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Interactions among oscillatory brain rhythms play a crucial role in organizing neuronal �ring

sequences during speci�c cognitive functions. In memory formation, the coupling between the phase

of the theta rhythm and the amplitude of gamma oscillations has been extensively studied in the

hippocampus. Prevailing perspectives suggest that the phase of the slower oscillation modulates the

fast activity. However, recent metrics, such as Cross-Frequency Directionality (CFD), indicate that these

electrophysiological interactions can be bidirectional. In this computational study, we demonstrate

that the connectivity structure of common neural motifs crucially determines interaction

directionality. Speci�cally, we found that feedforward inhibition modeled by a theta-modulated ING

(Interneuron Network Gamma) mechanism induces fast-to-slow interactions, while feedback

inhibition through a PING (Pyramidal Interneuron Network Gamma) model drives slow-to-fast

interactions. Importantly, in circuits combining both feedforward and feedback motifs, as commonly

found experimentally, directionality is modulated by synaptic strength within realistic ranges, with

the feedforward recruitment of inhibitory basket cells playing a critical role in directionality. Finally,

we report that each theta-gamma interaction scheme, determined by the balance between feedforward

and feedback inhibition, prioritizes distinct modes of information transmission and integration,

adding computational �exibility. Our results offer a plausible neurobiological interpretation for cross-

frequency directionality measurements associated with the activation of different underlying motifs

that serve distinct computational needs.
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Summary

This study investigates the interaction between various types of brain oscillations and their potential

relationship with the connectivity of underlying neural networks. Brain activity encompasses slow

oscillations, such as theta, alpha, and delta oscillations, as well as faster oscillations, including gamma

oscillations. These oscillations interact through Cross-Frequency Coupling (CFC), a mechanism essential

for cognitive processes like memory, learning, and attention. Given the higher spectral power and

broader spatial propagation of slow oscillations, it has been proposed that CFC arises when slow

oscillations modulate faster activity. However, recent evidence suggests that gamma oscillations can also

predict the phase of slower oscillations, indicating a bidirectional and more intricate relationship. To

explore this complexity, we developed a computational model that reproduces both forms of interaction

observed experimentally. Our results demonstrate that while slow oscillations originating from distant

regions can induce gamma activity, local connectivity and speci�c cell-type dynamics allow gamma

oscillations to anticipate slow oscillations in certain conditions. The balance of inhibitory circuits

modulates fast-slow oscillation interactions, creating distinct functional modes with varying

computational properties and enhancing system �exibility. This work integrates competing hypotheses

on oscillation interactions and offers a conceptual framework for linking these dynamics to the

structural organization of neural circuits.

Introduction

Mammalian brains exhibit oscillatory activity over a broad frequency range, from 0.5 to 500 Hz, spatially

organized across different regions[1]. These oscillations re�ect distinct synchronization patterns of the

underlying neural circuits and are associated with different behavioral states. For instance, theta band

oscillations, around (4-8) Hz, in the prefrontal cortex and hippocampus and alpha band oscillations,

around (8-12) Hz, in the visual cortex, have been linked with locomotion, learning, and attention[2][3][4][5]

[6].

Faster rhythms, such as gamma oscillations within the 30-150 Hz frequency band, are also ubiquitous in

brain networks[7][8]. Notably, gamma oscillations frequently interact with slower rhythms in a

phenomenon known as cross-frequency coupling (CFC)[9]. The hippocampus in particular, has been

extensively studied for its theta-gamma CFC, which shows increased gamma amplitude locking to the

phase of the theta cycle during decision-making and learning[10][11][12]. Additionally, CFC has been
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observed in the cortex, where gamma activity couples with theta, alpha, and beta oscillations[13].

Theories of neural computation propose that CFC plays a critical role in inter-regional communication

essential for attention[14], and in organizing neuronal �ring into cell assembly sequences underlying

episodic memory formation[15].

The generation of CFC, though not fully understood, has been explained based on local and global

network properties. In vitro and computational studies implicated intrinsic neuronal properties, such as

Ih currents, and interactions between fast and slow interneurons, as key local mechanisms[16][17][18][19]

[20]. Simultaneous electrophysiological recordings in the hippocampus and entorhinal cortex showed,

however, that CFC was also in�uenced by rhythmic inputs from upstream layers[21][22][23]. Additionally,

the �nding of high coherence at low frequencies across distant recording sites, but not at high

frequencies, led to the concept that slow oscillations are driven by upstream areas, which then locally

organize faster network dynamics[24][25][26]. This aligns with the oscillatory hierarchy hypothesis, which

posits that slower oscillations modulate population excitability, thereby coordinating higher-frequency

activity[27].

However, the application of techniques for separating �eld potentials into pathway-or layer-speci�c

activity patterns-combined with new metrics that assess directional interactions across frequency bands,

such as cross-frequency-directionality (CFD)[28], has revealed bidirectional interactions between fast and

slow oscillations. In the hippocampus, recordings from rats engaged in navigation and memory tasks

demonstrated that bouts of gamma activity systematically preceded the phase of theta oscillations,

suggesting gamma-to-theta interaction[12] (see Fig. 1a).
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Figure 1. Experimental and computational cross frequency coupling and directionality. (a) Cross-Frequency

Coupling (CFC) and Cross-Frequency Directionality (CFD) in electrophysiological recordings from the rat

hippocampus (data from[12]). Schematic representation of the hippocampus with the pathway-speci�c layers

illustrated (i). Sch: Schaffer Collateral, MF: Mossy Fibers, ECII and ECIII: Entorhinal Cortex layers II and III, DG:

Dentate Gyrus, CA1 and CA3: Cornu Ammonis. Theta-gamma CFC in the three layer-speci�c �eld potentials

(a-ii,-iv,-vi) and their corresponding CFD (a-iii,-v,-vii). Note that all pathways exhibit on average CFD<0 for

high CFC (black contour in CFD panels). (b) Circuit motif of the θ-ING model (i), with the resultant activity

time courses (itransm: average PC somatic transmembrane current; VPC: average somatic PC membrane

voltage) and raster plots of the BCs (orange dots) and PCs (blue dots) �ring (ii). The corresponding CFC and
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CFD for the itransm and VPC are depicted in panels (iii and v) and (iv and vi), respectively. The black contour in

CFD plots shows the 95 percentile of the respective CFC. (c) Same as (b) but for the θ-PING motif.

