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Abstract

This paper introduces OpenLS-DGF, an adaptive logic synthesis dataset generation framework, to enhance machine

learning (ML) applications within the logic synthesis process. Previous dataset generation flows were tailored for

specific tasks or lacked integrated machine learning capabilities. While OpenLS-DGF supports various machine

learning tasks by encapsulating the three fundamental steps of logic synthesis: Boolean representation, logic

optimization, and technology mapping. It preserves the original information in both Verilog and machine-learning-

friendly GraphML formats. The verilog files offer semi-customizable capabilities, enabling researchers to insert

additional steps and incrementally refine the generated dataset. Furthermore, OpenLS-DGF includes an adaptive circuit

engine that facilitates the final dataset management and downstream tasks. The generated OpenLS-D-v1 dataset

comprises 46 combinational designs from established benchmarks, totaling over 966,000 Boolean circuits. OpenLS-D-

v1 supports integrating new data features, making it more versatile for new challenges. This paper demonstrates the

versatility of OpenLS-D-v1 through four distinct downstream tasks: circuit classification, circuit ranking, quality of results

(QoR) prediction, and probability prediction. Each task is chosen to represent essential steps of logic synthesis, and the

experimental results show the generated dataset from OpenLS-DGF achieves prominent diversity and applicability.

The source code and datasets are available at https://github.com/Logic-Factory/ACE/blob/master/OpenLS-

DGF/readme.md.

Corresponding author: Xingquan Li, lixq01@pcl.ac.cn

I. Introduction

Logic synthesis is a key phase in the electronic design automation (EDA) flow of digital circuits, translating high-level

specifications into a gate-level netlist. Recently, there has been a trend towards adopting ML approaches for the

EDA[1] domain. Various machine learning methodologies have been proposed, demonstrating improvements in different
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aspects of the logic synthesis process, including logic optimization[2][3][4][5][6], technology mapping[7][8][9], and formal

verification[10][11]. These machine learning-based techniques have shown their promise in improving the efficiency and

quality of logic synthesis steps. In order to further develop these techniques, it is crucial to introduce more comprehensive

and reliable datasets.

Previous benchmarks[12][13][14][15][16][17][18] provide a foundation for testing, comparison, and enhancement, significantly

advancing the development of EDA tools and methodologies. Moreover, logic synthesis datasets[19][20][11] such as

OpenABC-D, have been derived from these foundational benchmarks. However, these datasets are often tailored for

specific tasks, limiting their use cases for diverse applications in machine learning. This paper underscores the need for a

more versatile and adaptive dataset generation framework capable of supporting a variety of machine-learning tasks in

logic synthesis. Such a framework should ideally possess the following attributes:

Diversity: Generating a dataset covers a wide range of design types and categories, ensuring it can cater to a diverse

array of use cases and applications;

Versatility: Generating a dataset has the capacity to support various machine learning tasks, facilitating the sharing of

the same dataset across different tasks;

Adaptivity: Generating a dataset can adapt to different tasks, enabling the extraction of sub-datasets tailored to

specific downstream tasks.

While the EDA flows like OpenLane[21][22] are primarily aimed at facilitating the chip tape-out process, they do not

inherently provide the specific needs for dataset generation. This further emphasizes the demand for a dedicated,

adaptable dataset framework within the logic synthesis domain.

To address these limitations, we introduce OpenLS-DGF, an adaptive logic synthesis dataset generation framework

designed to support a wide range of machine learning tasks within logic synthesis. The proposed framework covers the

three fundamental stages of logic synthesis: Boolean representation, Logic optimization, and Technology mapping. The

comprehensive workflow includes seven distinct steps, including the raw file generation and the dataset packing. OpenLS-

DGF preserves all original information in the intermediate files, which are stored in both Verilog and ML-friendly GraphML

formats. The verilog files offer semi-customization capabilities, enabling researchers to integrate desired intermediate

steps and utilize previously generated verilog files. Furthermore, OpenLS-DGF includes a specialized circuit engine, which

was developed to facilitate effective dataset packaging and extraction of adaptive sub-datasets for multiple tasks. This

circuit engine can faithfully reconstruct the original Boolean circuit information, enabling a wide range of operations to be

directly applied for further processing.

We generate the OpenLS-D-v1 dataset utilizing the above framework to facilitate multiple machine-learning tasks.

OpenLS-D-v1 starts from 46 combinational designs from well-established benchmarks[16][17][18], including a diverse circuit

type, such as arithmetic circuits, control circuits, and IP cores. It encompasses more than 966,000 Boolean circuits, each

derived from 1,000 unique synthesis recipes. The breakdown of the dataset includes 7000 Boolean networks across 7

logic types, alongside 7000 ASIC and 7000 FPGA netlists. Moreover, QoRs are preserved in JSON format alongside their
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corresponding Boolean circuits. To showcase the versatility of OpenLS-D-v1, we have implemented and tested four

typical machine-learning tasks within logic synthesis: circuit classification, circuit ranking, QoR prediction, and probability

prediction. Each task explores unique processes of logic synthesis, employing datasets that are directly extracted and

specifically reformatted from OpenLS-D-v1. The experimental results substantiate the diversity and effectiveness of

OpenLS-D-v1, confirming its value across various machine-learning applications and demonstrating the prominent

diversity and applicability of OpenLS-DGF.

The contributions can be summarised as follows:

We introduced OpenLS-DGF, an adaptive logic synthesis dataset generation framework that covers three pivotal

stages: Boolean representation, logic optimization, and technology mapping. OpenLS-DGF also offers semi-

customized capabilities, allowing the reuse of intermediate files for researchers to integrate additional steps as needed;

We developed an adaptive circuit engine capable of loading multiple types of Boolean circuits without losing any

information. This engine serves as a bridge between the framework and various downstream tasks, facilitating the

extension of operations to generate desired features;

We generated OpenLS-D-v1, an adaptive logic synthesis dataset generated using OpenLS-DGF, designed to support

various machine learning tasks. This ensures that all feasible downstream tasks can derive their specific datasets

directly from OpenLS-D-v1;

We implemented four typical downstream tasks utilizing the OpenLS-D-v1 dataset to demonstrate its diversity and

effectiveness. Moreover, the circuit ranking is a novel task in logic synthesis introduced by this study, highlighting

improvements in technology mapping.

