

Research Article

A Possible Secular Drift of Atomic Clocks

Yves Henri Sanejouand¹

1. CNRS, France

Arguments in favor of the hypothesis that the tick rate of atomic clocks is drifting are examined. The main one is the existence of a preferred value for the relative drift of the period of millisecond pulsars, which is otherwise left unexplained. Other arguments, like the drift of the frequency of sapphire oscillators, the Earth-Moon distance and the Pioneer anomalies are less convincing since other factors are known to play a key role. Interestingly, the corresponding drift of atomic spectra could contribute significantly to the value of the Hubble constant, thus eliminating the age problem of Λ CDM, which has recently been exacerbated by the discovery of mature galaxies at redshifts as high as 14. Such a drift is likely due to an increase of the gravitational field felt by the atomic clocks.

Corresponding author: Yves-Henri Sanejouand, yves-henri.sanejouand@univ-nantes.fr

Introduction

Modern atomic clocks are so accurate that they would not have gained or lost a second if they had started running billion years ago [1][2]. However, compared with atomic clocks at rest in an inertial reference system, a moving atomic clock is ticking at a slower rate [3][4], its tick rate slowing also in the presence of massive bodies [5][6] as checked, for instance, by Joseph Hafele and Richard Keating in their trip around Earth aboard commercial airliners [3]. As a matter of fact, if such effects were not taken into account, the Global Positioning System would not work [7].

So, if the gravitational field felt by an atomic clock on Earth were changing as a function of time, its tick rate would drift. Moreover, if the gravitational field were changing in the same way all around the Earth, either as a consequence of a variation of the gravitational field of the Earth [8], of the mass of the Sun [9], of the gravitational constant [10][11][12] or of the mean gravitational field of the local Universe [13][14][15], the tick rate of all atomic clocks would drift in the same way, meaning that they would keep on looking highly accurate, when compared to each other.

As a corollary, the tick rate of clocks based on phenomenons not affected by the value of the local gravitational field would drift with respect to atomic clocks [16][17]. Interestingly, the tick rate of clocks based on different and, ideally, independant physical phenomenons would drift at the same rate, with respect to atomic clocks, allowing both to determine the common origin of their drift and to measure the variations of the local gravitational field as a function of time.

The main goal of the present study is to gather arguments in favor of the hypothesis that the tick rate of atomic clocks is drifting. Some of these arguments have already been used to back other non-mainstream hypotheses, like a universal expansion of space [18][19][20][21], a spacetime expansion [22], a varying gravitational constant [23][24] or a varying speed of light [25][26]. Note however that these other hypotheses have significantly different physical consequences.

Main hypothesis

Since atomic clocks rely on the fact that a given kind of atom can only be excited by highly specific frequencies, let us assume that $\nu_{mn}(t_u)$, the frequency required for a photon to be absorbed by an atom when it jumps from state m to state n , varies slowly as a function of time, so that:

$$\nu_{mn}(t_u) = C_{mn}t_u + \frac{1}{2}\dot{C}_{mn}t_u^2 + \dots$$

where t_u is the time given by a clock that is not sensitive to a change of the gravitational field, C_{mn} , the time derivative of $\nu_{mn}(t_u)$ and \dot{C}_{mn} the time derivative of C_{mn} . Hereafter, for the sake of simplicity, only the first term of the above expansion is retained. In other words, it is assumed that $\nu_{mn}(t_u)$ varies so slowly over the timescales considered herein that it can be well approximated by [27]:

$$\nu_{mn}(t_u) = C_{mn}t_u$$

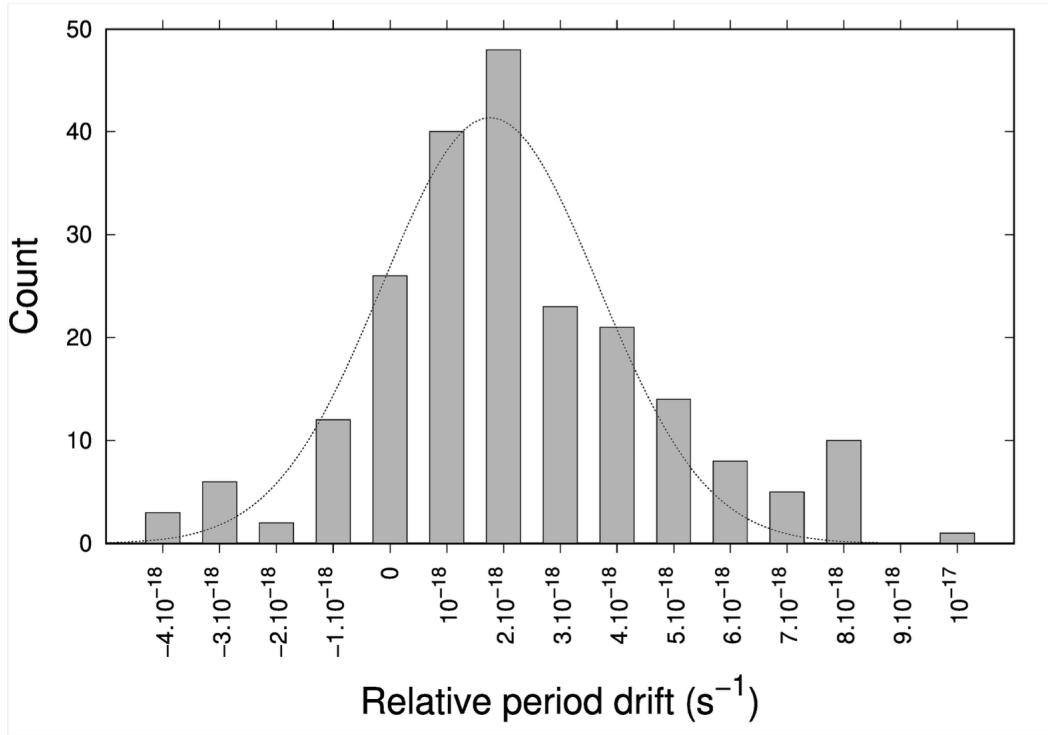
As a consequence:

$$\frac{\nu_{mn}(t_u)}{\nu_{mn}(t_0)} = \frac{t_u}{t_0} \quad (1)$$

where t_0 is the reference time, for instance the time when a series of observations begins. Note that the above approximation implies that atoms were not able to emit any observable light at $t_u = 0$.

Δt_{ac} , the duration measured by an atomic clock, is, by definition, proportional to a given $\nu_{mn}(t_u)$, namely, to the atomic frequency used by the clock to control its ticking rate, at the moment a

measurement is performed. So, as a consequence of eqn 1, durations measured by atomic clocks are expected to increase in such a way that:


$$\frac{\dot{\Delta t}_{ac}}{\Delta t_0} = \frac{1}{t_0} \quad (2)$$

where Δt_0 is the duration measured at time t_0 .

On the other hand, f_{ac} , the frequency measured by an atomic clock is expected to decrease, so that:

$$\frac{\dot{f}_{ac}}{f_0} = -\frac{1}{t_0} \quad (3)$$

where f_0 is the frequency measured at time t_0 .

Figure 1. Relative drift of the period of millisecond pulsars. The 301 pulsars of the ATNF pulsar database with a period less than 15 ms, a known period drift, distance and transverse velocity were considered. 25% of them have a relative period drift outside the range shown above. Dotted line: gaussian fit.

Results

Millisecond pulsars

As a consequence of the law of inertia, the rotation frequency of a freely rotating body is expected to be constant in time.

Rotating bodies with very stable periods have actually been found in space, millisecond pulsars^[28] being so stable that they have been used to establish timescales that rival the best atomic-clocks in long-term stability^[29]. Such timescales are nowadays provided by several pulsar timing arrays, like the Parkes^[30], the European^[31], the Indian^[22] or the MeerKAT^[32] ones.

In the ATNF pulsar database^[34], there are 778 millisecond pulsars¹, namely, pulsars with a measured period, P_{obs} , of less than 15 ms. Among them, 402 have a known period drift, \dot{P}_{obs} , which ranges between -1.1×10^{-18} , for pulsar B2127+11D, and $1.3 \times 10^{-17} s^{-2}$, for pulsar J1748-2446aw.

The apparent drift of the period of a pulsar needs to be corrected with the Shklovsky term, the actual drift of its period, \dot{P} , being so that^{[35][36]}:

$$\frac{\dot{P}}{P} \approx \frac{\dot{P}_{obs}}{P_{obs}} - \frac{v_{\perp}^2}{c_0 d_p}$$

where v_{\perp} is the velocity of the pulsar perpendicular to the line of sight, d_p , its distance, and c_0 , the speed of light.

In the ATNF pulsar database, v_{\perp} and d_p are nowadays available for 301 millisecond pulsars with a known period drift. As shown in Figure 1, this allows to confirm that there is a preferred value for $\frac{\dot{P}}{P}$ ^{[22][37]}, namely, as obtained with a gaussian fit:

$$\frac{\dot{P}}{P} = 1.77 \pm 0.19 \times 10^{-18} s^{-1} (\text{std error})$$

Upon the hypothesis that the drift of the period of millisecond pulsars is a consequence of magnetic dipole radiation^[38], this would mean that millisecond pulsars have a preferred characteristic age^{[36][39]}, τ_c , of:

$$\tau_c \approx \frac{P}{2\dot{P}} = 9 \pm 1 \text{ Gyr}$$

Such a preferred value seems difficult to justify^[37]. In the following, it is instead assumed that it is due to a drift of the tick rate of the atomic clocks used to measure the timing of millisecond pulsars. According

to eqn 2, this would mean that:

$$t_0 \approx 18 \pm 2 \text{ Gyr.}$$

In this context, fluctuations around the preferred value of $\frac{\dot{P}}{P}$ (see Fig. 1), of $1.90 \pm 0.19 \times 10^{-18} \text{ s}^{-1}$, could be due to an acceleration of the pulsar, a_p , along the line of sight, since it would add an additional drift to its measured period of [\[36\]](#)[\[40\]](#):

$$\frac{\dot{P}}{P} = \frac{a_p}{c_0}$$

with an order of magnitude for a_p of nearly $6 \times 10^{-10} \text{ m/s}^2$. Note that this is the acceleration experienced by a body at 22 AU of a planet with the mass of Neptune. Note also that the period of revolution of planets at this distance of a solar-mass star is ≈ 100 yr, explaining why they may have escaped detection so far. Indeed, though planets have been discovered around pulsars [\[41\]](#)[\[42\]](#), bodies in the ATNF database with a period of revolution around a pulsar of more than a year have a mass of at least 0.15 M_\odot .

Sapphire oscillators

If the tick rate of atomic clock is drifting, clocks based on other physical principles are expected to exhibit the same, apparent drift [\[16\]](#)[\[24\]](#).

Compared to atomic clocks over many years, cryogenic sapphire oscillators (CSO) indeed exhibit linear drift rates [\[43\]](#)[\[44\]](#), with an order of magnitude often found consistent with the drift observed for the period of millisecond pulsars [\[21\]](#) given that, according to the present study, frequencies measured using atomic clocks are expected to decrease as a function of time (eqn 3).

For instance, the fractional frequency shift of the CSO at CNES has been recorded from 2003 to 2005. During the single cryogenic cycling, there was an abrupt frequency jump of about 0.5 Hz, however the drift otherwise remained at a constant level of $-2.4 \times 10^{-13} \text{ d}^{-1}$ [\[44\]](#), that is, of $-2.8 \times 10^{-18} \text{ s}^{-1}$. In the case of the CSO at Paris observatory, a constant linear drift of $-1.5 \times 10^{-13} \text{ d}^{-1}$, that is, of $-1.7 \times 10^{-18} \text{ s}^{-1}$, was also observed over a period of more than three years, also in spite of a frequency shift during cycling [\[44\]](#).

On shorter timescales, smaller drifts have however been reported [\[21\]](#)[\[45\]](#)[\[46\]](#). For instance, a mean fractional frequency drift rate of $-0.04 \times 10^{-18} \text{ s}^{-1}$ was measured over a 190-day-long period [\[47\]](#). But since it has been argued that CSO drifts could be due to an aging of the resonators, associated to the

relaxation of the mechanical stress induced during their assembly [48][49], such phenomena could as well help canceling out their actual frequency drift with respect to atomic clocks. Of course, like for atomic clocks, the tick rate of CSOs could prove sensitive to variations of the gravitational field. To my knowledge, in spite of their high stability, effects of the gravitational field on the frequency of CSOs remain however to be exhibited.

Earth–Moon distance anomaly

Since durations measured by atomic clocks are expected to increase (eqn 2), d_{ac} , the distance measured using the time taken by light to go from a source to an observer, is also expected to increase so that:

$$d_{ac} = d_0 + c_0 \dot{\Delta t}_{ac} (t_u - t_0)$$

where d_0 is the distance measured at time t_0 , c_0 , the speed of light, the apparent drift of this distance being, according to eqn 2:

$$\frac{d_{ac} - d_0}{t_u - t_0} = \frac{d_0}{t_0} \quad (4)$$

In the case of the Earth–Moon distance, with the value of t_0 determined above, an apparent drift of $2.0 \pm 0.2 \text{ cm yr}^{-1}$ is thus expected.

An apparent increase of the Earth–Moon distance has indeed been observed. It is however of $3.82 \pm 0.07 \text{ cm yr}^{-1}$ [50]. In the context of the present study, this means that the actual increase of the Earth–Moon distance is only of $1.8 \pm 0.2 \text{ cm yr}^{-1}$. Interestingly, with the later value, the present rate of tidal dissipation in the Earth–Moon system does not look as anomalous as it does when atomic clocks are not assumed to drift [26][51].

As a consequence of such an increase, and of momentum conservation, the length of the day is also expected to increase, namely, of $1.1 \pm 0.1 \text{ msec cy}^{-1}$, instead of $2.3 \pm 0.1 \text{ msec cy}^{-1}$, when it is assumed that atomic clocks are not drifting [52]. Unfortunately, fluctuations of the length of the day of several milliseconds have been observed over the last centuries, likely to be due to mantle–core interactions [53][54]. As a matter of fact, the analysis of an extensive compilation of ancient eclipses yields an intermediary value of $1.78 \pm 0.03 \text{ msec cy}^{-1}$ over the last 2500 years [55].