Figure 2. Directionality in the θ-ING model reverses depending on the relative transmission delay. (a)

Activity time courses and raster plots of the BCs (orange dots) and PCs (blue dots) �ring, for the different

relative transmission delay Δτ. The shaded area highlights the relative displacement of the theta trough

(minima of itransm) with respect to the initiation of the gamma oscillation. (b) CFDs for itransm and VPC.

Contour lines indicate the range of higher CFC (more than 95th percentile). Relative transmission delay

Δτ=-10/0/10 ms increases from top to bottom in (a) and (b). (c-d) Theta-phase spiking pro�les for BCs and PCs,

respectively. Each spike is associated with the theta phase of the synaptic current measured at the distal

dendrites of PCs (indicated by the dashed black line).

Similarly, human electrocorticography studies have reported gamma-to-alpha interaction directionality

in the visual cortex[28]. Furthermore, using two independent methods to assess directionality, Dupret and

colleagues[29] observed both directionalities: theta-to-gamma in the hippocampus during REM sleep in

rats, and gamma-to-theta in the human auditory cortex. Overall, CFC is not exclusively due to slow-to-

fast interactions challenging the conventional oscillatory hierarchy hypothesis.
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In this study, we aim to (1) address and reconcile this discrepancy by employing a computational

modeling approach and (2) offer a plausible neurobiological interpretation of CFD. Speci�cally, we adapt a

model from the work of[30] to investigate the underlying mechanisms and provide new insights. In our

model, pyramidal neurons receive inputs from an external population generating a slow (theta) rhythm,

while the fast (gamma) rhythm emerges locally through the activity of fast-spiking interneurons. We

found that the local cross-frequency directionality is determined by the dominance of speci�c

connectivity motifs within the underlying circuit. In a theta-modulated Interneuron Network Gamma (θ-

ING) motif (Fig. 1b), feedforward recruitment of fast-responding interneurons primarily drives gamma-

to-theta directionality. In contrast, in theta-modulated Pyramidal-Interneuron Network Gamma (θ-

PING) motif (Fig. 1c), feedback inhibition supports theta-to-gamma directionality. In combined motifs

that re�ect the anatomy of neuronal circuits commonly found in the brain, we analyzed transitions

between these modes, demonstrating smooth bidirectional interactions controlled by synaptic strength

within biologically plausible ranges. Finally, we evaluated each motif’s capacity to integrate distinct

inputs, uncovering a mechanism to prioritize transmission in parallel information channels in the

dendrite of pyramidal cells.

Materials and Methods

Theta-gamma generation in the θ-ING and θ-PING motifs

The two motifs analyzed in this study are variations of the famous Interneurons Network Gamma (ING)

and Pyramidal-Interneuron Network Gamma (PING) models which are known to create gamma activity

through interactions between pyramical cells (PCs) and fast spiking inhibitory interneurons, mostly

parvalbumin-immunoreactive basket cells (BCs)[31][21][32][33]. A gamma cycle starts with BCs �rings, that

suppresses the spiking of their target neurons, including other BCs. Then, the inhibition decays at a rate

governed by the GABAA receptor decay time, allowing the BCs to spike again and thereby initiate a new

cycle. The excitatory drive—whether constant or stochastic— could originate either from outside of the

network (ING) or due to bidirectional connections of the BC with PCs (PING). In the PING mechanism PCs

�re at the onset of each cycle exciting the BC, which then inhibit both populations. The cycle restarts

when the pyramidal cells overcome the inhibition.

The model exhibits CFC because gamma dynamics are tuned on and off in theta due to an externally

imposed excitatory input (Fig. 1b-i, 1c-i). The θ input is modeled such that each cycle is separated from
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the previous one by an inter-cycle period, Tcycle, drawn from a Gaussian distribution with a mean μT=125

ms and a standard deviation of σT=16 ms. Each cycle contains 10,000 spikes, distributed according to a

second Gaussian with a standard deviation of w=25 ms. The variability in both inter– and intra-cycle

timing, controlled by σT and w, respectively, is essential since the phase slope index metric that we

employ here detects interactions between signals in broad frequency bands.

In order to make meaningful comparisons between the two motifs we use the same synaptic weights for

shared connections while the PCs→BCs synaptic weight of the θ-PING is chosen so that the mean �ring

rate of the PCs are almost identical in both motifs. For instance, in Fig. 1 the �ring rates are fr,θ-

ING=0.48(0.01) Hz and fr,θ-PING=0.49(0.01) Hz where the number represents the mean value and the

parenthesis denotes the standard deviation across 20 simulations. Nonetheless, the emergent gamma

oscillations in the θ-ING and θ-PING motifs differ, with θ-ING motif exhibiting faster dynamics (Fig. 1b-

ii,iv vs 1c-ii,iv). This occurs because the θ input’s strength was set to a relatively low level, causing sparse

�ring of the individual neurons at a rate lower than the population frequency, similar to what is observed

in vivo. This discrepancy is even more pronounced in the PCs, to the extent that the computational

models replicating this behavior fall under the weak PING/ING subcategory[34]. Thus, due to their low

input and slower dynamics, PCs collectively need more time to elicit a synchronized activity in the θ-

PING case compared to the BCs of the θ-ING model, which are driven directly from the θ input.