This paper is structured as follows: Section II provides the background and related works; Section III presents the details

of OpenLS-DGF; Section IV introduce the generated OpenLS-D-v1 dataset and its key characteristics;

Section Vformulates the selected four downstream tasks on OpenLS-D-v1 and gives the experimental results; Section VI

gives the discussion, and Section VII draws the conclusion.

II. Background and Related Work

Figure 1. The Logic Synthesis flow.
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Fig. 1 illustrates the essential steps of the logic synthesis flow. The following subsections will introduce the fundamental

concepts and related works of logic synthesis.

A. Background

1) Boolean circuit and Functional completeness

Table I. The logic gates pool in this framework.

The Boolean circuit C is defined as a computational graph representation with specific Boolean function. It can be

formulated by the following: C = (V, E), V = VPI ∪ VLG ∪ VPO, (vi → vj) ∈ E |  vi ∈ V, vj ∈ V,  where VPI represents the

primary input nodes (PIs), VPO represents the primary output nodes (POs), and VLG represents the internal logic gates.

Table I shows the used logic gates in this paper but the technology-dependent cells. Each edge vi → vj in E represents

the connected signals between nodes.

Furthermore, the technology-independent Boolean circuits, also referred to as the Boolean network, primarily concentrate
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on the topology and Boolean function. On the other hand, the technology-dependent Boolean circuit, which represents a

gate-level netlist, incorporates physical attributes such as area, and timing. It should be noted that the sequential Boolean

circuits are not discussed in this work.

Logic Circuit Type Functional Complete Set

And-Inverter Graph (AIG) NOT, AND2

Or-Inverter Graph (OIG) NOT, OR2

Xor-And-Inverter Graph (XAG) NOT, XOR2, AND2

Majority-Inverter Graph (MIG) NOT, MAJ3

Primitive-Gate Graph (PRIMARY) NOT, AND2, NAND2, OR2, NOR2, XOR2, XNOR2

Generic-Technology Graph
(GTG)

{PRIMARY}, NAND3, NOR3, MUX21, NMUX21, AOI21,
OAI21

Table II. The related functional complete set.

Definition 1 (Functional completeness). A set of logical gates S is called functionally complete, if for any Boolean

function f, there exists a circuit using only gates from S that can represent f.

As defined at Table II, the Boolean circuit employs a functionally complete set, thereby enabling the representation of any

Boolean function through circuit type. Table II illustrates the Boolean networks utilized in this work, including AIG, OIG,

XAG, MIG, PRIMARY, and GTG. While the gate-level netlists are involved after the technology mapping.

Boolean representation task: Different Boolean circuits, based on functional completeness, can exhibit varying

performances across different stages of the EDA flow, a phenomenon known as the Boolean representation problem.

2. Logic Optimization and Technology Mapping

The Boolean equivalence[23] asserts that the different Boolean circuit graph structure may lead to the same Boolean

function. Moreover, it is the fundamental theory for logic optimization and technology mapping. The logic optimization

algorithms aim to reduce the cost of the Boolean network to improve the desired criterion (area, timing, ...). Then, the

optimized Boolean networks are translated into the gate-level netlists by technology mapping with the given standard

cell library. This standard cell library encompasses a functionally complete set of gate-level netlists equipped with

essential physical attributes required for technology mapping.

Circuit classification task: According to the Boolean equivalence theory, the Boolean networks derived from the same

design have the same functionality. From this viewpoint, these Boolean networks are in the same class.

Probability prediction task: The functionally equivalent nodes within one Boolean network can be merged to reduce the

size. By computing the probability of nodes, it is possible to effectively identify and filter the functionally equivalent nodes.

3. Static Timing Analysis
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Static Timing Analysis (STA) is a critical technique used to ensure that the gate-level netlist meets specified timing

requirements. STA involves calculating the delay for each signal path within the circuit. The total delay for any path is

determined by the equation:

path_delay = ∑ (gate_delay) + ∑ (wire_delay),

where gate_delay represents the internal delay of each gate and wire_delay accounts for the delay of the wires between

gates. The maximum path delay of the critical path (arrival time) is typically used to assess if the circuit can operate within

the desired timing period.

QoR prediction task: Different logic optimization and technology mapping configurations can lead to different QoR

results. If the QoR distribution is determined, it is possible to predict the related QoR.

4. Graph Neural Network (GNN)

GNNs are particularly adept at handling data structured in the form of graphs, offering important insights in applications

where relationships and interactions are crucial. A GNN utilizes a multi-layered structure where each layer K updates a

node’s representation by aggregating features from its neighbors. This aggregation follows the update rule:

hk
N(v ) = AGGREGATEk({hk−1

u , ∀u ∈ N(v)}),

hk
v = σ(Wk ⋅ CONCAT(hk−1

v , hk
N(v ))).

where hk
v represents the embedding of node v in depth k; the AGGREGATE is the differentiable aggregator function; N(v)

 represents the neighborhood nodes of node v; W is the weight matrices and σ is the non-linearity function.

B. Related Work

Since the release of the ”ImageNet” dataset[24], the field of artificial intelligence has experienced significant advancements

in computer vision. ImageNet has enabled a variety of applications, including image classification, segmentation, and

detection. This progress has led to the development of innovative ML algorithms that are transforming fields such as

autonomous driving, robotics, and natural language processing.

In recent years, the application of ML in logic synthesis has also seen considerable growth. The ”OpenABC-D”[19] dataset

is generated by the OpenLane[21] flow, which mainly produces intermediate files rather than being specifically designed

for dataset generation. Existing datasets, such as those for probability prediction[20] and node classification[11], are

typically tailored for specific tasks. However, there is a notable lack of a comprehensive dataset that can support multiple

tasks.
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Figure 2. The adaptive logic synthesis dataset generation framework of OpenLS-DGF.

To address this gap, we introduce OpenLS-DGF, the logic synthesis dataset generation framework designed for various

downstream tasks. OpenLS-DGF not only accommodates multiple tasks but also enables these tasks to share a common

dataset. This approach standardizes the measurement of task performance, promoting consistency across different

evaluations and enhancing comparability within the field.

III. OpenLS-DGF

In this section, we introduce the proposed OpenLS-DGF along with the circuit engine.

