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There is growing emphasis on the importance of maintaining brain health to

prevent disorders such as Alzheimer's disease, and one aspect of this challenge

is measuring biomarkers of brain aging using magnetic resonance imaging

(MRI). Previous studies have proposed the gray matter brain healthcare

quotient (GM-BHQ) as a measure of brain aging and health, which is calculated

using gray matter volume obtained from structural images of the brain.

However, an index to evaluate brain health considering the functional aspect

of the brain is needed, but has not yet been established. This is because

resting-state functional connectivity MRI provides multivariate time-series

data, which is dif�cult to reduce to a single feature or scalar like gray matter

volume. Therefore, we used a large functional MRI (fMRI) dataset consisting of

a wide age range and used the following three approaches: (1) We learned the

relationship between resting-state fMRI data and the GM-BHQ, constructed a

regression model between them to obtain the predictive value of a model

based on functional information as a functional connectivity brain healthcare

quotient (FC-BHQ), and tested its utility. (2) We veri�ed the applicability of

brain graph neural networks to regression tasks. (3) Finally, we identi�ed

brain regions that showed covariations in function and structure with aging

by analyzing the model parameters and interpreting the prediction results.

The constructed model achieved moderate performance correlation (r > 0.6)

between the predictions and correct answers, and the clustering performed

inside the model extracted brain regions and networks that reported

signi�cant changes with aging. Sparse modeling of the output clusters

revealed brain regions strongly associated with the GM-BHQ, such as the

amygdala, which is responsible for emotional processing, as well as the

Rolandic operculum and superior temporal gyrus, which is characteristic of

changes in connectivity with typical dedifferentiation associated with aging.
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1. Introduction

Maintaining brain health is considered important for

preventing disorders such as Alzheimer's disease. One

aspect of this challenge is measuring the biomarkers of

brain aging using medical and magnetic resonance

imaging (MRI), also known as neuroimaging. In a

previous study (Nemoto et al., 2017), the gray matter

brain healthcare quotient (GM-BHQ) was proposed as a

measure of brain aging and health. This index is

calculated based on the volume of gray matter (GM)

obtained from structural MRI images of the brain. The

study concluded that the GM-BHQ should be useful as a

health indicator because it is not only related to physical

health indicators, such as age and BMI, but also to social

indicators. However, there is a need for an index to

evaluate brain health from the viewpoint of brain

function, and no such method has yet been established.

Therefore, our study used a large functional MRI (fMRI)

dataset consisting of a wide range of age groups from

young to old to investigate three aims: (1) to construct a

regression model that learns the relationship between

resting-state fMRI (rs-fMRI) data containing functional

brain information and the GM-BHQ containing

information on brain structure and health status; (2) to

verify the applicability of graph neural networks (GNNs)

to regression tasks using GNNs as regression models;

and (3) to identify brain regions and networks that

show co-variation of function and structure with aging

by analyzing the parameters of the model.

In this study, we focused on the interpretability of the

model and used a deep learning framework called

BrainGNN (Li et al., 2021), which is a GNN that can

extract sophisticated graph representations by

performing a graph convolution that considers the

positional speci�city of brain regions. It also performs

simultaneous clustering of brain regions to provide

excellent interpretability. Using this approach, we

visualized the clustering results and performed sparse

modeling considering the cluster structure to identify

the brain regions that were important for GM-BHQ

prediction. The resulting prediction (named FC-BHQ)

by the model using functional data as the input, showed

a strong correlation with the true GM-BHQ. Sparse

modeling also suggested the importance of functional

networks between the amygdala-cortex and cerebellum

related to emotional processing in predicting GM-BHQ,

supporting the �ndings of previous studies

investigating functional brain changes with aging. In

addition to applying GNNs to regression tasks in

neuroimaging, we believe our study is the �rst attempt

to identify biomarkers associated with aging by

investigating the relationship between brain function

and structure using deep learning models.