Cells

Although the motifs we analyzed are ubiquitous in multiple brain areas, our model was adapted from

previous works modeling the hippocampus CA3 area by[30]. Pyramidal cells were represented as multi-

compartmental neurons while basket cells were modeled as single-compartment. Both neuron types

included leak, transient sodium, and delayed recti�er potassium currents, with PCs also incorporating

hyperpolarization-activated currents. For a comprehensive description of the model see also[35] and the

simulations code available in GitHub.

Modeling multicompartmental pyramidal cells with dendrites enables the simulation of realistic

transmembrane currents and Local Field Potential (LFP) recordings[36]. To that matter, our PCs consist of

5 compartments, each one consisting of 3 segments for higher accuracy in spatial integration. Panels (b-

i) and (c-i) of Fig. 1 depict a scheme of the model including the morphology of the PC. From top to bottom,

3 compartments emulate the apical dendrites, one the soma and the �nal one the basal dendrites. All

compartments are modeled as cylinders.
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As far as the BCs dendrites are concerned we chose not to model them explicitly following ref.[30].

Nonetheless, since, dendritic transmission time in BCs is small yet not negligible, we included a �xed

delay of 1 ms from the external driver to the basket cells. This dendritic delay was chosen so that it is

larger than the onset between evoked dendritic postsynaptic currents and the associated increase of the

somatic membrane potential in patch clamp experiments (see Fig. 3d of[37]).

Figure 3. Role of different synaptic coupling strengths on the θ-ING directionality, �ring rate, and spiking

phase. The synaptic coupling assumes four increasing values: wi<wii<wiii<wiv (see Table S3 for exact values)

for the following connections: BC→PC (a), θ→PC (b), and θ→BC (c). (i-iv) CFD with the contour encircling areas

of high CFC values. (v) Theta spiking pro�les of the BC (Top) and PC (Bottom). Spikes are binned according to

the phase of the synaptic current of the θ input in the PCs dendrites (same as in Fig. 2). Spiking distributions

are normalized so that the integral over a theta cycle is 1. The orientation of the coloured arrow indicates

whether the �ring rate increases, decreases, or remains the same as the corresponding synaptic weight

increases (see Table S4 for exact values).
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Synapses

Our model includes three types of synaptic connections between neurons: inhibitory GABAA, excitatory

AMPA, and excitatory NMDA. Unless stated otherwise, synaptic weights for NMDA connections are set to

a �xed value ten times lower than those for AMPA. Neuronal connections are random. Axonal

propagation and synaptic transmission delays between populations x and y are modelled through the

transmission delay τx,y, drawn from a Gaussian distribution with a standard deviation of 0.2 ms. The

mean delays are: τθ,BC=20 ms, τθ,PC=20 ms, τBC,PC=1.5 ms, τPC,BC=1.5 ms, and τBC,BC=1.5 ms unless

otherwise speci�ed. To account for unmodeled sources, poissonian noise sources with a rate of 1 ms and

no transmission delay are added to the pyramidal soma, proximal dendrites, and basket cells. In the

simulations of Fig. 5, we call the poissonian source at the proximal dendrite as “parallel pathway” since it

plays a more signi�cant role, with its synaptic strength increased tenfold and its rate adjusted from 1 ms

to 5 ms. Synaptic parameter values are listed in Tables S1 and S2.

Simulations

Simulations were conducted using the NEURON simulator library[38]. Each simulation modeled 60

seconds of activity across 20 realizations, with different instances of the poissonian and θ-inputs. The

only exception to this were simulations used to produce Fig. 5 where, depending on the protocol, an

speci�c’s input instance was kept �xed between simulations whereas the rest of the inputs had different

instances. Each simulation included 200 PCs and 40 BCs.

Analysis

Cross Frequency Coupling

This metric aims to quantify the degree to which the amplitude of a signal at a given high frequency fhigh

co-modulates with the phase at a different low frequency flow. Various metrics have been developed for

this purpose, but we will use the one proposed by[39] also known as the mean vector length. This method

involves �rst �ltering the signal at both fhigh and flow, followed by the calculation of the analytic signal’s

amplitude at high frequencies Αhigh(t) and the analytic signal’s phase at low frequencies φlow(t). Next, we

construct the composite signal z(t)=Αhigh(t)exp(iφlow(t)), which resides in the complex plane. If there is no

coupling between the selected frequencies, the trajectory of z(t) will be radially symmetric. Consequently,
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the absolute average of the composite signal, |zavg(t)|, is zero when there is no CFC, while positive

otherwise. In this study, we used the Comodulogram class from the pactools Python library created

by[29] to extract |zavg(t)|.

To statistically assess the signi�cance of the results, we employ a surrogate analysis following[28]. We

generate 1,000 surrogate time series by randomly splitting the phase signal into two segments and

swapping their order. This procedure disrupts the temporal relationship between φlow(t) and Αhigh(t)

while preserving key characteristics such as their spectra. We then calculate the 99th percentile value,

(kth), which represents the CFC value greater than 99% of the samples across all surrogate data. All CFC

values below kth are set to zero. Subsequently, clusters of adjacent non-zero CFC values are identi�ed

within each dataset, both surrogate and non-surrogate. Each cluster is assigned a cluster score calculated

as the sum of the values within the cluster. The CFC of the original data is considered signi�cant at p<0.01

if its cluster score exceeds the 99th percentile of all surrogate cluster scores.

Cross Frequency Directionality

While the mean vector length metric effectively detects co-modulation of slow and fast components

within a signal, it does not provide insights into potential temporal relationships between them. To

address this limitation, we use the cross-frequency directionality (CFD) metric developed in[28]. CFD

utilizes the phase slope index (PSI), which quanti�es the directionality between two broadband signals, x

and y, by analyzing the relationship of their phase difference, Δφ=φx-φy as a function of frequency. When

the phase differences are linearly dependent on frequency, it indicates a �xed time lag between the two

signals. Speci�cally, if Δφ increases with frequency, x leads y; conversely, if Δφ decreases, y leads x.