A. Overview

Fig. 2 illustrates the dataset generation flow of OpenLS-DGF. It covers the three fundamental steps in logic synthesis:

Boolean representation, logic synthesis, and technology mapping. To streamline the process, all processes are integrated

into the open-source platform, LogicFactory[25], utilizing the TCL command environment. This framework involves 7

distinct steps, starting from the initial design input to the final dataset packaging. The first three steps (1-3) involve

preprocessing the input design to generate the generic technology circuit and its optimized AIGs. The subsequent steps

(4-6) are dedicated to producing intermediate Boolean circuits derived from these optimized AIGs, including logic blasting,

technology mapping, and physical design. The final step (7) packages these Boolean circuits into PyTorch format data

using a circuit engine, which facilitates efficient dataset management. This systematic methodology ensures that the

design inputs are processed and transformed into a comprehensive dataset, ready for various logic synthesis applications.
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Further details will be demonstrated in the subsequent sections.

B. Dataset Generation Steps

Step 1: Generic Technology Circuit Synthesis.

The first step involves synthesizing the generic technology circuit (GTG). Given that the source designs are provided in

various formats such as Verilog, AIG, and BLIF, adopting GTG as the standardized representation for these inputs is

crucial. This approach ensures uniform processing across different design types, facilitating more streamlined and

consistent handling in subsequent stages of logic synthesis. We utilize Yosys[26] served as the frontend parser for these

format designs, consequently, the input source designs are translated to GTG using Yosys’ “techmap” method. The

generic technology cells defined in GTG correspond to the basic functionally complete set of RTL intermediate

language (RTLIL) within Yosys. Besides the primitive gates, GTG includes several complex gates such as NAND3,

MUX21 AOI21, and OAI21, which preserve the coarse-grained attributes similarities of the RTLIL.

Notably, similar generic technology cells are also utilized in commercial logic synthesis tools such as Design

Compiler (DC) for their intermediate representations, which highlights the practical relevance of creating GTG for the input

designs. We document the GTG in both Verilog and GraphML formats, facilitating further processing and exploration in

subsequent processes.

Step 2: And-Inverter Graph Generation.

AIGs, composed solely of AND2 and INVERTER gates, are fundamental to most logic optimization techniques in logic

synthesis due to their simplicity and structural directness. Open-source tools such as ABC[27] and LSILS[28] have

implemented numerous logic optimization algorithms on AIG, including rewrite , balance , refactor , resubstitution , etc. To

enable these optimizations, we convert the GTG generated in Step 1 into AIG. This conversion leverages the GTG parser

and conversion method provided by LogicFactory. Additionally, we document each AIG in binary format alongside its

corresponding Verilog and GraphML files.

Step 3: Logic Optimization Recipes.

Logic optimization aims to minimize the cost of Boolean circuits. It also generates different structural Boolean circuits with

different optimization configurations (the optimization sequence). These Boolean circuit’ variants can substantially

influence the quality of results (QoR) during technology mapping and subsequent physical design processes. In this step,

we utilize ABC to generate diverse structural Boolean circuits from a specific design’s AIG. These Boolean circuits

facilitate the exploration of the QoR distribution for a given design, which is crucial for the tasks related to QoR

distribution.

We utilize a comprehensive set of optimization commands frequently employed in logic optimization:
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balance,
rewrite, rewrite -l, rewrite -z, rewrite -l -z,
refactor, refactor -l, refactor -z, refactor -l -z,
resub, resub -l, resub -z, resub -l -z.

Additionally, the heuristic optimization sequence such as resyn , resyn2 , along with sequence exploration tasks like

BOILS[29] and DRILLS[30], are performed based on the above command pool. We generate 1000 distinct optimization

sequences for each input design, with each sequence randomly composed of 10 commands from the command pool. To

ensure equal selection probability, the balance  command is repeated, appearing four times in the command pool. These

1000 distinct optimization sequences facilitate the exploration of the different sequences on the same design as well as

the same sequence on different designs, enhancing the analysis of learning of their impact on design optimization.

Following this step, we generated 1000 variant AIGs for each design, with each AIG indexed according to its

corresponding optimization sequence.

Step 4: Logic Blasting.

Logic blasting is a process designed to transform Boolean networks into various formats. Table II shows the 6 logic types

of Boolean network, including AIG, OIG, XAG, MIG, PRIMARY, and GTG. Despite the relative scarcity of optimization

algorithms for these circuit types compared to AIG, logic blasting provides an avenue to potentially generate superior

gate-level netlists through technology mapping for other logic types.

In this step, we utilize the LSILS tool to execute the logic blasting. Initially, the AIG groups generated by ABC are

translated into corresponding AIG groups using the LSILS tool. Both AIG groups maintain identical structures for each

corresponding item. Subsequently, each AIG in the LSILS AIG groups is converted into other logic types through the logic

blasting method, which covers the AIG by the specific standard cell library. For example, the PRIMARY circuit consists of

primitive gates {NOT, AND2, NAND2, OR2, NOR2, XOR2, XNOR2}. By utilizing standard cells composed of these gates,

we can generate the PRIMARY circuit of the corresponding AIG. The gates with a larger area have a higher priority during

the covering process.

The coverage of AIG, OIG, XAG, PRIMARY, and GTG are capable of generating the necessary supergate library during

the covering algorithm by technology mapping. However, the functionally complete set SMIG of the MIG circuit, {NOT,

MAJ3}, are inadequate for generating a functionally complete supergate library due to the hardness of generating basic

{“and2”, “inverter”} set, which makes it complicated to cover the AIG to MIG by technology mapping. Instead, we employ a

topological node-wise conversion method to achieve this conversion.

Theorem 1. The logic blasting method preserves the dependency relationships of the original circuit.

Proof. The logic blasting step relies on the mapping step, ensuring that nodes between the circuits, both before and after

the blasting, can be precisely matched. Thus, they retain the same topological structure. The matched nodes preserve the

dependency relationships. Additionally, each MAJ3 gate can represent an AND gate, and it is still feasible to meet Section

{
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III-B. ◻

Lemma 1. We can equip the logic optimization capability of AIG to the other logic types through logic blasting.

Since most logic optimization algorithms are implemented on AIGs. According to Section III-B, we can generate similar

Boolean circuits by logic blasting on AIGs. In this manner, the logic optimization capabilities of AIG are extended to other

types of Boolean circuits. Following this step, we are able to generate corresponding groups of AIG, OIG, XAG, MIG,

PRIMARY, and GTG Boolean circuits. All these Boolean circuits are written in Verilog and GraphML file formats.

Step 5: Technology Mapping.

For each of the 6 Boolean network groups, we generated a gate-level netlist using the same technology mapping

algorithm provided by LSILS[28], specifically through its “mapper_asic” and “mapper_fpga” methods, which are based on

their respective template operation. For ASIC technology mapping, we employed the sky130[31] standard cell library.