The brain health quotient (BHQ) is "an index for brain

health care, calculated by analyzing brain imaging data

utilizing MRI," as proposed by Nemoto et al. (2017). This

index consists of the GM-BHQ based on the GM volume

(GMV) evaluated by voxel-based morphometry and the

fractional anisotropy (FA) BHQ of white matter (WM)

evaluated by diffusion tensor imaging. In GM, the

desired state of health is considered to be a moderate

spread of neuronal dendrites and moderate increase in

synapses (Erickson et al., 2014). This state is re�ected in

the GMV (Ashburner & Friston, 2000) and is interpreted

to lead to high synaptic plasticity, indicating learning

�exibility (Holtmaat & Svoboda, 2009). In general, the

GMV decreases with age. Moreover, GM-BHQ has been

found to be negatively correlated with age, physical

factors (BMI, blood pressure, and length of rest or

relaxation time in daily activities), and social factors

(such as socioeconomic status) (Nemoto et al., 2017).

Nemoto et al. (2017) focused on the structural aspects of

the brain, such as GM and WM, but mentioned another

possible coef�cient of the BHQ that could incorporate

functional information through the use of rs-fMRI. It

has been suggested that rs-fMRI can provide a measure

of the extent to which brain networks function.

However, because rs-fMRI is multivariate time-series

data containing information on the entire brain, it is

dif�cult to reduce it to a single feature, such as a scalar

or GMV. Moreover, in such cases, the coef�cient derived

from rs-fMRI may lack universality and stability, which

would deter local health status analysis. Therefore, in

this study, we attempted to solve the above problem by

de�ning FC-BHQ as the predicted value of GM-BHQ

based on a deep learning model that uses a functional

graph of the entire brain extracted from rs-fMRI data as

the input. We hypothesized that this would make it

possible to connect GM-BHQ information to functional

information in the brain. In particular, we used GM data

from the Nathan Kline Institute-Rockland Sample

(NKI-RS) dataset and analyzed hidden layers of the deep

learning model. Therefore, we identi�ed brain regions

and networks in which age-related covariations in

structure and function most frequently appeared, and

tested our hypothesis by comparing it with previous

�ndings to investigate the usefulness of our FC-BHQ.
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2. Materials and Methods

2.1. Overview

The procedure used in this study was as follows. First,

we preprocessed the rs-fMRI time series and GM

images for each subject obtained from the NKI-RS

dataset; GM-BHQ was computed from the GM images,

and the functional brain graph  , as the input to the

regression model, was constructed from the rs-fMRI

time series. The BrainGNN used as the regression

model in this study learned the mapping 

  from the functional brain graph    to the

GM-BHQ y and output the predicted value  .

Henceforth, we refer to the output   of BrainGNN as FC-

BHQ using a BHQ prediction based on functional data.

2.2. Materials

2.2.1. NKI-RS dataset

The dataset for this study was obtained from the

enhanced NKI-RS, which is publicly available online.

Several study codes were included in the publicly

available data. We focused on structural MRI images

and rs-fMRI (reception time (TR) = 1400 ms,

multiband) data from subjects included in Baseline Visit

BAS1 (one baseline visit). The dataset consisted of data

from 1246 subjects (495 males, 750 females, and one

unknown). The mean age was 39.2 years (standard

deviation 21.7 years), and ranged from 6 to 85 years. MRI

images were acquired using a 3.0 Tesla SIEMENS Trio

Tim scanner with a 32-channel head coil. Structural

MRI images were acquired using the magnetization-

prepared rapid gradient-echo (MPRAGE) sequence with

the following scan parameters: TR = 1900 ms, voxel size

= 1 mm isotropic, time to echo (TE) = 2.52 ms, �ip angle

(FA) = 9°, thickness = 1.0 mm, slices = 176, matrix = 256

× 256, �eld of view (FOV) = 256 × 256 mm. The rs-fMRI

images were also acquired using an echo-planar

imaging sequence, with the following scan parameters:

TR = 1400 ms, TE = 30 ms, FA = 65°, FOV = 224 mm,

matrix = 112 × 112, slices = 64, thickness = 2.0 mm, and

volume = 404.

2.2.2. Preprocessing

The MRI images were preprocessed using the default

(as of January 2020) con�gurable pipeline for analysis

(https://fcp-indi.github.io/). Structural MRI

preprocessing was performed as follows: (1) skull

stripping using AFNI 3dSkullStrip; (2) registration to

the Montreal Neurological Institute (MNI) 152 standard

space with advanced normalization tools; and (3) GM,

WM, and spinal �uid segmentation using FSL FAST. The

GM images obtained in the above procedures were used

for voxel-based morphometry, as described in Section

2.1.4.