On the other hand, as a consequence of an increase of the Earth–Moon distance, d_M , a decrease of η_m , the angular velocity of the Moon, is expected, since

$$\eta_m = \sqrt{\frac{GM_E}{d_M^3}}$$

where M_E is the mass of the Earth, G , the gravitational constant, and where it has been assumed that the orbit of the Moon is circular. So, if the actual increase of the Earth–Moon distance is a linear function of time, then $\dot{\eta}_m$, the angular acceleration of the Moon, is so that:

$$\dot{\eta}_m = -\frac{3}{2} \frac{\dot{d}_M}{d_M} \eta_m \quad (5)$$

Thus, in the context of the present study, an actual angular acceleration of the Moon of $-11 \pm 1 \text{ ''/cy}^2$ is expected. However, as the consequence of the drift of atomic clocks, an additional, apparent acceleration of the Moon of $-9 \pm 1 \text{ ''/cy}^2$ should also be observed (eqn 2), the total acceleration of the Moon being of $\dot{\eta}_m = -20 \pm 2 \text{ ''/cy}^2$.

On the other hand, if it is assumed that the drift of atomic clocks does not contribute to the measured increase of the Earth–Moon distance [50], according to eqn 5, the acceleration of the Moon is instead expected to be of $-23.7 \pm 0.1 \text{ ''/cy}^2$, a more detailed analysis of lunar laser ranging data providing $\dot{\eta}_m = -25.858 \pm 0.003 \text{ ''/cy}^2$ [56].

As noticed previously [56][57], this later value is in perfect agreement with the acceleration measured through the analysis of timings of transits of Mercury across the Sun between 1677 and 1973, namely, $-26 \pm 2 \text{ ''/cy}^2$ [58]. However, other values obtained with the help of atomic clocks but before lunar laser ranging data became available do not look that consistent [59]. For instance, an analysis of 8249 lunar occultation timings between 1955 and 1980 gave $-21.4 \pm 2.8 \text{ ''/cy}^2$ [24][60], in better agreement with the value predicted within the frame of the present study.

Pioneer anomaly

It has been noticed that an acceleration of the atomic clocks of $2.9 \pm 0.4 \times 10^{-18} \text{ s}^{-1}$ could explain the so-called Pioneer anomaly [13][14][61][62]. This is significantly above the values mentioned above. But since it has been shown that the Pioneer anomaly could be due to the recoil force associated with an anisotropic emission of thermal radiation off the Pioneer spacecrafts [63][64], the present study suggests that this recoil force is responsible for only 40% of the observed effect.

Cosmological consequences

Let us assume that the energy of photons traveling in free space is conserved. Thus, if the frequency emitted by a given kind of atom increases as a function of time, the wavelength measured by a remote observer is expected to be redshifted, so that, as a consequence of eqn 1:

$$\frac{z}{1+z} = \frac{\Delta t_\gamma}{t_0} \quad (6)$$

where Δt_γ is the photon time-of-flight between its source and the observer, z being the redshift, defined as usual with respect to the wavelength known by the observer for this atom.

It has been shown that eqn 6 can account for a variety of cosmological observations [27][65][66], if it is assumed that $t_0 = t_H$, t_H being the Hubble time. Indeed, it is a straightforward consequence of the $R_h = ct$ cosmological model [67], which has been claimed to be favored by various model selection criteria [68][69], when compared to Λ CDM, that is, to the standard one. However, recent measurements of the local Hubble constant yield values of t_H [21][70] that are significantly smaller than the t_0 value obtained above. For instance, by studying cepheids in the hosts of 42 supernovae Ia the SHOES team obtained $t_H = 13.7 \pm 0.2$ Gyr ($H_0 = 73.0 \pm 1.0$ km s⁻¹ Mpc⁻¹ [71]).

So, according to the present study, the drift of atomic spectra could contribute significantly to the local value of the Hubble constant, by as much as 75%. Interestingly, a value for the Hubble constant around 30 km s⁻¹ Mpc⁻¹ would cure all of the ills of a spatially flat Universe composed predominantly of cold dark matter [72]. It would also eliminate the cosmic age problem of Λ CDM [73][74][75][76], which has recently been exacerbated by the discovery of mature galaxies at a redshift around 14 [77][78][79][80]. The tension with the value of the Hubble constant obtained by analyzing the fluctuations of the cosmic microwave background [70][81] would however become more severe.

Discussion

The tick rate of a static atomic clock can increase only if the gravitational field felt by the clock increases.

The local gravitational field could for instance increase if the gravitational constant were decreasing [10][11][12]. Based on a variety of physical arguments, and high-accuracy measurements, a significant enough variation of the gravitational constant has however been excluded [82][83][84]. Though other speculative hypotheses can be considered [8], an increase of the local gravitational field likely means that the average

mass density of the local Universe is decreasing. Such a decrease is, for instance, expected as a consequence of the expansion of space^[13]. It could also be due to a loss of gravitational mass^[15].

Conclusion

A drift of the tick rate of atomic clocks can explain the fact that there is a preferred value for the relative drift of the period of millisecond pulsars^{[22][37]} (Fig. 1), while the corresponding drift of atomic spectra may contribute significantly to the local value of the Hubble constant.