Similarly, FPGA technology mapping was constrained to the LUT6 cell configuration. Given that certain tasks are

exclusively relevant to ABC AIG, we will also employ ABC’s technology mapping algorithms for these specific instances.

For ASIC technology mapping, we use the “amap” command, and for FPGA technology mapping, we apply the “if -K 6”

command to accommodate the requirements. All resulting gate-level netlists, whether for ASIC or FPGA, are

subsequently saved in both Verilog and GraphML file formats to ensure broad compatibility and facilitate downstream

applications.

Step 6: Static Timing Analysis.

The primary goal of logic synthesis is to produce a better gate-level netlist that enhances the subsequent physical design

steps. Assessing the performance of the existing Boolean circuit is crucial, as the timing information significantly

influences the gate-level netlist’s performance and serves as a key metric for evaluating the results of logic synthesis. In

this step, we utilize the static timing analysis (STA) tool provided by the open-source physical design tool, iEDA[32], to

compute the arrival time information for specific ASIC gate-level netlists. For FPGA netlists, the depth of the circuit

provides a precise indicator for timing evaluation, offering a dependable metric for assessing the performance of the

output LUT netlist. All acquired timing information is documented in JSON format, ensuring that it is accessible for further

analysis.

Step 7: Dataset Packing
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Figure 3. Components of an item in OpenLS-D-v1. For convenience, the logic types {OIG, XAG, MIG, PRIMARY} are abbreviated

with ellipses.

To streamline the management of generated raw files, these files are organized and translated into the PyTorch files by

different designs. This organization is executed based on the circuit engine, which will be discussed further in Section III-

C.

Fig. 3 illustrates the components of an individual item in the assembled dataset. Each item is segmented into 8 PyTorch

files: “ raw.pt ”, “abc.aig.pt ”, “ lsils.aig.pt ”, “ lsils.oig.pt ”, “ lsils.xag.pt ”, “ lsils.mig.pt ”, “ lsils.primary.pt ”, and “ lsils.gtg.pt ”. The

“raw.pt ” file consists of 4 files: the source design, the transformed GTG circuit, the converted AIG circuit, and a fixed set

of 1000 optimization sequences. The “abc.aig.pt ” file contains optimized AIGs generated using the ABC tool with the

generated optimization sequence. Additionally, the ASIC/FPGA gate-level netlists and their corresponding QoR (timing)

are also stored. The accompanying “ tcl ” file aids in reproducing the respective intermediate files for further processing.

Files such as “ lsils.aig.pt ”, “ lsils.oig.pt ”, “ lsils.xag.pt ”, “ lsils.mig.pt ”, “ lsils.primary.pt ” and “lsils.gtg.pt ” share similar

components with the “abc.aig.pt ” file. However, the Boolean circuits and the technology mapping algorithms they utilize

are specifically based on the LSILS tool.

All generated raw files undergo verification using combinational equivalence-checking tools. The files within the “raw.pt ”

can be checked using Yosys, while the files in the “ abc.aig.pt ” are checked by comparing the AIG circuits and their

corresponding gate-level netlists through ABC. Similarly, the remaining files generated by LSILS are checked against their

corresponding gate-level netlists in “ abc.aig.pt ”.

This structured approach to dataset management avoids the creation of excessively large or numerous PyTorch files for

any single design. It allows for selective loading of task-related PyTorch files to derive sub-datasets as needed, enhancing

efficiency. The flexibility of this framework allows for the regeneration of necessary files as required, either before or after

certain steps. Additionally, the process can be tailored by inserting appropriate steps between the established ones, thus

customizing the flow to better meet specific requirements.

C. Circuit Engine
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Figure 4. The UML class diagram of the generic circuit class.

Figure 5. Node correspondence between the three types of graph: Boolean circuit, Circuit, and torch_geometry.

As mentioned in step (7) in Section III-B, the raw files generated are subsequently packaged into the dataset through the

proposed circuit engine. It is primarily comprised of two main parts: the “Circuit” class, and operations for “Circuit”. Fig. 4

illustrates the UML diagram of the “Circuit” class within the circuit engine. Each node in the Circuit class has 5 attributes:

type, name, index, fanins , and truth table . For logic type circuits as listed in Table II, the node’s type and name

correspond directly to their respective gate names such as “AND2”, “AOI21”; whereas for ASIC/FPGA gate-level netlists,

the node type is designated as “CELL”, with the node name corresponding to the matched standard cell name. The truth

table  is standardized to 64 bits to accommodate the function of each gate. Operations on the “Circuit” class include

operators like “ to_torch_geometry(circuit: Circuit) ”, “simulate(circuit: Circuit) ”, etc. The “to_torch_geometry(circuit:
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Circuit) ” operator ensures consistency in node indices with the Circuit class, facilitating various operations that leverage

the “torch_geometry[33]“ class. Meanwhile, the “simulate(circuit: Circuit) ” operator allows for the simulation of the circuit

using a range of input test cases, thereby providing valuable insights into the circuit’s behavior.

The aforementioned Boolean circuits are stored in two formats: Verilog and GraphML. We use the “load_graphml(path:str)

→ Circuit” operator to load the generated GraphML files into the “Circuit” class. The GraphML files are firstly loaded into a

NetworkX[34] graph, and the circuit is constructed by traversing the nodes and edges within this graph. Since the nodes

and edges in the NetworkX graph are stored separately, we establish connected signals between nodes using the

“add_fain(fanins)” function of the Circuit class during the edge traversal after all nodes have been created. Moreover,

users can easily introduce custom operations within the “Circuit” class to meet specific requirements, further utilizing this

circuit engine.

Fig. 5 illustrates the node correspondence among the three types of graphs: the Boolean circuits, the proposed “Circuit”,

and the “torch_geometry” graph. In this framework, the Circuit” graph acts as a pivotal bridge, maintaining the original

index (indexori) from the input Boolean circuit while assigning a new index (index) for internal management. The

“to_torch_geometry(circuit: Circuit)” operator ensures that the transformed torch_geometry graph retains the same node

indices as the Circuit” class. This design enables smooth interaction between the Boolean circuit structure and the ML-

friendly torch_geometry graph, allowing for the efficient transition of features and operations between the two.

Understanding the correspondence between these three types of graphs allows us to leverage their collective strengths to

create a dataset with expanded possibilities and enhanced functionality.