The rs-fMRI images were preprocessed as follows: (1)

slice timing correction, (2) functional-anatomical

registration using the boundary-based registration

method with AFNI 3dAutoMask, (3) registration to the

MNI152 standard space, and (4) nuisance regression.

The nuisance regression procedure was performed as

follows: (4.1) temporal �ltering, (4.2) cerebrospinal �uid

regression, (4.3) global signal regression, (4.4)

regression of motion parameters, (4.5) polynomial

detrending, and (4.6) component-based noise reduction

(aCompCor).

The region of interest (ROI) time series were extracted

by averaging the blood-oxygen-level-dependent

signals of voxels in 116 ROIs de�ned by automated

anatomical labeling (AAL) on the preprocessed fMRI

images obtained from the above procedures.

2.3. Methods

2.3.1. Computational Environment

In this study, the environment was built using PyTorch

and Pytorch Geometrics on a Docker with two

GTX1080ti GPUs (11 GB VRAM) to implement the deep

learning models based on the GitHub repository

published by Li et al. (2021)

(https://github.com/xxlya/BrainGNN_Pytorch). We

implemented the sparse modeling code to evaluate the

contribution of each node to the regression using

scikit-learn (https://scikit-learn.org/stable/) and group

Lasso (https://github.com/yngvem/group-

lasso/blob/master/docs/index.rst). All the codes used in

this research are available to the public through the

following URL:

https://github.com/Skk5mj/masterthesis/

2.3.2. Brain Graph Construction

In this section, we describe the construction of the

brain graphs that were input into the GNN model. To

generate a brain graph   , it is necessary to calculate the

feature    of node    corresponding to a certain 

 and the functional connection between   and  ,

that is, the weights of the edges. In this study, the

Pearson correlation coef�cients between nodes were

used as node features and thresholded partial

correlation coef�cients were used for the edges. The

computations for both indices are as follows:

G

f : G⟼ y G

ŷ

ŷ

G

h
(0)
i vi

ROIi vi vj
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Note that    and    represent the residuals from the

linear regression of    and    , respectively, on the

other factors. Positive values in the top 10% were

selected to guarantee the absence of isolated nodes.

2.3.3. BHQ Computational Methods

GM-BHQ

The GM-BHQ calculation in this study was partially

simpli�ed from the procedure described by Nemoto et

al. (2017). After calculating the total GMV for each

subject from the segmented GM-masked images using

the procedure described in Section 2.2.2, the GMV of all

subjects were standardized. Finally, GM-BHQ was

obtained by transforming the standardized GMV of

each subject by de�ning the mean GM-BHQ of the

subjects as 100 points and the standard deviation as 15

points, as in the calculation of intelligence quotient.

This operation can be represented by the following

equation:

FC-BHQ

In this study, we de�ned FC-BHQ as the value output by

BrainGNN trained on a regression model    that maps

the functional brain graph   to GM-BHQ. Therefore, FC-

BHQ is a function-based BHQ based on a model that

learns the relationship between rs-fMRI and GMV.

Because any BHQ must, by de�nition, have a mean of

100 and standard deviation of 15, standardization was

applied to the correct answer   used to train GM-BHQ;

therefore, the output value    of the model was

transformed inversely to the standardization to obtain

the �nal predicted value FC-BHQ. This procedure is

summarized by the following equation:

where    is the value output from regression model

BrainGNN that learned the mapping  .

2.3.4. BrainGNN

Overview

BrainGNN is a framework of the GNN proposed by Li et

al. (2021), which was based on the concept of extracting

graph structures from fMRI data to discover

neuroscienti�c biomarkers. BrainGNN is characterized

by the following three elements: (1) an ROI-aware graph

convolutional (Ra-GConv) layer that utilizes fMRI

topology and functional information considering the

location of ROIs in the brain graph, (2) an ROI selection

pooling layer or R-pool layer, and (3) a loss function for

the pooling results. In BrainGNN, modules (1) and (2)

are designed as a single block for end-to-end learning.