In more detail, the PSI is calculated as follows. First, we compute the Fourier Transform of the signals x

and y denoted X and Y, respectively. These series are then split into N smaller segments and the complex

coherence is computed:

where “*” denotes the complex conjugate. Then, the phase slope index is calculated as:

C(f) = , 
X ⋅∑

N
i=1 Y ∗

|X |Y∑
N
i=1 |2

∑
N
i=1 |2

− −−−−−−−−−−−−−−−
√

(1)

PSI( ) = Im ( )C ( + Δf) ,fi

⎛

⎝

⎜⎜∑

−fi
β

2

+fi
β

2

C∗ fj fj

⎞

⎠

⎟⎟ (2)
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where “Im” refers to imaginary part. In cross-frequency analysis, the PSI is adapted by when y is not a

signal independent from x, but rather the amplitude of x �ltered around a high frequency, fhigh. Finally, to

emphasize the directionality of regions exhibiting strong cross-frequency coupling, we apply the

masking technique described in[12]. Speci�cally, we normalise the CFC so that it takes values between 0

and 1, thus creating a mask. The �nal CFD is then calculated as the phase slope index multiplied by this

mask.

To statistically assess the signi�cance of the results, we employ the same procedure as for CFC for the

highest 99th quantile. We also repeat the process for values lower than the 1st quantile in order to detect

regions of signi�cant negative CFD[28].

From spikes to continuous timeseries

As part of the analysis, we examined the instantaneous output of a population. To transform discrete

spike events into continuous time series, we applied a decaying exponential kernel with a 5 ms time

constant. This speci�c kernel was chosen to avoid introducing spiking information into the past, an issue

associated with symmetric kernels like the Gaussian kernel or sliding window averages. Additionally, the

decay time was selected to approximate the AMPA receptor decay time, ensuring that the resulting

output mimics the excitatory synaptic currents observed in downstream network layers.

Mutual Information

Mutual Information (MI) captures the dependence or shared information between two variables,

providing insight into how much knowing one variable reduces uncertainty about the other. This metric

is non-negative, with a value of zero indicating complete independence between the distributions of the

two variables. The MI is calculated using the following expression:

where X(t) and Y(t) are continuous random variables, with probability distributions pX and pY and joint

probability distribution pX,Y. Since the exact probability distributions are unknown and we only have a

sample of them, estimating the distributions of Eq. 3 is not straightforward. To that matter, we utilized

the “mutual_info_regression” function from[40]  which employs a nearest-neighbor approach for the

estimation of the probability densities function. In cases where we calculate MI between the input and

output of networks, the analysis was repeated while temporally shifting the ouput to account for delays

MI = (x,y) log dxdy,∫
X

∫
Y

pX,Y

(x,y)pX,Y

(x) (y)pX pY
(3)
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in the integration. For example, the observed differences in the delay at which MI peaks between the

encoding of the θ input (Fig. 5c) and the parallel pathway (Fig. 5d) primarily re�ect their distinct,

explicitly set, transmission delays: 20 ms for θ and 0 ms for the parallel pathway.

Results

Cross-frequency coupling and directionality depend on connectivity

As an illustrative example and starting point for the present modeling work, we present

electrophysiological recordings from the hippocampus of rats performing a contextual learning task.

These data revealed strong CFC between the phase of theta and the amplitude of gamma oscillations

recorded in pathway-speci�c �eld potentials, including the CA3 to CA1 connection (Schaeffer collateral,

Sch), the entorhinal cortex layer III (ECIII) input to the CA1 region, and the layer II (ECII) input to the

Dentate Gyrus (Fig. 1a; data from[12]). Importantly, in all three cases, we experimentally demonstrated a

gamma-to-theta interaction, revealed by negative coupling values in the CFD index (Fig. 1a-iii, 1a-v, and

1a-vii). Following previous studies, all CFD values presented here were renormalized to enhance regions

of high CFC, with statistical signi�cance (p<0.01) determined through surrogate analysis of clusters

exhibiting the highest CFD absolute values[28][12]. For more details see also the analysis section.

To investigate theta-gamma interactions, we adapted the well-established circuit motifs Interneuron

Network Gamma (ING) and Pyramidal-Interneuron Network Gamma (PING)[31][32][41][33], with the

addition of an external theta input (Fig. 1b-i and 1c-i). We began by analyzing separately the two circuit

motifs, named as θ-ING and θ-PING respectively. Both models include a population of pyramidal cells

(PCs) excited by a θ-modulated external input, with gamma rhythms generated locally by a population of

fast-spiking self-inhibitory interneurons, the basket cells (BCs), which also project to the soma of the PCs.

All connections and parameters for the two motifs were identical, except for the nature of the BC-PC

connection: feedforward in θ-ING and feedback in θ-PING. For more details on the model see the

methods section.

The distinct dynamics of these two circuit motifs are shown in Fig. 1b-ii and Fig. 1c-ii, where we visualise

the raster plots for the PCs and BCs (blue and orange dots, respectively). In the same panels we

superimposed the mean somatic membrane potential (VPC) and the mean transmembrane somatic

currents itransm, across all PCs. Both motifs exhibited strong theta-gamma CFC (see Fig. 1b-ii,vi and 2b-

ii,vi) but, importantly, opposite interaction directionality measured by CFD. In the θ-ING model (see Fig.
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1b-v,vi), gamma activity anticipated the theta oscillation, resulting in a negative CFD in areas of high CFC.

In the θ-PING model, each cycle begun with PC depolarization driven by the theta input, which, through

the feedback connection, recruited BCs and induced gamma rhythmicity. As a result, theta activity

preceded gamma, leading to a positive CFD (see Fig. 1c-v,vi).