In order to further support this hypothesis, it is necessary to study with a high accuracy physical phenomena that are not expected to vary in time. For instance, phenomena linked to inertia, like the angular rotation of objects in almost frictionless media, like in the case of millisecond pulsars, or the length of rods expected to remain rigid, like in the far from ideal case of the Earth–Moon distance.

As an example of a forthcoming opportunity, the Laser Interferometer Space Antenna will measure picometer-level fluctuations in the distance between drag-free proof masses over baselines of approximately 5×10^6 km^{[85][86]}. According to eqn. 4, an apparent drift of the length of its arms, of $9 \pm 1 \text{ \AA s}^{-1}$, should be observable.

Statements and Declarations

Acknowledgements

I thank Georges Paturel for fruitful discussions over the last fourteen years.

Footnotes

¹In version 2.6.3, as retrieved on August 2025, 7th, on <https://www.atnf.csiro.au/research/pulsar/psrcat>

References

1. ^ΔLombardi MA, Heavner TP, Jefferts SR (2007). "NIST Primary Frequency Standards and the Realization of the SI Second." *NCSLI Measure*. 2(4):74–89.
2. ^ΔBloom BJ, Nicholson TL, Williams JR, Campbell SL, Bishof M, Zhang X, Zhang W, Bromley SL, Ye J (2014). "A n Optical Lattice Clock with Accuracy and Stability at the 10-18 Level." *Nature*. 506(7486):71–75.

3. ^{a, b}Hafele JC, Keating RE (1972). "Around-the-World Atomic Clocks: Observed Relativistic Time Gains." *Science*. **177**(4044):168–170.

4. ^AReinhardt S, Saathoff G, Buhr H, Carlson LA, Wolf A, Schwalm D, Karpuk S, Novotny C, Huber G, Zimmerman M et al. (2007). "Test of Relativistic Time Dilation with Fast Optical Atomic Clocks at Different Velocities." *Nature Physics*. **3**(12):861–864.

5. ^AMüller J, Dirkx D, Kopeikin SM, Lion G, Panet I, Petit G, Visser PN (2018). "High Performance Clocks and Gravity Field Determination." *Space Sci Rev*. **214**(1):5.

6. ^AMcGrew WF, Zhang X, Fasano RJ, Schäffer SA, Belyov K, Nicolodi D, Brown RC, Hinkley N, Milani G, Schioppo M et al. (2018). "Atomic Clock Performance Enabling Geodesy Below the Centimetre Level." *Nature*. **564**(734):87–90.

7. ^AAshby N (2003). "Relativity in the Global Positioning System." *Living Rev Relat*. **6**(1):1–42.

8. ^{a, b}Cox A, Doell RR (1961). "Palaeomagnetic Evidence Relevant to a Change in the Earth's Radius." *Nature*. **189**(4758):45–47.

9. ^AMinton DA, Malhotra R (2007). "Assessing the Massive Young Sun Hypothesis to Solve the Warm Young Earth Puzzle." *Ap J*. **660**(2):1700.

10. ^{a, b}Dirac PA (1937). "The Cosmological Constants." *Nature*. **139**(3512):323–323.

11. ^{a, b}Jordan P (1959). "Zum Gegenwärtigen Stand der Diracschen Kosmologischen Hypothesen" [On the Current State of Dirac's Cosmological Hypotheses]. *Z Phys*. **157**(1):112–121.

12. ^{a, b}Narlikar JV (1983). "Cosmologies with Variable Gravitational Constant." *Found Phys*. **13**(3):311–323.

13. ^{a, b, c}Ranada AF (2004). "The Pioneer Anomaly as Acceleration of the Clocks." *Found Phys*. **34**(12):1955–1971.

14. ^{a, b}Wilhelm K, Dwivedi BN (2011). "An Explanation of the Pioneer Anomaly Involving Accelerated Atomic Clocks." *Astroph Space Sci Tr*. **7**(4):487–494.

15. ^{a, b}Saw VL (2018). "Asymptotically Simple Spacetimes and Mass Loss Due to Gravitational Waves." *Int J Mod Phys D*. **27**(01):1730027.

16. ^{a, b}Canuto VM, Goldman I (1982). "Atomic and Gravitational Clocks." *Nature*. **296**(5859):709–713.

17. ^ACanuto VM, Goldman I (1989). "Atomic and Gravitational Clock." *Int J Theor Phys*. **28**(9):1005–1017.

18. ^AMaeder A, Bouvier P (1979). "Scale Invariance, Metrical Connection and the Motions of Astronomical Bodies." *Astron Astrophys*. **73**(1-2):82–89.

19. ^ΔHarutyunian H (1995). "Some Similarities of Expansion Phenomena in the Vicinity of the Earth and in the Universe as a Whole." *Astrophys.* **38**(4):374–378.

20. ^ΔDumin YV (2003). "A New Application of the Lunar Laser Retroreflectors: Searching for the "Local" Hubble Expansion." *Adv Space Res.* **31**(11):2461–2466.