IV. OpenLS-D-v1

Design #PI #PO #And #Inv #Edge Depth

adder 256 129 1274 1781 5226 508

square 64 128 19499 24096 78151 445

div 128 128 27100 37726 108555 8406

multiplier 128 128 27753 31205 111242 524

max 512 130 3021 4021 12341 324

log2 32 32 32382 36027 129590 597

sqrt 128 64 32599 45647 130518 10384

sin 24 25 6604 7223 26446 273

bar 135 128 2891 3468 11820 26

cavlc 10 11 652 762 2623 26

int2float 11 7 208 242 845 23

i2c 177 128 994 1020 4148 23

priority 128 8 670 845 2696 384

voter 1001 1 10528 14208 42114 113

Table III. Characteristics of the collected designs.
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voter 1001 1 10528 14208 42114 113

arbiter 256 129 11923 12173 47822 175

router 60 30 184 173 795 36

ctrl 7 26 112 119 483 11

mem_ctrl 1187 962 10001 10323 41691 58

ac97_ctrl 2339 2137 11129 13786 48414 23

steppermotordrive 28 27 133 145 567 22

ss_pcm 104 90 399 476 1722 14

usb_phy 132 90 438 465 1884 17

sasc 135 125 602 770 2637 16

simple_spi 164 132 826 989 3534 21

spi 254 238 3466 3672 14242 55

wb_conmax 2122 2075 45354 32111 185516 32

wb_dma 828 702 3644 4281 15742 41

fir 410 351 4134 5628 17022 159

des3_area 303 64 4862 4147 19544 49

iir 494 441 6302 8777 25813 193

systemcaes 927 672 9961 12880 41072 74

systemcdes 247 128 2636 3109 10728 46

usb_funct 1748 1556 13098 14481 54800 58

sha256 1943 1042 14677 16283 59752 198

dynamic_node 2708 2575 17402 22563 74297 57

fpu 632 409 27345 34160 110018 1938

aes 683 529 28655 22518 115418 44

aes_secworks 3087 2604 33953 36169 140730 71

aes_xcrypt 1975 1805 50426 43280 205032 79

tinyRocket 4561 4181 41800 50326 174934 157

tv80 636 361 9066 9333 36912 109

ethernet 10731 10422 65509 84899 282487 55

picosoc 11302 10797 71472 82817 306788 133

bp_be 11592 8413 75576 97621 317662 276

vga_lcd 17322 17063 103913 133019 449234 41

jpeg 4962 4789 119908 152637 488364 98

AVE 1882 1652 20762 24400 86129 574

In this section, we will provide a detailed overview of the structure and characteristics of the OpenLS-D-v1 dataset.

A. Data Source

1. Design Selection
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Table III shows the source designs for OpenLS-D-v1 dataset generation. These designs are selected from established

benchmarks, like IWLS2005[16], IWLS2015[17], and OpenCores[18]. All the presented designs are combinational AIG, with

the number of Primary Inputs (PIs) ranging from 7 to 17322, Primary Outputs (POs) from 1 to 17063, AND gates from 112

to 119908, Inverter gates from 119 to 152637, Edge signals from 483 to 488364, and depths from 11 to 10384.

It contains diverse types of designs, including arithmetic circuits, control circuits, and IP cores, making it a comprehensive

resource for testing and benchmarking logic synthesis algorithms. In addition, new designs or internal steps can be added

to update the generated dataset for specific demands incrementally.

2. Designs Diversity

Figure 6. The graph embedding similarity of the source designs.

Fig. 6 presents the cosine similarity for the source designs as listed in Table III. Each design is represented by the graph
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embedding computed using a combination of the heuristic features and features aggregated from Graph2Vec[35]:

feature1 = [pis, pos, ands, invs, edges, depth],

feature2 = graph2vec(circuit, dimension = 128),

feature = concatenate(feature1, feature2).

The heuristic features provide a coarse-grained view of the design, while Graph2Vec provides a deeper insight into the

internal structural intricacies. The combination of these features yields a robust graph embedding for each design.

Cosine similarity calculations are conducted using the “sklearn.metrics.pairwise.cosine_similarity” function. To enhance

the visualization of this correlation, the similarity scores ranging from [-1, 1] are normalized to [0.3, 0.6]. Additionally, the

diagonal and the top-right corner of the matrix are cleared to eliminate redundancy. The average cosine similarity score is

around 0.44. This visualization distinctly highlights the variability across different design embeddings.

3. Dataset Generation

 OpenABC-D OpenLS-D-v1 (ours)

source OpenCore�IWLS OpenCore�IWLS�EPFL

#designs 29 46

raw AIG √ √

raw GTech × √

#recipes 1500 1000

#sequence length 20 10

#AIGsabc /design 30000 (1500 × 20) 1000

#AIGslsils /design × 1000

#OIGslsils /design × 1000

#XAGslsils /design × 1000

#MIGslsils /design × 1000

#PRIMARYslsils /design × 1000

#GTGslsils /design × 1000

#ASIC netlist/design × 7000

#FPGA netlist/design × 7000

#Total circuits 870k (30k × 29) 966k (21k × 46)

Table IV. The Characteristics comparison between the

OpenABC-D[19] and OpenLS-D-v1 Datasets.

Table IV provides a detailed comparison between the OpenABC-D and OpenLS-D-v1 datasets. The OpenLS-D-v1 dataset

includes over 966,000 Boolean circuits, structured into groups where each consists of 21,000 circuits generated from

1,000 distinct synthesis recipes. This collection includes 7,000 circuits across 7 Boolean network types, along with 7,000
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ASIC and 7,000 FPGA netlists.

To optimize storage efficiency, we employed the “zstandard” compression tool[36], which significantly reduced the storage

footprint. The entire dataset generation process, including compression, was executed over approximately 76 hours for

raw file generation and 65 hours for compression, using 32 threads on an Intel Xeon Platinum 8380 CPU with a 16T

SEAGATE EXOS HDD. The raw files occupy about 410 GB, while the generated PyTorch files take up about 700 GB.

In comparison, although the OpenABC-D dataset involves generating a larger number of AIGs per design (30,000) from

1,500 recipes, this often results in redundancy within the generated AIGs (due to the same optimization sequence by sub-

sequence extraction). Conversely, OpenLS-D-v1 adopts a more diverse approach by generating different types of Boolean

networks for each design using varied logic types and synthesis sequences. This method provides a richer and more

distinct dataset, better suited for various machine learning applications.