We further explored the θ-ING results, which matched the experimental �ndings[12][29]. We �rst veri�ed

that negative CFD was not an artifact of higher theta harmonics or non-sinusoidal waveforms, which

could generate spurious CFC and CFD values[42]. To address this, we systematically varied the

transmission delay τθ,PC=10/20/30 ms between the theta input and the PCs while keeping the

transmission delay between the theta input and the BCs constant at τθ,PC=20 ms. Thus we varied the

relative transmission delay Δτ=τθ,ΒC-τθ,PC that controls the temporal relationship between gamma and

theta (Fig. 2). For Δτ=−10 ms, where the theta input reaches BCs earlier than the PC dendrites, gamma

precedes theta activity more strongly, resulting in a more pronounced negative CFD (Fig. 2b, top panel).

Conversely, for Δτ=10 ms (Fig. 2b, bottom panel), gamma is relayed to PCs later than theta, causing CFD to

switch to positive. For comparison and completeness, Δτ=0 ms, in which theta input reaches both

populations simultaneously and results in negative CFD (Fig. 1b), was also included (Fig. 2b, middle

panel). Overall, these results rule out a spurious contribution of theta harmonics or wave shape to the

sign of CFD.

To explain why gamma-to-theta interaction is detected when no relative transmission delay between

them exists, we examined the relationship between the externally imposed theta input and neuronal

activity in both PC and BC populations (Fig. 2c and 2d). To that matter, we assigned to each PC and BC

spike the theta phase associated to the synaptic current of the theta input in the distal dendrite of the PC

(see Supplementary Fig. 1 for the same analysis using the external θ input as reference). When Δτ ⩽ 0 ms,

BC activity increases faster than the external input to the PCs (Fig. 2c). Consequently, feedforward gamma

inhibition reaches the PC soma before the excitatory theta activity propagates from the distal dendritic

compartment.

An important observation is that the timing of theta-nested gamma inhibition modulates the phase

difference between the externally imposed theta and the locally generated theta oscillation (measured at

the soma) (Fig. 2d). This mechanism may facilitate the coordination of theta rhythms across pathway-

speci�c �eld potentials observed experimentally[12]. Furthermore, as evident from Fig. 2d, the �ne-

tuning of gamma-theta interactions may serve as a mechanism for phase encoding by de�ning the

temporal windows within the theta cycle in which cell assembly formation is possible.
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Synaptic determinants of gamma-to-theta interactions in the θ-ING model

To elucidate the synaptic mechanisms underlying gamma-to-theta interactions, we systematically

increased synaptic strengths within the θ-ING model and evaluated their impact on CFC and neuronal

theta �ring patterns (Fig. 3). Notably, our �ndings indicate that CFD in the θ-ING model remains negative

across a broad range of synaptic weights (see Table S3) and PC activity (see Table S4), with positive or

negligible CFD values observed only at extreme parameter values.

We �rst examined the in�uence of synapses projecting to PCs. When inhibition is very high relative to

excitation (Fig. 3a-iv and 3b-i) PCs spike only when the BCs’ activity is at its lowest. Thus pyramidal

spiking is scarce and out of phase with the external input, while the CFD is positive. Conversely, when

excitatory input is excessively high relative to inhibition, PCs dominate the network dynamics,

overriding BC-driven gamma oscillations (60-80 Hz), thereby disrupting CFC within this frequency band

(Fig. 3a-i and 3b-iv). This effect is particularly pronounced when synaptic excitation surpasses the

dendritic spiking threshold (Fig. 3b-iv). Under these conditions, the external theta generator, through

dendritic spikes, regains control over network dynamics, with CFC shifting toward higher theta

harmonics. In contrast, when excitation and inhibition are balanced, PC spiking occurs slightly after the

peak of synaptic input (Fig. 3b-v). Then, the temporal delay between input arrival and spiking, as well as

the coupling strength between internal and external theta rhythms, is modulated by the level of the

excitation/inhibition balance. Higher inhibitory input broadens the temporal distribution of spiking,

thereby reducing the correlation between internal and external theta oscillations.

We next investigated the role of excitatory input to BCs (Fig. 3c). This synaptic connection not only

regulates BC activity and, consequently, the total inhibitory drive to PCs but also modulates the frequency

of the network’s collective oscillations. Increased excitatory drive to BCs accelerates network dynamics,

consistent with previous computational studies of ING models. Overall, our results demonstrated that θ-

ING networks exhibit �exible dynamics, capable of modulating both single-cell and population-level

activity through synaptic plasticity, while remaining in a mode where gamma leads theta locally.

Circuits of combined θ-ING and θ-PING motifs

Given that brain circuits are generally endowed with both feedforward and feedback inhibition

simultaneously, we next investigated the dominant theta-gamma directionality in the combined model,

by adding the feedback PC→BC connection to the θ-ING model or, equivalently, the feedforward θ→BC

connection to the θ-PING model. Under these conditions, we found that mainly feedforward inhibition
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determined theta-gamma directionality, as shown by the positive to negative CFD transition when

increasing the strength of the θ→BC connection, regardless of the strength of the PC→BC connection

(Fig. 4a).

Figure 4. Transitions between positive and negative CFD in a combined θ-ING and θ-PING circuit. (a) CFD

in the 2D parameter space of the relevant synaptic weights PC→BC and θ→BC. The θ→BC input strength

increases in rows from top to bottom. The PC→BC input strength increases in columns from left to right. Red

and blue stars denote cases of pure θ-PING and θ-ING motifs, respectively (same motifs shown in Fig. 1). Stars

of mixed colors depict a transition from a pure θ-PING to a mixed motif of predominantly opposite

directionality. (b) Transmembrane currents and raster plots of this transition (same stars code as in panel a).

Coloured rectangles highlight the initial part of a θ oscillation as well as the �rst few gamma cycles. The

rectangles in blue depict an example of a theta cycle whose directionality transition from top (CFD>0) to

bottom (CFD<0). Note how increasing feedforward inhibition advances the �ring of BCs (orange dots in the

raster plot), and consequently the gamma oscillations, over the theta cycle and the �ring of PCs (blue dots).