We followed the method described by Li et al. (2021)

with a few limitations.

BrainGNN applies convolution operations to the node

features of the input graph to update them. This

procedure is performed in a single block. The

convolution kernel (convolution weights) is the output

from a two-layer multilayer perceptron (MLP) that uses

node location information as an input. This allows for

the use of a convolutional kernel that considers the

location characteristics of the nodes. The nodes are

then downsampled in the pooling layer. The new graph

representation is used as the input to the next block.

The graph representation obtained in this block is also

summarized by maximum and average pooling to

preserve information. Finally, the summarized

information from each block is aggregated into a single

vector, which is input into the MLP for the �nal

regression. This last step differs from that of Li et al.

(2021), in which the �nal output is a class.

Ra-GConv layer

In the operations of the Ra-GConv layer, the location

information of the nodes is input to the 2-layer MLP

that trains the convolutional kernel; the �rst layer uses

this location information to calculate a membership

score that indicates the degree to which each node

belongs and assigns soft clusters based on that score.

This allows for an interpretation of how the model

understands the similarity between nodes. Node

Pearson(x,y)

= ,
( − )( − )∑M

m=1 xm
1
M

∑M
m=1 xm ym

1
M

∑M
m=1 ym

∑M
m=1 ( − )xm

1
M

∑M
m=1 xm

2− −−−−−−−−−−−−−−−−−−−−−
√ ∑M

m=1 ( − )ym
1
M

∑M
m=1 ym

2− −−−−−−−−−−−−−−−−−−−−−
√

(1)

Partial( , ,  rest ) = Pearson( , ) (2)x1 x2 ε1 ε2

ε1 ε2

x1  x2

GM − BHQ = 100 + 15 × ( − mean (GMV))GMVindividual

/std (GMV) (3)

f

G

y

ŷ

FC − BHQ = 100 + 15 × ( − mean (GM − BHQ))ŷ

/std (GM − BHQ) ,

ŷ

f(f : G⟼ y)
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features are embedded based on the convolution kernel

output by the MLP, and a new node representation is

obtained.

In the two hidden layers of Ra-GConv, soft clustering of

node   and a linear transformation of the membership

score vector are performed, attributing node    to K

distinct clusters. Thus, in a model that predicts

structure from brain function, it is possible to analyze

the weights of all ROIs that contribute to the prediction

in relation to each other. This section details this

mechanism. The graph convolution operation by the 
  th Ra-GConv layer in the forward propagation is

expressed as

where    is the feature value of node    before

pooling,  is the graph kernel for node 

  in the    th layer, and  corresponds to the edge

weight between adjacent nodes    and    ( .

The convolution kernel    is learned by considering

the speci�city of each brain region (ROI) in the brain

graph input in each block, and the ROI location

information is represented by one-hot encoding

vectors   , which are input and embedded into the two-

layer MLP. The output comprises a vector and is

formatted such that it can be used in a convolution

kernel to obtain    . The following is a mathematical

formula illustrating this process:

Equation (5) can be expressed as follows: First, let 

 be the number of nodes in the graph input

to the  th block and replace the weights of the �rst and

second hidden layers of the MLP with the following

respective notation:

Then, at the �rst hidden layer, the following

conversions are performed.

where    denotes the non-negative membership

score of node   belonging to cluster u as follows:

From the above equation, soft clustering of node    is

performed in the �rst hidden layer. The membership

score vector is then linearly transformed in the second

hidden layer; thus, Equation (5) can be expressed as

In the above procedure, the convolution kernel is

trained differently for each node    , which is

simultaneously soft-clustered into   clusters.

R-pool Layer and Readout Layer

After the Ra-GConv layer, the R-pool Layer performs a

pooling operation to maintain the important nodes

based on the new graph representation output from the

previous layer. Each node is mapped to a pooling score

vector based on node features and assigned a score. In

the readout layer, the node feature matrix of the newly

obtained graph is �attened into vectors by pooling to

preserve information. These summary vectors are

further combined and used as inputs for the regression

predictor. The details are as provided in Li et al. (2021)

and omitted from this paper.