21. ^{a, b, c, d}Paturel G, Teerikorpi P, Baryshev Y (2017). "Hubble Law: Measure and Interpretation." *Found Phys.* **4** 7(9):1208–1228.

22. ^{a, b, c}Masreliez CJ (1999). "The Scale Expanding Cosmos." *Astrophys Space Sci.* **266**(3):399–447.

23. ^ΔFaulkner D (1976). "Dirac's Large Numbers Hypothesis and the Acceleration of the Moon's Mean Longitude." *Mon Not R Astron Soc.* **176**(3):621–624.

24. ^{a, b, c}Van Flandern TC (1981). "Is the Gravitational Constant Changing?" *Astrophys J.* **248**:813.

25. ^ΔSanejouand YH (2009). "About Some Possible Empirical Evidences in Favor of a Cosmological Time Variation of the Speed of Light." *Europhys Lett.* **88**(5):59002.

26. ^{a, b}Riofrio L (2012). "Calculation of Lunar Orbit Anomaly." *Planet Sci.* **1**(1):1.

27. ^{a, b}Sanejouand YH (2014). "A Simple Hubble-Like Law in Lieu of Dark Energy." *arXiv.* **1401**:2919.

28. ^ΔLorimer DR (2008). "Binary and Millisecond Pulsars." *Living Rev Relat.* **11**(1):8.

29. ^ΔManchester RN (2017). "Millisecond Pulsars, Their Evolution and Applications." *J Astrophys Astron.* **38**(3):4 2.

30. ^ΔManchester RN, Hobbs G, Bailes M, Coles WA, van Straten W, Keith MJ, Shannon RM, Bhat NDR, Brown A, Burke-Spolaor SG et al. (2013). "The Parkes Pulsar Timing Array Project." *Publ Astron Soc Aust.* **30**:e017.

31. ^ΔKramer M, Champion DJ (2013). "The European Pulsar Timing Array and the Large European Array for Pulsars." *Classical Quantum Gravity.* **30**(22):224009.

32. ^ΔTarafdar P, Nobleson K, Rana P, Singha J, Krishnakumar MA, Joshi BC, Paladi AK, Kolhe N, Batra ND, Agarwal N et al. (2022). "The Indian Pulsar Timing Array: First Data Release." *Publ Astron Soc Aust.* **39**:e053.

33. ^ΔMiles MT, Shannon RM, Bailes M, Reardon DJ, Keith MJ, Cameron AD, Parthasarathy A, Shamohammadi M, Spiewak R, van Straten W et al. (2023). "The MeerKAT Pulsar Timing Array: First Data Release." *Mon Not R Astron Soc.* **519**(3):3976–3991.

34. ^ΔManchester RN, Hobbs GB, Teoh A, Hobbs M (2005). "The Australia Telescope National Facility Pulsar Catalogue." *A J.* **129**(4):1993.

35. ^ΔShklovsky I (1971). "Pulsars and Type II Supernovae." *Astrophys Lett.* **8**:101.

36. ^{a, b, c}Toscano M, Sandhu J, Bailes M, Manchester R, Britton M, Kulkarni S, Anderson S, Stappers B (1999). "Millisecond Pulsar Velocities." *Mon Not R Astron Soc.* **307**(4):925–933.

37. ^{a, b, c}Manchester RN (1995). "The Population of Binary and Millisecond Pulsars." *J Astrophys Astron.* **16**(2):233–244.

38. ^aGunn JE, Ostriker JP (1969). "Magnetic Dipole Radiation from Pulsars." *Nature.* **221**(5179):454–456.

39. ^aKiziltan B, Thorsett SE (2010). "Millisecond Pulsar Ages: Implications of Binary Evolution and a Maximum Spin Limit." *Ap J.* **715**(1):335.

40. ^aChakrabarti S, Chang P, Lam MT, Vigeland SJ, Quillen AC (2021). "A Measurement of the Galactic Plane Mass Density from Binary Pulsar Accelerations." *Ap J Lett.* **907**(2):L26.

41. ^aWolszczan A, Frail DA (1992). "A Planetary System Around the Millisecond Pulsar PSR1257+12." *Nature.* **355**(6356):145–147.

42. ^aWolszczan A (2012). "Discovery of Pulsar Planets." *New Astr Rev.* **56**(1):2–8.

43. ^aFluhr C, Dubois B, Calosso CE, Vernotte F, Rubiola E, Giordano V et al. (2023). "A Cryogenic Sapphire Resonator Oscillator with 10–16 Mid-Term Fractional Frequency Stability." *Appl Phys Lett.* **123**(4).

44. ^{a, b, c}Tobar ME, Ivanov EN, Locke CR, Stanwix PL, Hartnett JG, Luiten AN, Warrington RB, Fisk PT, Lawn M A, Wouters MJ et al. (2006). "Long-Term Operation and Performance of Cryogenic Sapphire Oscillators." *IEEE Trans Ultrason Ferroelect Freq Contr.* **53**(12):2386–2393.

