complicated knowledge may push us into dumbing down. The remedy is dumbing

up: sensible and thoughtful simpli�cation.

Finally, there is the concept of simplicity itself. A realistic assessment of how simple a piece of knowledge

is needs to take many factors into account: the audience and what they know already, what the

knowledge will be used for, what technology will be available to assist in the learning and use of the

knowledge, whether the knowledge facilitates a deep understanding of its meaning, rationale and

limitations, how broad the domain of application is, and so on. Oversimplifying the concept of simplicity

runs the risk of ignoring some of these dimensions.

9. Conclusions

If we don't start to simplify our increasingly complicated web of knowledge, human progress will slow

down or cease as our minds become clogged with unnecessary technicalities, and inevitable over-

simpli�cations take control of our thoughts and actions. We need to see the design of elegant, �t-for-

purpose perspectives which help us to make wise judgements as an important task for academia. Then

perhaps 10-year-olds will be able to understand quantum mechanics, and the leading edge of science will

be beyond anything we can imagine now.

AI and other computer technologies can, of course, help. The ability to explain ideas as and when they are

needed is likely to facilitate a just-in-time approach to learning, which may be bad news for universities

whose core business is teaching stuff to students just-in-case they need it. But this does not mean that

simpli�cation is not bene�cial and, perhaps in the long term, essential.

Conventionally, academic knowledge is viewed as a given: it should not be �ddled with to suit the

requirements of users and the context of use. I think this is a mistake: it should be designed, or

redesigned, to make it as simple as possible for the context of use. We have looked at a few examples

where knowledge might usefully be simpli�ed. These are just a few areas I know something about: there

are likely to be many similar opportunities across the whole spectrum of human knowledge. It is in areas

qeios.com doi.org/10.32388/RHTT8D.3 25

https://www.qeios.com/
https://doi.org/10.32388/RHTT8D.3


which seem trivial to experts, but dif�cult for novices, that the biggest bene�ts of simpli�cation are

likely to lie. The dif�culty is that, in most areas of academic knowledge, there is no tradition of trying to

design simpler versions of well-known concepts, techniques or theories.

The bene�ts brought by such simpli�cations are potentially enormous. Let’s imagine that some dif�cult

knowledge can be simpli�ed by a factor of about a quarter. (I think in many cases this could be nearer

50% or even more.) This might mean that people spend 25% less time learning about it, or using it, or

that the simpli�cation means that they can master 25% more than they would otherwise have been able

to, or that they make 25% fewer mistakes, or that 25% more people are able to master it. Over the whole

spectrum of dif�cult knowledge, this has the potential to make an enormous difference. Imagine that

students around the world could spend 25% less time on their studies. The rest of the time could be spent

taking their studies further or doing something completely different. And researchers would arrive at the

frontiers of their discipline sooner, or with a better understanding of other relevant areas, both of which

should lead to faster progress.

Why isn't this happening already? The main reason is probably that nobody seems to have pursued the

idea as a general principle, perhaps because of the assumption that academic knowledge expresses the

truth, and the truth is �xed and not adjustable to suit the circumstances. Or because the only people in a

position to produce a useful simpli�cation are the experts in the domain who are unlikely to see the need

—for them the expertise is trivial and an essential part of the discipline. Like all paradigm shifts, the

most likely champions are outsiders, but outsiders may not have a suf�ciently deep understanding to

create a viable alternative.

But whatever the reason, the idea of simplifying knowledge does not seem to be on anybody's agenda.

This lack of interest is reinforced by the complete absence of academic journals on the theme of

simpli�cation. To get published, an academic needs to produce something complicated; a simple version

of an existing idea is rarely viewed favourably by the gatekeepers of academia. There is also the

conservative in�uence of the education system, and the attitude of teachers at all levels that "standards"

should be maintained, that knowledge should not be "dumbed down", and that, in the words of the Daily

Telegraph leader column, "Maths should be hard". But surely maths should be as easy as possible, and

“dumbing up” is always a worthy goal.

I would like to see simpli�cation on the agenda. Two projects, for example, appeal to me. The version of

statistics taught in the academic curriculum is a major source of confusion and incomprehension in

urgent need of reform. And I would love to understand quantum mechanics at a deeper level than I do,
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but I think I need to wait for a version more in tune with my aptitudes and the time I have available. Such

a version is probably right outside the possibilities envisaged by current physicists but, eventually, I

suspect there will be a version of quantum mechanics which is appropriate for schoolchildren.

Appendix: Re-engineering the exponential function

What I want to propose here is a way of reformulating the exponential function so that it is more

appropriate for people like my M.Sc. students who want to understand it thoroughly but don't want to get

bogged down in calculus and logarithms. To do this I'll use a slightly easier example and come back to

reliability later.

Let’s imagine that a population (of human beings, bacteria, rabbits or whatever) grows at 2% per year.

How big will the population be after 40 years?

