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This work investigated the possibility of describing the fluid flow in a

microchannel from a thermodynamic point of view, exploring the possibility

of evaluating the presence of obstacles (or, more generally, geometry

imperfections) and their influence on the fluid. The Tsallis entropy concept

was employed. This form of entropy was introduced in 1988 by Costantino

Tsallis as a basis for generalizing the standard statistical mechanics and as a

generalization of the standard Boltzmann-Gibbs entropy. Inspired by nature,

where storing information is an intrinsic ability of natural systems, here we

investigate the capability of interacting systems to transport/store the

information generated/exchanged in the interaction process in the form of

energy or matter, preserving it over time. In detail, here we test the possibility

of considering a fluid as a carrier of information, speculating about how to use

such information. The final goal is to demonstrate that information theory can

be used to illuminate physical observations, even in those cases where the

equations describing the phenomenon under investigation are intractable, are

affected by a budget of uncertainty that makes their solution not affordable, or

may not even be known. In this exploratory work, an information theory-

based approach is applied to microfluidic data. In detail, the classical study of

fluid flow in a microchannel with an obstacle of a specific geometry is

addressed by integrating fluid mechanics theory with Tsallis entropy.

Technically, computational fluid dynamics simulations at Reynolds numbers

(Re) equal to 1 were carried out in fluidic channels presenting a rectangular

obstacle and on the simulated flow fields.
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Tsallis Entropy

Introduced by physicist Tsallis, it is a form of non-

extensive entropy (not dependent on the “size“ of the

phenomenon) that, in its limit, returns Shannon

entropy, thus being a generalization of the same

entropy.

This formalism has already been applied in the field of

fluid dynamics, particularly to determine velocity

profiles in an open channel hydraulic system.

The idea would be to apply the Tsallis formalism to a

microfluidic channel, similar to the one investigated in

Marta’s work, and study the possible correlations that

may arise between entropy, Shannon entropy, velocity

profile, and obstacle geometry. The aim of applying this

concept to microfluidics is to consolidate and practice

using this approach, but there are no limitations to its

applicability.

In 1989, Chiu [1] presented an application of this entropy

by studying the velocity profile of a current in a

hydraulic channel. Starting from the definition of

entropy itself, the author derived a function for the free

surface current profile by analyzing experimental data.

The analytical solution of the flow in the channel

involved certain variables that appeared when solving

the equations derived from the application of the

entropy theory, which were subsequently obtained by
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comparing the analytical function with the

experimental data.

In a more recent study on Arxiv, Manotosh

Kumbhakar  [2]  and colleagues revisited Chiu's

treatment, aiming to deepen certain aspects,

particularly in seeking a physical meaning for those

parameters that Chiu empirically estimated using

experimental data. This study is still under

investigation.

The utilization of Tsallis entropy to

derive fluid velocity

To derive the velocity, we start directly from the

definition of Tsallis entropy, a generalized version of

Shannon entropy. Tsallis entropy (TE - Tsallis Entropy)

can be written in one of its integral formulations as

follows:

Where f( ) is the probability density function (PDF) of

the variable û: in this case, we use the letter u to work

with velocity, but this discussion could apply to any

other variable. The parameter q, or entropic parameter,

appears in equation (1). For q 1, it becomes the

Shannon Entropy (SE) (i.e., the limit case).

In the specific case, the value û represents the

normalized velocity with respect to the maximum

measured or estimated velocity; û = u/umax.

The parameter q is generally associated with an

interaction between the system under examination and

a “thermal bath,“ as defined in thermodynamic

language or in more traditional treatments. The system,

in other words, exchanges energy or information with

the external environment or, in general, with the space

it interacts with.

Once the entropy is defined in this way, the principle of

maximum entropy is applied to the system using this

relationship. The objective is to maximize the value of

this relationship (i.e., searching for maxima). How is

this achieved? Through the method of Lagrange

multipliers, which relies on the constraints of the

function itself. What are these conditions?

Two constraints were defined:

Imposing the integral of the PDF function,

Physical constraint. When discussing velocity, one

can consider and apply the principle of conservation

of flow rate, which states that

Once the constraints are defined, you can write the

Lagrangian as follows:

The Euler–Lagrange relation1 leads to the equation of

the PDF function for velocity.

__________________________________________

Application of the Euler-Lagrange principle

Decomposing (4), seeing it as the sum of L1()+L 2(

)+L3   (), and applying the Euler–Lagrange

derivation, we get: 

From which one obtains precisely the relation (5)

through one or two algebraic steps.

This function can be integrated on the domain [0,  ] to

obtain the cumulative distribution function (CDF).
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The next step is to relate this function to the geometric

domain of the “channel“.

There is a simple case, 2D, and a complex case, 3D, not

treated here.

Let’s start with the simple case.

Speed is a function of position, namely:

Having considered that x is the direction of the flow and

y is the vertical of the channel.

Always starting from Chiu’s studies, the same

researcher used generalized coordinates that allowed

him to deal more easily with the 3D case. Starting from

the same generalized coordinates, re-reducing them to

the 2D case leads to a range of values Ymin= 0 and Ymax

=1 with Y= y/D, where D represents the maximum

height of the channel or the light of the channel.

In this simple case, then the following report can be

written.

which is obvious for the 2D case, less so for the 3D case

(not reported here).

At this point, (8) must be equal to (6).

You get the relation of   from equality:

= g  (y) =   (Ψ) (7)û ğ
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û
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û

qeios.com doi.org/10.32388/RJ7RN7.2 3

https://www.qeios.com/
https://doi.org/10.32388/RJ7RN7.2


This report would lead to the   that would be a function

of the two Lagrange multipliers and the entropic factor

q of Tsallis. Explaining as a function of    yields the

relation (9b).