The model in this study was implemented by

modifying parts of the BrainGNN code published on

GitHub by Li et al. (2021). The number of blocks was set

to L = 3, and the pooling ratio of the R-pool layer was set

to 0.5, such that the number of nodes in each block was

downsampled by half. The regularization parameter 

 in the loss function (Equation 7) was set to 0.1.

2.3.5. Loss Functions

To perform the regression task in this study, which was

different from that in the Li et al. (2021) original model,

we used the following loss function    to perform

the regression task.

where    is a regularization parameter that adjusts the

importance of the loss function. The de�nitions of the

terms on the right-hand side are as follows:

Mean Squared Error (MSE) Loss

vi

vi

l

= relu + , (4)hi
~ (l+1) ⎛

⎝
⎜W

(l)
i h

(l)
i ∑

j∈ (i)N
(l)

eijW
(l)
j h

(l)
j

⎞

⎠
⎟

∈hi Rd vi

∈W
(l)
i R ×d(l+1) d(l)

vi l eij

vi  vj j ∈ N (i))
Wi

ri

 Wi

vec ( ) = = relu( )  +  b.Wi f
( )ri
MLP Θ2 Θ1ri

=d(l) N (l)

l

= [ , ] ,Θ(l)
1 α

(l)
1 … ,α(l)

N (l)

= [ , … , ] .Θ(l)
2 β

(l)
1 β

(l)

K (l)

relu( ) = relu( ) = relu( )Θ(l)
1 r

(l)
i α

(l)
i [ , … , ]α

(l)
i1 α

(l)

iK (l)

⊤

= [ , … , ]( )α
(l)
i1

+
( )α

(l)

iK (l)

+ ⊤

( )α
(l)
iu

+

vi

=( )α
(l)
iu

+
⎧

⎩
⎨
⎪

⎪

,(if  > 0) ,α
(l)
iu α

(l)
iu

0,(if  ≤ 0) .α
(l)
iu

vi

vec( ) = + . (6)W
(l)
i ∑

u=1

K (l)

( )α
(l)
iu

+
β

(l)
u b(l)

vi

K

λ

Ltotal

= + λ( + ), (7)Ltotal LMSE Lunit Ltopk

λ
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where    and    are the true and predicted values,

respectively, of the true objective variables for subject

m.

Unit Loss Function

This function provides a constraint on the learnable

vector    that projects the node features to

obtain the pooling score vector   in the R-pool layer. 

can be arbitrarily scaled using a real number 

 as

In other words,   can assume arbitrary values and is

no longer uniquely determined, which can render the

learning process unstable. Therefore, the unit loss

function    adds the restriction that    is a unit

vector.

Top-k Loss Function

= , (8)LMSE ∑
m=1

M 1

2M
( − )ym ŷm

2

ym  ŷm

= l = 1Lwl2 − 12 (9)Lunit

∈w(l)
R
d(l)

s(l)

s(l)

a (≠ 0)

= (a )/awl2.s(l) H
~(l+1)

w(l)

w(l)

Lunit w(l)
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The top-k loss function is intended to constrain the

pooling score, such that the    bene�cial ROIs that

are useful for prediction have scores that are distinctly

farther apart than those of the unselected nodes. To

achieve this, the top-k loss function ranks 

  for the    -th instance in

descending order and uses the binary cross-entropy

function.

2.3.6. Learning and Cross-Validation

To explore the relationship between the brain function

network and GM-BHQ, the parameter to be adjusted

was limited to    , which represents the number of

clusters in the soft clustering performed in the Ra-

GConv layer. The value of    was �xed in Li et al.

(2021), all blocks    ) were �xed at eight, and

no search for   was performed. Therefore, assuming

that clustering yields clusters of known functional

brain networks and that the performance of the model

depends on the number of clusters, we conducted a

search in the range   = {7, 8, 9, 10}. Hereafter, we refer

to these models as Models 1 ( =7), 2 ( =8), 3 (

=9), and 4 ( =10) in order of   value. The models

were evaluated using �ve-fold cross-validation (5-fold

CV).