At �rst sight, the answer is that the population will have grown by 80% (2% times 40 years, which is

80% or 0.8) so at the end of 40 years it will be 180% (1+0.8 or 1.8) of its size at the start. This, however,

ignores the fact that each year the population will be a bit bigger, so 2% of the population will get bigger

and bigger, so the population will grow faster.

This is like the difference between simple interest and compound interest. If you invest some money with

2% per year simple interest for 40 years, at the end of the 40 years your interest will be 80% of what you

invested, so you will end up with 180% of, or 1.8 times, your initial investment. Compound interest is a

little trickier to work out. After one year your investment will have grown by 2% to 1.02 times your initial

investment. After the second year, it will have grown to 1.02 times what it was at the end of the �rst year,

so it will be 1.02*1.02 (1.02x1.02) or 1.0404 times your initial investment. This is a little more than the 4%

growth you'd have got with simple interest because you're getting interest on the interest. If you repeat

this argument for each of the 40 years you will �nd that the �nal investment is 1.02^40 (or 1.0240 in

conventional notation) times the initial investment, which comes to 220.804% of (or 2.20804 times) the

initial investment. This, for obvious reasons, is a bit more than the 1.8 (180%) multiplier you get from

simple interest.

The population growth question is obviously like compound interest except for one thing. After, say, six

months the population will have grown by 1%, so we could apply the compound interest method with 80

intervals in which the growth is 1%. This suggests the �nal population is multiplied by a factor of 1.01̂ 80

or 2.216715. This is a little bit more than you should expect. But why use six-month intervals? If we used a
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tenth of a year and a growth rate of 0.2%, the �nal answer would be 1.002^400 or 2.223764. Again, a little

more but not much. You'll �nd if you take smaller and smaller intervals that the answer settles down to

about 2.226 and never gets bigger than this. (This is known as a limit in mathematical terminology.)

And this, of course, is the answer you get from the exponential function: e0.8 or EXP(0.8) = 2.226. The

function ex gives us an easy way of working out compound growth problems like this so that we don't

need to go through this rigmarole each time we need to work out something about compound growth.

However, from the perspective of my students, there are four problems with ex from the user-friendliness

perspective:

The symbol ex and the name exponential function. The link between these and the idea of compound

growth is rather hazy.

The name of the reverse function for going back from the compound to the simple case is loge (LN in

Excel): again, this would seem arbitrary and meaningless to someone without a mathematical

background.

How the two functions—(1) and (2) above—are explained. An explanation which does not involve

logarithms and calculus would help our beginners.

The fact that you start with a number representing growth (0.8) but you �nish with a number

representing the total of what you started with plus the growth (2.226).

I'll start with the last point. The dif�culty is that as well as the difference in terms of simple or compound

growth, 0.8 and 2.226 also differ in that the �rst represents the increase or growth whereas 2.226

represents the total including what you started with. This can only be a distraction. For my proposed

reformulation, we need to decide whether we are going to go for the increase or the total. I'll go for the

increase or growth because I think this makes things a little easier. The growth in the simple case is 0.8,

and in the compound case is 1.226 (2.226-1). They are both, of course, multipliers: you need to know what

population (or investment) you start with, and then you multiply by 0.8 for the simple case and 1.226 for

the compound case. I'll refer to 0.8 as a Simple Growth Multiplier (SGM) and 1.226 as a Compound Growth

Multiplier (CGM).

I’ve explained how we can start with an SGM of 0.8 and calculate the corresponding CGM (1.226). We

could obviously do this for other SGMs and then make a table like Table 1 above.

Making the reverse table where we start off with a value of CGM and then work out the corresponding

value of SGM is a little harder because it involves trial and error. Imagine we start with CGM=1. Looking at
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the table, SGM obviously has to be between 0.6 and 0.8. So, we might try 0.7, look at the resulting CGM,

and possibly then try again until we have got it close enough. Hard work without a computer, but trivial

with one.

We can also represent the relationship between SGM and CGM by a graph. People tend not to realise just

how large the compound multiplier can be—the graph below illustrates this nicely.

Figure 3. Relationship between SGM and CGM

We could build these two functions into a spreadsheet, calculator or other software. So, for example:

These names now refer directly and obviously to what the functions represent. The procedure for going

from SGM to CGM is long-winded but the rationale is relatively straightforward and does not involve any

extraneous higher mathematics.

If the growth is compound, any mention of simple growth, and so SGM, is hypothetical. In the original

example, SGM was 0.8: this is what would happen if the growth were simple. But it is not; if it were, we

would not be interested in CGM. The only way we could get around this problem of having to think in

terms of hypothetical quantities is by bringing in the time period (40) and the growth rate (0.02), which

CGM(0.8) = 1.226

SGM(1.226) = 0.8
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would make it a function with three variables, which immediately makes everything more complicated.

Tables and graphs then would not work. I will stick with the hypothetical SGM.

Notes

Earlier versions of this article, with different titles, were posted on SSRN and Qeios. I am grateful for the

feedback from readers of the post on Qeios.
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