The rectangle in red depicts one example of theta cycle in which transition was not fully realized,

highlighting the dynamic character of the CFD.

To understand better the differential role of these connections, we focused on the dynamics of the motifs

that transition from a pure θ-PING to a mixed model of mainly negative directionality (Fig. 4b). By

increasing the external θ excitatory drive to BCs, this input overcomes the excitation received from PCs
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through the feedback PC→BC connection. Consequently, BCs predominantly �re earlier relative to the

theta phase, resulting in a dominant gamma-to-theta interaction (see blue rectangle in Fig. 4b).

Simultaneously, the earlier �ring of BCs inhibits PCs, and further diminishes the in�uence of the

feedback connection (PC→BC). Therefore, a single uni�ed model with both feedforward and feedback

connections reproduces the experimentally observed theta-gamma interactions in various systems and

suggests that the directionality of this interaction can be controlled via a local feedforward inhibitory

connection. We also note that strengthening the feedforward pathway was associated with an increase in

the frequency of the gamma band nested to theta, while the opposite effect was observed with an

increase in feedback connection strength.

Functional differences of θ-ING and θ-PING motifs

To this point, our analysis has concentrated on the circuit-level determinants of directionality in theta-

gamma interactions. In the following section, we explored whether different directionality modes, either

pure θ-ING and θ-PING or two mixed motifs (Cases 2 and 3, Fig. 5), offer distinct computational

capacities. Recognizing that, in more natural circuits, neurons typically receive inputs from multiple

sources, we extended our analysis to include two external input pathways. The �rst input was the θ-

driven signal directed to the distal dendrites of PCs, as in previous analyses. The second input, called here

the parallel pathway, targeted the proximal dendritic segment, consisting of pulses distributed according

to a Poisson process.
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Figure 5. Functional analysis of motifs with increasing CFD. (a) Schematic representation of the inputs in

the θ (purple) and parallel (green) pathways and the outputs produced by the PCs of the models. All time

series were generated by convoluting the spike trains with a 5 ms exponential decay kernel, thus their scale is

in arbitrary units. (b) The θ-ING and θ-PING motifs with the parallel pathway introduced at a proximal

dendritic segment of PCs. Cases 2 and 3 (C2 and C3, respectively) are the mixed motifs lying in intermediate

values of the θ-ING and θ-PING parameter space. (c) Encoding computed as the Mutual Information (MI)

between the θ input and the pyramidal output. Pairwise T-tests with Bonferonni correction for multiple

comparisons between the peak MI values showed that all cases are signi�cantly different (p<0.001). (d) Same

as in (c) but considering the parallel pathway as input. All cases are signi�cantly different (p<0.001) except for

C3–θ-PING (p<0.1), and θ-ING–C2 and C2–C3 that are not sgni�cantly different). (e) Consistency measured as

MI between pairs of outputs in response to a constant θ input. (f) Same as in (e) but considering a constant

parallel pathway input instead. Stars in panels (e) and (f) depict signi�cant differences using pairwise T-tests

with Bonferonni correction: ***/**/* p<0.001/0.01/0.05, respectively.
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To evaluate the computational properties of each motif, we employed two protocols. The �rst protocol

assessed the encoding capacity by calculating the mutual information (MI) between an external input

and its corresponding PC �ring output. The second protocol evaluated the robustness to variability as the

MI between outputs generated in response to an input (either the θ or the parallel pathway) whose

realisation is �xed between simulations while all other inputs realisations vary (see Fig. 5a and the

methods section for details on the protocols).

We identi�ed a complementary relationship between the motifs in encoding information from both

pathways. First, all motifs effectively encoded information from the θ-input, which serves as the primary

driver of the circuit (Fig. 5c). However, each motif also demonstrated the �exibility to encode information

from the parallel pathway (Fig. 5d). Notably, this �exibility was enhanced in ING-shifted con�gurations,

whereas θ-input encoding was favored in PING-shifted motif con�gurations. The disparity between

motifs arises from a fundamental difference, evident in the membrane potential traces shown in Fig. 1b,

and 1c. In the pure θ-PING case, PCs and BCs are strongly coupled via feedback connections, resulting in

more pronounced gamma oscillations than in the θ-ING motif. This creates a robust theta-gamma

scaffold for encoding, where opportunity windows for encoding are restricted to the peaks of the gamma

cycles nested within each theta cycle. Inputs that are not synchronized with this rhythmic theta-gamma

structure, such as the parallel pathway, more often fail to evoke a PC response. In contrast, in the θ-ING

motif, gamma oscillations are primarily driven by BCs in a feedforward manner and, while still nested

within the theta cycle, this gamma activity is more loosely anchored to PC �ring, broadening the

temporal windows for encoding. Consequently, strong perturbations falling within or outside the theta-

gamma coding framework are able to overcome depolarization thresholds. To support this

interpretation, we conducted simulations where the parallel pathway was replaced with a single

perturbation. This allowed us to assign a gamma phase to each perturbation, revealing that the θ-PING

motif was most responsive during the peak of the gamma oscillation, whereas the θ-ING motif exhibited

�ring throughout the cycle (see Supplementary Fig. 2), con�rming our hypothesis.

Finally, we assessed encoding consistency under conditions of variability. Information encoding of the θ-

input in PING-shifted motifs (Fig. 5c) was accompanied by greater consistency (Fig. 5e). Similarly,

encoding of the parallel pathway was not only greater in ING-shifted motifs (Fig. 5d) but also more

robust to variability (Fig. 5f). Overall, the continuous transition observed between the two models,

modulated by the balance between feedforward and feedback inhibition, suggests a mechanism for
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weighting or selecting communication channels with different temporal structures, which could be

re�ected in the CFD index.