In the 5-fold CV, the data were �rst divided into �ve

blocks: one for training and the others for testing the

performance of the model after training. As the training

progressed, the model was approximately �tted to the

training data, and training was terminated when the

prediction error    with respect to the test data

showed no improvement for more than 10 epochs after

the minimum value was recorded. At the epoch when

the prediction error reached a minimum, the mean

absolute error (MAE) between the model’s predictions

and true values was calculated, and this was used as the

prediction accuracy in Fold 1. After Fold 1 was

completed, the training and prediction of the test data

were repeated in the same manner for Fold 2, and so on,

to obtain the MAE of the test data �ve times. The values

were averaged to determine the model with the best

number of clusters for parameter  .

2.3.7. Group Sparse Lasso Applied to the Ra-

GConv Layer

As mentioned earlier, when training the convolution

kernel used in the Ra-GConv layer, a matrix of

nonnegative membership scores ( ), indicating

the degree to which    belongs to cluster u, was

obtained. Based on the membership scores in the �rst

block of each model, we computed soft clustering in

which each ROI simultaneously belonged to several

clusters. We also performed hard clustering in which

each ROI was assigned only to the cluster with the

highest score.

Based on the clusters shown by BrainGNN, sparse

modeling by group-sparse Lasso (Simon et al., 2013)

was performed to interpret which functional indicators

of brain regions were useful in predicting GM-BHQ as

the objective variable. Here, not only the information of

each ROI but also the subject's personal information,

such as gender and age, were included as explanatory

variables. Subject information was added as a

confounding factor to account for its contribution to the

structural brain characteristics (GM-BHQ). Because the

dimensions of the explanatory variables used for sparse

modeling should be smaller than the number of

samples (Cui & Gong, 2018), we used functional

connectivity strength (FCS) as a functional measure.

FCS was calculated for each ROI and corresponds to the

centrality measure of the graph theory indicators. 

  of    was obtained by standardizing the

Pearson correlation   between all other   ,

using thresholding (> 0.2) and summation (Li et al.,

2021). The equation for the linear regression is given by

where    is the objective variable of the subject    , 

  are the partial regression coef�cient and

explanatory variable vectors, respectively, for the

information (age and sex) of the subject    , and 

  are the grouped partial

regression coef�cient and feature vectors, respectively.

Standardization was applied to these features in

advance.

Group-sparse Lasso is a regularization method that

combines a group Lasso and Lasso. It minimizes the

=Ltopk

− log( )+ log(1 − )∑
l=1

L ⎧

⎩
⎨

1

M
∑
m=1

M 1

N (l)

⎛

⎝
∑
i=1

kN (l)

ŝ
(l)
m,i ∑

i=1

(1−k)N (l)

ŝ
(l)

m,i+ kN (l)

⎞

⎠

⎫

⎭
⎬

(10)

kN (l)

= sigmoid( )ŝ
(l)
m s~(l) m

K (l)

K (l)

(l = 1,  2,  3
K (l)

K (l)

K (l) K (l) K (l)

K (l) K (l)

Ltotal

K (l)

[ ]( )αiu
+
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objective function that constrains the L1 and L2 norms

of the partial regression coef�cient vector while

considering the clusters created by the elements of the

explanatory variables. The objective function is

expressed by the following equation.

where the subscript   denotes the cluster number and 

 is the set of subscripts. The dimensions of the partial

regression coef�cient vector  corresponding to each

cluster are denoted by  . The second term on the

right-hand side represents the constraint on the partial

regression coef�cients by the Lasso, and the third term

refers to the constraint on the partial regression

coef�cients for each group by the group Lasso. These

terms are controlled by the parameter  .

These regularization terms degenerate the estimates of

some partial regression coef�cients to zero, and

explanatory variables with coef�cients estimated to be

zero can be interpreted as not contributing to the

objective variable. In particular, the third term

promotes a group-wise reduction of the partial

regression coef�cients such that those for groups

formed by the explanatory variables that have a low

contribution are degenerated to zero. This allows for

sparsity and may allow for a more concise

interpretation of the explanatory and objective

variables.