By merging some terms (see also equations (13) and

(14)), we obtain in contracted form:

To evaluate the goodness of the relation (10) to

represent the current profile of a laminar flow in a

fluidic channel, we moved on to perform a numerical

simulation with SW OpenFOAM for a micro-channel

with a water-type fluid under conditions of Re = 10

(laminar conditions). The results of the simulation were

then compared, taking some sections, with the current

profiles generated (or generable) through the relation

(10) to the variation of the unknown parameters.

It was immediately noted that the report (10) is not able

to describe the phenomenon correctly.    is in fact

correlated with the height in relation to the diameter D

(or the depth of the channel) in a 1 to 1 “coupling“. This

behavior does not represent reality correctly. The

velocity in a closed channel can in fact assume the same

value along the vertical coordinate more than once

(parabolic profile): there is no univocal relationship

between the two quantities. In order to describe the

phenomenon using the approach presented, it was

therefore necessary to find a new relationship that

uniquely correlated the velocity with the y-coordinate

(velocity value associated only with a spatial

coordinate).

The first step was to consider the report proposed by

Chiu et alii (1989).2 The report was in fact proposed to

address the problem of open channels with a free

surface, where the maximum speed is below the free

surface of the liquid current: there was no linear and

unambiguous correlation between velocity and

geometric coordinate. The proposed report took the

form of:

Where h is the height at which the maximum speed is

had. For values of h <0, the maximum speed is below

the free surface of the current.

This first correlation, if replaced in (10) instead of the

y/D value, is able to describe well the current profile

between the wall and the axis of symmetry, but far

from any obstacle or in fully developed conditions and

considering the symmetric profile with respect to the

axis. The presence of an obstacle, in fact, represents a

further complication because, in the vicinity of the

latter, the current profile presents a flex to the passage

of the fluid due to the presence of a restriction.

The report (11) proved unable to provide a sufficiently

accurate description of the current profile in the areas

close to the obstacle.

The work, therefore, shifted to looking for a new

correlation that would be able to take into account this

new current profile (Figure 1, blue and orange lines) in

the presence of an obstacle3.

Figure 1. Current profiles downstream of the obstacle.

The curves are associated with the distance (e.g., 43 =

4.3 mm after the obstacle).

The new correlation relation proposed to link velocity

and relative position within the channel has been
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designed starting from (11) and proposing a new

equation:

In (12), the variable n has been introduced, which away

from the obstacle takes the value 0 for a fully developed

profile: we then return to the relation (11).

Starting from the proposed relationship, therefore, the

shape of the curve is governed at this point by 4

parameters.

In which the factors    and    depend directly on the

entropic value of Tsallis, while the n and h values are

factors of obstacle position and shape of the current

profile, respectively.

This relationship made it possible to obtain, by

successive approximations of the variables (13)(14)(15)

(16), current profiles with a trend able to reflect what

was simulated (Figures 2 and 3).

Figure 1. Current profiles downstream of the obstacle

derived from the report (10) introducing the

speed/position relationship proposed in the report

(12). The curves are associated with the distance after

the obstacle (e.g., 0,043 is equal to 0,043 mm after the

obstacle)

Figure 2. Comparison between simulated (hatch) and

theoretical (continuous) current profiles at two

different distances from the obstacle.

In this exploratory study, the determination of the

parameters takes place iteratively, minimizing waste.

In Figure 3, what was obtained by analyzing the

behavior with the first obstacle.

Figure 3. Trend of the values of alfa1, alfa2, and h for

the rectangular single obstacle case studied

Conclusions and possible

developments

The Tsallis entropy showed its potential to describe a

fluid flow in a microchannel. Thanks to this approach, a

deeper analysis of the influence of the channel

geometries on the fluid behavior can be done.

The next steps will be related to the estimation of

factors α1, α2, n, and h, looking for a correlation between

the entropic factor and the internal geometry of the

channel, in particular of the obstacle.

In this sense, the first considerations have been made

starting from the equation (9 - 9b - 10).
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A new evaluation of the position of the correlation

between velocity and geometric coordinate (eq. 11) to

cover the entire channel should be studied.

The relationship (10) explained for the determination of

the velocity was used, downstream of numerical

simulations in a laminar regime on a simple

microchannel (2D), rectangular in shape, without and

with a single rectangular obstacle in turn, to determine

the parameters q, a1 and a2 for the reconstruction of the

current profile. In the first instance, the determination

of the parameters took place by trial and error starting

from the simple channel conditions: undisturbed case.

It is useful to recall that the report (9) had to be

amended in order to be used in the presence of an

obstacle. Moreover, the same relation proved to be able

as developed to reconstruct the current profile only on

the “hemi-channel“ (half of the channel from the wall

to the axis) taking into account the presence of a

restriction of the channel itself. This limitation is yet to

be investigated and is believed to be related to the

function used for the position of the function (10).

The reconstruction and determination of the

parameters have made it possible to:

1. verify the goodness of the relationship in the

description of current profiles

2. observe the influence of the obstacle in terms of

entropic factors along the development of the

channel as a function of the nature of the obstacle

Also Manotosh, Kumbhakar  [2]  and colleagues

addressed the problem of giving physical sense to the

Lagrangian parameters and the entropic factor by going

to work on the calculation of the first and second

moments of the PDF distribution function and related

to the velocity. It would be an interesting topic to be

explored always in relation to microfluidic applications.

Footnotes

1 Of which I have all the steps done: see section

“Application of the Euler-Lagrange principle“ at the

bottom of the page

2 C.L.Chiu; Velocity distribution in open channel flow,

1989, Journal of Hydraulic Engineering.

3 Please note that for a first approach, a rectangular

obstacle was chosen, in a 0.5 mm channel, with a height

of 0.1 mm and a width of 0.5 mm.
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