Discussion

In this study, we have shown that the directionality of theta-gamma interactions depends on, and can be

regulated by, the feedforward and feedback inhibition balance. In our motifs, theta is an external

oscillation that impinges on the distal dendrites of PCs, while gamma is locally generated by a population

of inhibitory neurons. Speci�cally, we found that circuit motifs with enhanced theta-modulated

feedforward inhibition (θ-ING) exhibit dominant gamma-to-theta interactions, while those with

enhanced theta-modulated feedback inhibition (θ-PING) display dominant theta-to-gamma interactions.

In a combined circuit containing both feedforward and feedback connections, we found that the

feedforward connection determines theta-gamma directionality and governs the transition between

interaction modes.

We further found that these operational modes signi�cantly in�uence the �ring phase of PCs within the

theta cycle. The feedback-feedforward inhibitory balance implements a push-pull mechanism that

governs the �ring phase of PCs: Increased feedforward inhibition leads to phase precession and increased

feedback inhibition induces phase recession. Furthermore, we showed that these operational modes also

modulate the responsiveness of PCs to inputs with different temporal structures. The constraints

imposed by a particular theta-gamma coupling mode de�ne speci�c opportunity windows during which

PCs can �re. By �ne-tuning the timing between slow and fast oscillations, this mechanism selectively

prioritizes information transmitted through independent afferent pathways, enhancing computational

�exibility. In the following sections, we explore the practical applications and limitations of our model

and discuss its relevance to experimentally observed brain dynamics.

Is θ-ING a realistic model for negative CFD?

The emergence of negative cross-frequency directionality in the θ-ING model is critically dependent on

the rapid response of BCs, enabling gamma oscillations to precede local theta rhythms. This raises an

important question regarding the physiological validity of the conditions assumed in our model. We

argue that our implementation of BC activation times is, in fact, conservative.

First, dendritic transmission in BCs is notably rapid, with evoked postsynaptic currents at distal dendritic

sites depolarizing the soma within less than the 1 ms dendritic delay[37]. Second, stimulation of the
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Schaffer collateral induces monosynaptic excitation[43] followed by disynaptic inhibition after only 1.9 ±

0.2 ms delay. This is faster, on average, than the delays assumed in our model, which consist of the 1 ms

dendritic delay plus 1.5 ± 0.2 ms of synaptic delay from BC to PCs and the spike generation time. Third,

both in vivo and in vitro patch-clamp recordings from the CA1 region have demonstrated faster action

potential initiation in BCs compared to PCs following stimulation of pathways that simultaneously excite

BCs and PCs, namely the perforant path and the Schaffer collateral, respectively[44][45]. Finally, regarding

population dynamics, in vivo recordings from mice running in a maze, which are dominated by strong

theta rhythmicity in the hippocampus, have shown that interneurons activity in the pyramidal layer of

CA1 peaks approximately 60 degrees (or equivalently 20 ms) ahead of the theta phase of PCs (see Fig. 5

in[46]). This �nding is consistent with our results (Fig. 2c and 2d), which show that BCs lead PCs

signi�cantly in theta phase. Taken together, these �ndings support the plausibility of the inhibitory time

delays implemented in our model.

Limitations

Our model is intentionally minimal, designed to ensure the reported directionalities are broadly

applicable across different brain regions, as supported by existing literature[28][29][47][12][48][49]. This

generalizability, however, comes at the expense of region-speci�c precision. While addressing such

speci�city would require detailed multicompartmental models tailored to particular brain areas[50][51][52],

the simplicity of our model allows it to capture fundamental dynamics effectively. Future work

incorporating diverse interneuron types and their unique connectivity patterns, particularly in regions

like the hippocampus, would further re�ne our understanding[53].

While the motifs reproduces gamma-to-theta and theta-to-gamma directionalities, they do not account

for large cross-frequency lags, such as the –50 ms lag observed in human auditory cortex

electrocorticogram data[29]. However, by accounting for plausible relative transmission delays, as

illustrated in Fig. 2, the motifs can accommodate a wide range of experimentally observed cross-

frequency lags. These lags may re�ect multi-synaptic pathways. For instance, in the CA3 region, long-lag

negative CFD could arise if BCs are monosynaptically recruited by entorhinal cortex inputs, while PCs are

driven through the disynaptic circuit (EC→DG→CA3). Investigating these delays in speci�c anatomical

contexts offers promising opportunities for future research.

We do not address different potential mechanisms of CFC generation. In our model, external theta

rhythms drive local interneurons and PCs to generate local gamma and theta oscillations. This design
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aligns with patch-clamp recordings highlighting the role of local inhibition in gamma generation, as well

as with LFP recordings between distant sites in the hippocampus that exhibit high coherence in the theta

but not in the gamma band[26][24][54][25]. However, in experiments recording theta-gamma CFC in

connected layers of the hippocampal formation, it has been shown that the upstream theta-gamma

activity may in�uence downstream CFC dynamics[21][22][23][55]. These �ndings suggest that the

generation of CFC may be contributed by both local and network mechanisms. Interestingly, in our

model, the �ring of the PCs, both in the θ-ING and θ-PING motifs, relays a theta-gamma coupled output

to a potential downstream target (VPC traces of Fig. 1). Therefore, although our primary focus has been on

the directionality of cross frequency interactions, the model captures key insights into the generation of

cross-frequency coupling (CFC) and provides a valuable framework for further exploration. How do local

and network mechanisms of CFC generation interact and how the interaction conditions �ring

sequences and information transmission? Future work will address this question.

In summary, despite its simpli�cations, the model offers a robust framework for understanding CFC and

CFD across regions while paving the way for more detailed, region-speci�c explorations in future studies.

Interpretation of CFD measurements

Our results suggested that the balance between feedforward and feedback inhibition in local circuits

determines the directionality of cross-frequency interactions. We further showed that a feedback-shifted

balance favours transmission in an afferent pathway by promoting the speci�c cross-frequency

rhythmicity driven by the afferent input, while a feedforward-shifted motif broadens the opportunity

window for encoding, facilitating parallel pathways to transmit. Accordingly, dynamic CFD measures

could be interpreted in terms of predominant inhibitory circuit motifs and prioritization of functional

connectivity pathways.