B. Dataset Characteristics

Figure 7. The QoR distribution for source designs. Each row illustrates the QoR distribution across different designs, and each column presents the

three distinct types of QoR measures for a single design. Panels (a) to (d) show the node size and graph depth distribution of the optimization AIGs

for the design; (e) to (h) show the area and arrival time distribution for the corresponding ASIC netlists; and (i) to (l) show the convex hulls of the

QoR distribution for different types of Boolean networks.
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Figure 8. The distribution of node size and graph depth for one design with incremental recipe size of AIG sets.

The QoR within the OpenLS-D-v1 dataset is differentiated into two main categories: technology-independent and

technology-dependent metrics. The technology-independent QoR corresponds to the Boolean circuits’ structure, including

the node size and maximum graph depth. Meanwhile, technology-dependent QoR relates to the physical attributes such

as the total area and arrival time characteristics. The technology-independent QoR is applicable for types of Boolean

circuits, while the technology-dependent QoR is specific to the gate-level netlists. Since the FPGA netlist’s area and

timing are generally related to the size and depth of its graph structure, we just explore the ASIC-specific characteristics

here.

Fig. 7 illustrates the QoR distributions for various design parts, highlighting three types of distributions: technology-

independent QoR for Boolean networks, technology-dependent QoR for ASIC netlists, and technology-dependent QoR for

different logic types of Boolean networks’ corresponding ASIC netlists. From this illustration, the following observations

can be drawn:

Observation 1: Boolean networks with the same node size and graph depth can still have different QoR distributions of

their corresponding ASIC netlist.

Logic optimization is more concerned about the local gain that can lead to global gain, it does not necessarily affect the

size and depth of the optimized Boolean networks for many optimization operators. Although there are many similar QoR

results of one AIG as shown in Fig. 7 (a) to (d), the area and timing distributions of their corresponding ASIC netlists are

significantly dispersed. This variance is likely due to ASIC technology mapping’s sensitivity to the local structures within

the AIG. Thus, it suggests that the QoR distribution of the logic circuit is less indicative of performance compared to that of

the corresponding gate-level netlist.

Observation 2: Different Boolean representations of one design may exhibit different behaviors.

The cut-based technology mapping method is particularly sensitive to the exploration space of the local structures, where

different local structures constructed into a circuit can lead to significantly different physical properties. Consequently, the

technology-dependent QoR of gate-level netlist varies among different logic types of Boolean networks with the same

index in OpenLS-D-v1 of one design. Fig. 7 shows the total area and arrival time distribution for the provided logic types of

Boolean networks. It highlights that there are non-overlapping regions between the convex hulls of distributions for

different types of Boolean networks. This indicates that the QoR distributions for different types of Boolean networks are
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not identical; in some cases, there is no overlap at all between the QoR of different Boolean representations. Furthermore,

the difference between the Boolean networks’ QoR distributions also varies across different designs.

Fig. 8 shows the QoR distribution under the incremental recipe size of the logic optimization of one design. From this, we

can get:

Observation 3: After a certain number of optimized sequences are generated, a QoR interval typically forms, with

new optimization sequences likely falling within this range.

Since logic optimization recipes primarily target AIGs, and other Boolean networks are translated from AIGs through the

logic blasting method, the focus can remain on technology-independent QoR distribution for AIGs. Theoretically, these

derived Boolean networks exhibit similar distributions under certain affine transformations. Fig. 8 not only showcases the

node size and graph depth distribution for a selection of source designs but also highlights the incremental QoR changes

across optimization sequence milestones at 250, 500, 750, and 1000 optimizations. This visualization underscores the

initial observation that after a certain point, further optimizations tend to fall within a predictable range of QoR.

Figure 9. Illustration of the selected downstream tasks and their potential applications within logic synthesis flow.

V. Tasks Formulation and Experimental Results
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Figure 10. Adaptive sub-dataset extraction framework of OpenLS-D-v1.

In this section, we outline the formulation of the downstream tasks and present the experimental results for each. Fig. 9

illustrates the context of the four selected downstream tasks—circuit classification, circuit ranking, QoR prediction, and

probability prediction—and their potential applications within the logic synthesis flow. Each of these tasks utilizes a unified

adaptive sub-dataset extraction framework derived from OpenLS-D-v1.

A. Adaptive Dataset Extraction Framework

Fig. 10 illustrates the framework for adaptive dataset extraction from OpenLS-D-v1, tailored for various downstream tasks.

Leveraging the capabilities of the previously mentioned circuit engine, we can simulate the behavior of the original

Boolean circuits using the specially defined “Circuit” class. For a specific task within logic synthesis, the circuit engine

initially loads the relevant portions of the dataset as input data for further processing. Subsequently, an adaptive function,

“load_adaptive_subdataset(db:OpenLS-D-v1)”, systematically traverses each recipe of the Boolean circuits within each

item to calculate and label the target items required for the task. These labeled items are then packaged into a sub-

dataset dedicated to that specific task.
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For example, if users wish to access only the “ABC-AIG” related data specifically, then merely the “raw.pt” and “abc.aig.pt”

files are required for the process. Furthermore, Fig. 10 illustrates the items of the four sub-datasets tailored to the

selected tasks. It is crucial to implement necessary operations within the “Circuit” class to cater to specific task

requirements. The extraction of each sub-dataset depicted in Fig. 10 will be discussed in detail in the following

subsections.

B. Environment Setup

The experimental environment for the following tasks is as follows: The hardware configuration: CPU (Intel Xeon Platinum

8380 CPU with 160 cores), Memory (512 GB RAM), GPU (NVIDIA A100 with 40 GB VRAM), while the software

configuration: Operation System (Ubuntu 20.04.6), PyTorch (2.0.1), CUDA (12.0), torch_geometry (2.3.1), scikit-

learn (1.2.2), pandas (1.5.3), and matplotlib (3.7.1). This high-performance setup provides a robust platform for

conducting and evaluating experiments efficiently, ensuring the smooth handling of large datasets and complex

computations. However, it is worth noting that the downstream tasks in this study are not resource-intensive and utilize

only a fraction of the system’s capacity for training.

C. Task1: Circuit Classification

1. Problem Formulation

The circuit classification task represents the basic attribute of the circuit analysis tasks, and it can be formulated by the

following: Given a set of Boolean circuits {Ci}
n
1, classify these circuits into k (k ≤ n) classes, and each class follows the

property of the defined Boolean equivalence, thus, {Ci} ≡ {Cj} in the same class, otherwise, {Ci} ≠ {Cj}.