45. ^aBourgeois P, Bazin N, Kersalé Y, Rubiola E, Langham C, Oxborrow M, Clapton D, Walker S, De Vicente J et al. (2010). "ELISA: A Cryocooled 10 GHz Oscillator with 10–15 Frequency Stability." *Rev Sci Instrum.* **81**(2).

46. ^aWiens E, Nevsky AY, Schiller S (2016). "Resonator with Ultrahigh Length Stability as a Probe for Equivalence-Principle-Violating Physics." *Phys Rev Lett.* **117**(27):271102.

47. ^aWiens E, Kwong CJ, Müller T, Bongs K, Singh Y, Schiller S (2023). "Optical Frequency Reference Based on a Cryogenic Silicon Resonator." *Opt Express.* **31**(25):42059–42076.

48. ^aChang S, Mann A (2001). "Mechanical Stress Caused Frequency Drift in Cryogenic Sapphire Resonators." In *Proceedings of the 2001 IEEE International Frequency Control Symposium and PDA Exhibition* (Cat. No. 01 CH37218). IEEE. p. 710–714.

49. ^aGiordano V, Grop S, Dubois B (2015). "Tests of Sapphire Crystals Manufactured with Different Growth Processes for Ultra-Stable Microwave Oscillators." *IEEE Trans Microwave Theory Tech.* **64**(1):78–85.

50. ^{a, b}Dickey JO, Bender PL, Faller JE, Newhall XX, Ricklefs RL, Riesi JG, Shelus PJ, Veillet C, Whipple AL, Wiant J R et al. (1994). "Lunar Laser Ranging – A Continuous Legacy of the Apollo Program." *Science.* **265**(5171):482–490.

51. ^ΔBills BG, Ray RD (1999). "Lunar Orbital Evolution: A Synthesis of Recent Results." *Geophys Res Lett.* **26**(19): 3045–3048.

52. ^ΔStephenson FR, Morrison LV (1995). "Long-Term Fluctuations in the Earth's Rotation: 700 BC to AD 1990." *Philos Trans R Soc London A.* **351**:165–202.

53. ^ΔEubanks T (1993). "Variations in the Orientation of the Earth." *Contrib Space Geodesy Geodyn Earth Dyn Geodyn Ser.* **24**:1–54.

54. ^ΔFinlay CC, Gillet N, Aubert J, Livermore PW, Jault D (2023). "Gyres, Jets and Waves in the Earth's Core." *Nat Rev Earth Environ.* **4**(6):377–392.

55. ^ΔStephenson FR, Morrison LV, Hohenkerk CY (2016). "Measurement of the Earth's Rotation: 720 BC to AD 2015." *Proc R Soc A Math Phys Eng Sci.* **472**(2196):20160404.

56. ^{a, b}Chapront J, Chapront-Touzé M, Francou G (2002). "A New Determination of Lunar Orbital Parameters, Periapsis Recession Constant and Tidal Acceleration from LLR Measurements." *Astron Astrophys.* **387**(2):700–709.

57. ^ΔWilliams JG, Turyshev SG, Boggs DH (2014). "The Past and Present Earth-Moon System: The Speed of Light Stays Steady as Tides Evolve." *Planet Sci.* **3**(1):1–9.

58. ^ΔMorrison LV, Ward CG (1975). "An Analysis of the Transits of Mercury: 1677–1973." *Mon Not R Astron Soc.* **173**(1):183–206.

59. ^ΔOesterwinter C, Cohen CJ (1972). "New Orbital Elements for Moon and Planets." *Celestial Mech.* **5**(3):317–395.

60. ^ΔMorrison LV (1979). "An Analysis of Lunar Occultations in the Years 1943–1974 for Corrections to the Constants in Brown's Theory, the Right Ascension System of the FK4, and Watts' Lunar-Profile Datum." *Mon Not R Astron Soc.* **187**(1):41–82.

61. ^ΔAnderson JD, Laing PA, Lau EL, Liu AS, Nieto MM, Turyshev SG (1998). "Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration." *Phys Rev Lett.* **81**(14):2858–2861.

62. ^ΔAnderson JD, Laing PA, Lau EL, Liu AS, Nieto MM, Turyshev SG (2002). "Study of the Anomalous Acceleration of Pioneer 10 and 11." *Phys Rev D.* **65**(8):082004.

63. ^ΔRievers B, Lämmerzahl C (2011). "High Precision Thermal Modeling of Complex Systems with Application to the Flyby and Pioneer Anomaly." *Ann Phys.* **523**(6):439–449.

64. ^ΔTuryshev SG, Toth VT, Kinsella G, Lee SC, Lok SM, Ellis J (2012). "Support for the Thermal Origin of the Pioneer Anomaly." *Phys Rev Lett.* **108**(24):241101.

65. ^ΔHeymann Y (2014). "The Dichotomous Cosmology with a Static Material World and Expanding Luminous World." *Progr Phys.* **10**(3):178–181.