A recent study using electrocorticography in human epilepsy patients performing a spatial attention task

reported a relationship between alpha-gamma CFD values and attentional states[49]. Speci�cally, more

negative CFD values were associated with non-attended stimulus, while lower absolute (but still negative)

CFD values were linked to attended stimulus. According to our model, less negative CFD would be

re�ecting a PING-shifted circuit state that favors transmission of the message in the afferent (attended)

pathway, in this case, the visual dorsal stream, reducing the impact of parallel (distracting) inputs.

Similarly, a more negative CFD, as found for non-attended stimulus, is expected from an ING-shifted

circuit in which parallel inputs gain relevance over the afferent pathway. Importantly, the authors
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reported enhanced functional connectivity along the visual dorsal stream in the �rst case, and

suppressed connectivity in the second, supporting our interpretation. The model offers a mechanism to

explain attention deployment dynamically and �exibly, based on feedforward-feedback inhibitory

balance and re�ected in the CFD metric.

The previous study provides further experimental support to our model. First, alpha-phase activity in

upstream regions preceded downstream high gamma activity, while locally, gamma preceded alpha[49],

which aligns well with our model predictions (compare Fig. S1 with Fig. 2). Second, the model predicts an

increase/decrease of the gamma frequency nested to the slow oscillation in ING/PING shifted circuits (Fig.

4), respectively. Experimentally, the peak of gamma nested to alpha decreased from 180-170 Hz to 150 Hz

with attention, associated with a less negative CFD (Fig. 2 of[49]).

In the hippocampus, both positive and negative CFD values have been reported in different contexts[56]

[29][12]. For example, independent component analysis of local �eld potentials (LFPs) recorded from rats

exploring various mazes identi�ed gamma-to-theta interactions across three distinct synaptic pathways:

CA3 to CA1, EC2 to DG, and EC3 to CA1[12]. In contrast, LFP recordings from the pyramidal layer of CA1 in

sleeping rats revealed positive CFD values[29]. According to our model, this discrepancy could re�ect

dynamic regulation of gamma-theta interactions across different behavioral states, such as active

exploration vs. sleep, driven by distinct balances of feedforward and feedback inhibition. However, a note

of caution is warranted regarding the use of independent components vs. raw LFPs. Since LFP signals

re�ect a composite contribution from multiple underlying synaptic pathways due to volume conduction

effects[57], such effects could have in�uenced CFD measurements. Although a control analysis

in[12]  found negative CFD values also using LFPs, exhaustive comparative analysis was not performed.

Future research in the hippocampus should include simultaneous recordings during different exploratory

behaviors and sleep states within the same animals to directly test the predictions of our model.

Additionally, a quantitative analysis of CFD, rather than a qualitative assessment of positive versus

negative values, would provide further validation of the proposed dynamic regulation of theta-gamma

interactions.

In conclusion, we presented modeling results that propose a mechanism for the robust gamma-to-theta

interactions observed in electrophysiological recordings, support the coexistence of both operational

modes as a continuum rather than as con�icting options, and suggest a functional role in prioritizing

parallel information pathways converging onto the same dendritic tree. A balance between feedforward
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and feedback inhibition lies at the core of this mechanism, and CFD or related measures may serve as

valuable experimental entry points for understanding this process.

Supporting Information

Table S1. Synaptic parameters of the model.
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Table S2. Synaptic weights for Fig. 1. The synaptic weight depicted for PC→BC is for the θ-PING, otherwise, it

is zero. The synaptic weight depicted for θ-ING is for the θ→BC, otherwise, it is zero.
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Figure S1.Similar to Fig. 2, but using the external θ drive phase as the θ reference for spiking and CFD

calculations. Panels (a) and (b) show the θ phase of PC and BC spiking, respectively. Panel (c) illustrates the

CFD for itransm (top) and VPC (bottom). To derive the θ phase of the external population, spikes are passed

through a decaying exponential kernel with a 5 ms time constant. Note that when using the external

population’s θ phase, the BC phase remains unchanged, while the PC phase shifts signi�cantly due to

different offsets. Finally, as the local γ is consistently generated by the external θ driver, the CFD remains

positive under all conditions.

Table S3. Total synaptic weights for Fig. 3 represented as the product of the synaptic weight and the number

of presynaptic neurons.
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Table S4. Mean �ring rates for BCs (fr,BC(Hz)) and PCs (fr,PC(Hz)) in the θ-ING model for different synaptic

weights v=(wi<wii<wiii<wiv) in the circuit connection (Conn.). The simulations are the same as in Fig. 3. Blue-

colored cells depict motifs that exhibit negative CFD.
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Figure S2. Single perturbation analysis. A single spike is introduced in the proximal dendrite at a prede�ned

time within the interval (1-1.5) s (speci�cally at 1 s, indicated by the black dashed line). Panels (a) and (b) show

the dynamics for a θ-ING and a θ-PING motif, respectively, both with similar �ring rates. Blue lines represent

the mean membrane potential at the PC soma (VPC,g) for the unperturbed case, while gray lines show the

evolution after the perturbation (VPC,p). Open circles indicate spikes in the perturbed simulations (gray for

PCs, brown for BCs), and solid circles represent spikes in the baseline condition (blue for PCs, red for BCs).

Since only one perturbation is applied, the resulting encoding value between output and perturbation can be

related to the network state at the time of perturbation. (c) Encoding values are plotted against the θ phase of

VPC,p, where 180° represents the trough and 0°/360° the peak. (d) Same as (c), using a high-pass �lter cutting

of frequencies lower than 20Hz to capture the gamma activity of both motifs. (e) Same as (d), but for encoding

values only when the θ phase is between –90° and 90°, i.e., when the network is more depolarized.
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