2. Dataset Adaptation

Task 1 part of Fig. 10 shows the components of the circuit classification dataset. The different boolean representations of

one design perform the same Boolean function, as shown in Fig. 3, thus, all these variations need to be in the same

classes with the same label. In this task, the selected designs are labeled with continuous natural numbers from 0 to n,

where n is the number of classes.

3. Solution: Circuit Graph Embedding Learning and Classification
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Figure 11. The GNN-based Model for the circuit classification task.

As shown in Fig. 11, a typical two-layer GCN-based graph embedding solution is given for this task. It comprises two

steps: the preprocessing step, and the learning step. The first preprocessing initializes the node embedding by the node

type and its truth table to embed sufficient circuit information. The following learning step aggregates the node’s

embedding to the graph embedding, then an MLP layer is used to predict the class number of current graph embedding.

The cross-entropy function is used as the loss function here.

4) Experimental Results

Figure 12. The t-SNE visualization for the circuit classification task with 15 designs. Labels to designs: 0 (router), 1 (usb_phy),

2 (cavlc), 3 (adder), 4 (systemcdes), 5 (max), 6 (spi), 7 (wb_dma), 8 (des3_area), 9 (tv80), 10 (arbiter), 11 (mem_ctrl),

12 (square), 13 (aes), 14 (fpu).

The experiment presented here is based on a selection of 15 designs and the reassigned labels from the OpenLS-D-v1

dataset as shown in the caption of Fig. 12. The 80% of each design’s selected Boolean circuits are used for training, and
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the remaining are used for validation.

The hyperparameters used in this experiment are as follows: input feature size of 64, hidden feature size of 128, learning

rate of 0.0001, learning decay rate of 1e-5, and batch size of 16. By the 10th epoch, the test accuracy reaches

approximately 99.8%. Fig. 12 presents the t-SNE visualization of the circuit classification results, clearly demonstrating

distinct and independent distributions for each class. This task shows strong potential for analyzing circuit characteristics

effectively.

D. Task2: Circuit Ranking

1. Problem Formulation

Different Boolean representations of one certain design can lead to different QoRs for their corresponding gate-level

netlist. We can formulate this ranking problem by the following: We can say that the Boolean circuits C0 ⪯ C1 only if the

OoR of C0 is better than C1, otherwise, C0 ⪰ C1. The QoR can be defined by the timing, area, power, or other criteria of

the following EDA steps.

However, the technology mapping, timing analysis, and other physical design steps are time-consuming. If we can find

the best presentation of the current design, it can improve the efficiency of EDA. In this task, we only focus on the circuit

ranking problem before the technology mapping step.

2. Dataset Adaptation

Task 2 part of Fig. 10 shows the components of the circuit ranking dataset. The partial order is defined as the following:

Then, we construct the graph pairs and their partial order by the combination of the logic types as listed at Table II, and

we only consider the C0 ⪯ C1 status as the C0 ⪰ C1 can be converted to C1 ⪯ C0. The tie condition of timing and area is

also not considered.

3. Solution: Pair-wise Graph Ranking
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Figure 13. The pair-wise graph ranking model.

Fig. 13 illustrates the architecture of the pair-wise graph ranking model. We first combine these two Boolean circuits C0

 and C1 into a block matrix. Then a GNN-based graph embedding will learn the combined embedding of these two

circuits. Finally, the MLP-based compassion network will tell that C0 ⪯ C1 or C0 ⪰ C1; The binary cross entropy function

is used as the loss function here.

4. Experimental Results

Figure 14. Pair-wise prediction distribution of the evaluation.
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Metric GCNConv GraphSAGE GINConv

BCE_loss 5.09 4.31 4.43

Accuracy 99.43% 99.49% 99.47%

Precision 0.9939 0.9949 0.9944

Recall 0.4993 0.4995 0.4969

F1-score 0.6647 0.6651 0.6627

Table V. Performance comparison with

different Graph Embedding Model (epoch =

20).

The experiment presented here is based on a selection of 10 designs from the OpenLS-D-v1 dataset: ctrl, router, int2float,

ss_pcm, usb_phy, sasc, cavlc, simple_spi, priority, and i2c. Using the previously defined partial order, approximately

120,000 pairs were extracted from OpenLS-D-v1 for analysis. Of each design’s selected Boolean circuits, 70% were used

for training, and the remaining for validation.

The hyperparameters used in this experiment are as follows: input feature size of 64, hidden feature size of 128, learning

rate of 0.0001, learning decay rate of 1e-5, and batch size of 32. Fig. 14 illustrates the distribution of pair-wise prediction

outcomes on the test dataset, with black nodes indicating incorrect predictions and white nodes indicating correct ones.

The results indicate that all three models achieve high accuracy and effective pair-wise ranking predictions, demonstrating

their validity for this application.

E. Task3: QoR Prediction

1. Problem Formulation

Fig. 8 and its corresponding observation 3 illustrate the motivation behind the QoR prediction task: once an adequate QoR

distribution for a circuit is obtained, it is possible to make predictions about the inputs. Given a known QoR distribution D,

a Boolean circuit C, and an optimization sequence S, the objective is to predict the QoR of C with S.

2. Dataset Adaptation

Task 3 part of Fig. 10 presents the profile of the sub-dataset used for QoR prediction. In the proposed framework, an

ASIC gate-level netlist is generated for each optimized Boolean network. The Area and Timing are used as the QoR for

the unoptimized Boolean networks and their respective optimization sequences. Consequently, each data item is

organized as {unoptimized Boolean network, optimization sequence, Area, Timing}. Notably, due to the specific

requirements of this task, different designs share the same optimization sequence within the same recipe index.

3. Solution: QoR Distribution Convergence Learning
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Figure 15. Convolutional networks for QoR synthesis formulation prediction.

Fig. 15 illustrates the proposed QoR prediction architecture. Each feature dimension is labeled in each layer. First, the

input AIG and the optimization sequence are each embedded separately. The AIG is embedded using a standard GNN-

based graph embedding approach, incorporating global mean and sum pooling as the readout layer. The optimization

sequence, represented by numerically encoded synthesis recipes, is processed through a linear layer followed by four

convolutional filters with dimensions {1 × 14, 1 × 15, 1 × 16, 1 × 17}, designed to extract relevant features. These two

embeddings are then concatenated and fed into an MLP-based distribution learning module. Finally, a softmax activation

function in the output layer predicts the position within the overall distribution, providing the QoR prediction.