66. ^ΔSanejouand YH (2022). "A Framework for the Next Generation of Stationary Cosmological Models." *Int J Mod Phys D.* **31**(31):2250084.

67. ^ΔMelia F, Shevchuk ASH (2012). "The $\$R_{\{h\}} = \{ct\} \$$ Universe." *Month Not Roy Astron Soc.* **419**(3):2579–2586.

68. ^ΔMelia F, Yennapureddy MK (2018). "Model Selection Using Cosmic Chronometers with Gaussian Processes." *J Cosmol Astrop Phys.* **2018**(02):034.

69. ^ΔMelia F (2023). "The Cosmic Timeline Implied by the JWST High-Redshift Galaxies." *Mon Not R Astron Soc Lett.* **521**(1):L85–L89.

70. ^{a, b}Di Valentino E, Mena O, Pan S, Visinelli L, Yang W, Melchiorri A, Mota DF, Riess AG, Silk J (2021). "In the Realm of the Hubble Tension - A Review of Solutions." *Classical Quantum Gravity.* **38**:152001.

71. ^ΔRiess AG, Yuan W, Macri LM, Scolnic D, Brout D, Casertano S, Jones DO, Murakami Y, Anand GS, Breuval L et al. (2022). "A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 Km S-1 Mpc-1 Uncertainty from the Hubble Space Telescope and the SHOES Team." *Ap J Lett.* **934**(1):L7.

72. ^ΔBartlett JG, Blanchard A, Silk J, Turner MS (1995). "The Case for a Hubble Constant of 30 Km S-1 Mpc-1." *Science.* **267**(5200):980–983.

73. ^ΔYang RJ, Zhang SN (2010). "The Age Problem in the $\$Lambda$ CDM Model." *Month Not Roy Astron Soc.* **407**(3):1835–1841.

74. ^ΔWang S, Li XD, Li M (2010). "Revisit of Cosmic Age Problem." *Phys Rev D.* **82**(10):103006.

75. ^ΔYu H, Wang F (2014). "Reconciling the Cosmic Age Problem in the $\$R_{\{h\}} = \{ct\} \$$ Universe." *Eur Phys J C.* **74**(10):3090.

76. ^ΔZarandi HRM, Ebrahimi E (2022). "Cosmic Age Problem in Holographic and Ghost Dark Energy Models." *Mon Not R Astron Soc.* **511**(1):42–53.

77. ^ΔBoylan-Kolchin M (2023). "Stress Testing $\$Lambda$ CDM with High-Redshift Galaxy Candidates." *Nat Astron.* **7**(6):731–735.

78. ^ΔCarniani S, Hainline K, D'Eugenio F, Eisenstein DJ, Jakobsen P, Witstok J, Johnson BD, Chevallard J, Maiolino R, Helton JM et al. (2024). "Spectroscopic Confirmation of Two Luminous Galaxies at a Redshift of 14." *Nature.* **633**(8029):318–322.

79. ^ΔDonnan CT, McLure RJ, Dunlop JS, McLeod DJ, Magee D, Arellano-Córdova KZ, Barrufet L, Begley R, Bowler RAA, Carnall AC et al. (2024). "JWST PRIMER: A New Multifield Determination of the Evolving Galaxy UVL

luminosity Function at Redshifts $Z \approx 9-15$." *Mon Not R Astron Soc.* **533**(3):3222–3237.

80. ^ΔConselice CJ, Adams N, Harvey T, Austin D, Ferreira L, Ormerod K, Duan Q, Trussler J, Li Q, Juodžbalis I et al. (2025). "EPOCHS. I. The Discovery and Star-Forming Properties of Galaxies in the Epoch of Reionization at $6.5 < Z < 18$ with PEARLS and Public JWST Data." *Ap J.* **983**(1):30.

81. ^ΔAghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday A, Barreiro R, Bartolo N, Basak S et al. (2020). "Planck 2018 Results. VI. Cosmological Parameters." *Astron Astrophys.* **641**:A6.

82. ^ΔGillies GT (1997). "The Newtonian Gravitational Constant: Recent Measurements and Related Studies." *Re p Prog Phys.* **60**(2):151.

83. ^ΔVerbiest JP, Bailes M, Van Straten W, Hobbs GB, Edwards RT, Manchester RN, Bhat N, Sarkissian JM, Jacoby BA, Kulkarni SR (2008). "Precision Timing of PSR J0437–4715: An Accurate Pulsar Distance, a High Pulsar Mass, and a Limit on the Variation of Newton's Gravitational Constant." *Ap J.* **679**(1):675.

84. ^ΔUzan JP (2025). "Fundamental Constants: From Measurement to the Universe, a Window on Gravitation and Cosmology." *Living Rev Relat.* **28**(1):1–330.

85. ^ΔJennrich O (2009). "LISA Technology and Instrumentation." *Classical Quantum Gravity.* **26**(15):153001.

86. ^ΔThorpe JI (2010). "LISA Long-Arm Interferometry." *Classical Quantum Gravity.* **27**(8):084008.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.