4. Experimental Results

Variant1 Seen Design, Unseen
Recipe

Variant2 Unseen Design, Seen
Recipes

Variant3 Unseen IC and
Recipes

Area Timing Area Timing Area Timing

0.69 7.87 1.06 6.50 1.17 6.49

Table VI. MAPE Results for QoR Prediction (%)
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Figure 16. QoR predictions vs. ground truth of variant 1. (a)-(d) focus on the prediction of area, while (e)-(h) focus on timing.

There are three variants of the QoR prediction tasks, and the detailed configuration of each variant is outlined as follows:

Variant1: Predicting QoR of synthesizing unseen Recipes. All designs and the AIG outputs of 700 synthesis recipes

are used as the training set, and the remaining 300 recipes of each design are used as the test set;

Variant2: Predicting QoR of synthesizing unseen Designs. We select 20 small designs as the training set, and the

remaining 14 larger designs as the test set;

Variant3: Predicting QoR on unseen Design-Recipe Combination. We randomly selected 70% of the synthesis recipes

across all designs.

Table VI shows the mean absolute percentage error (MAPE) for the above three variant tasks. It indicates that the model

achieved high predictive accuracy in area prediction, while timing prediction posed a challenge, with slightly lower

accuracy compared to area prediction. This discrepancy may stem from the complexity of timing prediction, necessitating

more refined feature engineering and model tuning. Overall, the model demonstrated good generalization performance

with unknown circuit and optimization sequence pairs, indicating a certain level of robustness in the model. Fig. 16

visualizes the relationship between the prediction and ground truth.

F. Task4: Probabilistic Prediction

1. Problem Formulation

The Probabilistic Prediction task is a gate-level task that predicts the truth-table probability of the gate in the circuit[20]. It

can predict the logical probability of the gate without computing the truth table and can be formulated by: Given a Boolean

Circuit C, the logic probability of a gate v is defined as the frequency of the 1s in the gate’s truth table.
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2. Dataset Adaptation

Task 4 part of Fig. 10 shows the dataset components of probability prediction. For each Boolean network in the OpenLS-

D-v1 items, we label each Boolean network with a probability vector (the probability of each node) which is computed by

random simulation of the Boolean network by “simulate(circuit:Circuit)” with enough activate vectors of PIs.

3. Solution: Node Embedding Learning

Figure 17. The node embedding model.

Instead of computational simulation of the circuit, the probability can be easily attained by the Node embedding-based

method. Fig. 17 shows the node embedding learning-based probability prediction method. For a given Boolean network

with the probability vector x1, x2, . . . , xn, the first step is to initialize the node feature vector h0
1, h0

2, . . . , h0
n for the nodes;

Then a T-layered directed gate aggregation is performed to learn the feature of each node. Finally, an MLP layer is to

reduce each node’s feature to 1 to predict the logic probability of each node. The loss function is the average prediction

error (PE) loss, followed by DeepGate.

4. Experimental Results

 
GraphSAGE DeepGate2 Comparison

PE Time(s) PE Time(s) PE Time(x)

100 0.011 0.050 0.0082 1.42 24% ↑ 27.40 ↓

500 0.002 0.098 0.001 1.48 50% ↑ 14.10 ↓

1000 0.0008 0.038 0.0002 2.20 75% ↑ 56.89 ↓

Table VII. Average prediction error and time comparison

by the different node embedding methods, while the

comparison column represents DeepGate2/GraphSAGE.
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The experiment presented here is based on a selection of 10 designs from the OpenLS-D-v1 dataset: ctrl, router, int2float,

ss_pcm, usb_phy, sasc, cavlc, simple_spi, priority, and steppermotordrive. The recipe size of the dataset ranges from 100

to 1000, showing the scalability and adaptability of the dataset. A 70-30 split is used for training and validation,

respectively.

The hyperparameters used in this experiment are as follows: input feature size of 64, hidden feature size of 128, learning

rate of 0.001, learning decay rate of 1e-4, and batch size of 64 for fast training. The comparison between different

methods can be seen in Table VII, where DeepGate outperforms the GraphSAGE model in various scales of the dataset.

VI. Discussion

Dataset OpenABC-D[19] Deepgate[20] Gamora[11] OpenLS-D-v1

Circuit Classification √ × × √

Node Classification × × √ √

QoR Prediction √ × × √

Circuit Ranking × × × √

probability Prediction × √ × √

Table VIII. The Tasks comparison between the logic synthesis-related Datasets.

The comparison table in Table VIII illustrates the comprehensive task support offered by the OpenLS-D-v1 dataset in

contrast to other datasets such as OpenABC-D, DeepGate, and Gamora. Each dataset was developed with specific

objectives, and they serve different roles in the enhancement of logic synthesis processes through machine learning.

OpenLS-D-v1 distinguishes itself by offering comprehensive task coverage, essential for developing versatile and

generalized machine learning models within the logic synthesis domain. This wide-ranging support enables diverse

experimental setups, paving the way for novel approaches to circuit design and analysis within a unified dataset

framework. This broad task support enables researchers to explore new methodologies and improve existing processes.

In summary, OpenLS-DGF is capable of supporting a variety of machine learning tasks highlighting its potential as a

general resource and standardized process in the field of logic synthesis. Additionally, the OpenLS-D-v1 dataset further

enhances this by providing a versatile foundation for future research and innovation.

VII. Conclusion

In this paper, we begin by addressing the lack of a dataset generation flow specifically targeting multiple tasks in logic

synthesis. To overcome this limitation, we propose OpenLS-DGF, an adaptive dataset generation framework tailored for

machine learning tasks within logic synthesis. We highlight that the proposed solution framework can target multiple
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machine-learning tasks in logic synthesis. We also generate the OpenLS-D-v1 dataset, created using OpenLS-DGF, and

demonstrate its utility by implementing and evaluating four typical tasks on OpenLS-D-v1. The results of these tasks

validate the effectiveness and versatility of our framework.

Future work will focus on enhancing the efficiency of the generation flow and benchmarking the specific machine-learning

tasks for logic synthesis. Furthermore, we aim to integrate the machine learning models into the logic synthesis flow,

contributing to an improved EDA flow for enhanced circuit performance.
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Footnotes

1 Primitive gates are composed of: NOT, BUFFER, AND2, NAND2, OR2, NOR2, XOR2, XNOR2.
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