We performed 10-fold CV for each value of  , moving it

in the range    for    �xed between

[0, 1]. The evaluation criterion was the mean between

the folds of    , and the model with the

smallest mean    was selected. For α, the

search was performed in the range α = {0, 0.25, 0.5, 0.75,

1}. When α = 0, only the group-Lasso effect was applied

to the objective function to be minimized. However,

when α = 1, only the effect of the Lasso was applied. In

other words, the smaller the value of α, the more

importance was placed on the group structure of the

explanatory variables; the larger the value of α, the more

importance was placed on the contribution of the

individual explanatory variables. Using the above

methods, we searched for the best parameter

combination   and examined the important

features that contributed to the prediction of GM-BHQ

by evaluating the average value of the partial regression

coef�cient for 10 models with 10-fold CV.

Figure 1. Overview of analyses. The rs-fMRI time

series and GM images for each subject obtained from

the NKI-RS dataset were preprocessed, GM-BHQ was

computed from the GM images, and the functional

brain graph    was constructed from the rs-fMRI time

series. BrainGNN used as the regression model in this

study learns the mapping   from the

functional brain graph    to GM-BHQ   and outputs

predicted value   . The output   of BrainGNN is

referred to as FC-BHQ, the BHQ predicted from

functional data.

3. Results

3.1. Relationship Between GM-BHQ and Age

The following are the results of linear and polynomial

regressions using the least squares method to explore

the relationship between the GM-BHQ calculated from

GM images and age. The order of the polynomial

regression was determined based on the Akaike

information criterion (AIC).

Figure 2. Relationship between GM-BHQ and age. The

vertical and horizontal axes correspond to GM-BHQ

and age, respectively. (Left) Regression lines (orange)

were obtained by the least squares method. (Right)

Results of curve �tting between GM-BHQ and age. The

order of the polynomial regression curve (orange) was

set to six based on the AIC.

GM-BHQ showed a strong negative correlation with age

(r = –0.663), re�ecting age-related changes in GM

(β) = ∥y − Xβ + αλ∥β + (1 − α)λSλ
1

2M
∥2

2 ∥1

,∑
u∈K

pu−−√ ∥ ∥βu 2

u

K

βu

pu

α(∈ [0,  1])

λ

[ ,   ]10−4 100 α  = αfixed

MSE ( , )ym ŷm
(λ  = )λbest

( , )αfixed λbest

G

f : G⟼ y

G y

 ŷ ŷ
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volume. Polynomial regression revealed a curve that

showed a slight increase until approaching the mid-

teens and then a decreasing curve with an almost

constant slope; after 60 years, the GM-BHQ values with

respect to age decreased faster.

3.2. GM-BHQ Prediction by BrainGNN

As stated earlier, we varied the number of clusters   in

the Ra-GConv layer and compared the accuracies of the

models.

K
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Models Mean MAE

Model 1 ( = 7) 9.149 ± 0.197

Model 2 ( = 8) 9.359 ± 0.190

Model 3 ( = 9) 9.302 ± 0.124

Model 4 ( = 10) 9.186 ± 0.191

Table 1. Prediction accuracy of each model by 5-fold CV

Among the four models, the MAE of Model 1 ( =7)

was the smallest, followed by that of Model 4 ( =10).

Therefore, only the results of Model 1 are discussed.

K

K

K

K

K (l)

K (l)
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Figure 3. Prediction results for Model 1 with K = 7 clusters. The vertical axis

corresponds to the predicted value of BrainGNN (FC-BHQ), and the horizontal

axis corresponds to GM-BHQ. The regression lines shown in red were obtained

by the least squares method. All p-values calculated by correlation analysis are

uncorrected.

Again, it is necessary to emphasize that FC-BHQ refers

to the GM-BHQ predicted using the rs-fMRI

information of the participants. The results predicted

by Model 1 are shown in Figure 3. A correlation

coef�cient of 0.629 (p-value uncorrected) indicates that

the model is highly signi�cant; however, it

underestimates GM-BHQ above 120 and overestimates

it below 80, indicating that the prediction accuracy

decreases signi�cantly toward the base of the

distribution. The predictions of the GM-BHQ using the

BrainGNN model show that FC-BHQ reproduces the

GM-BHQ features well.
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Figure 4. shows the results of the polynomial regression using the least squares

method to explore the relationship between the FC-BHQ and age. The polynomial

regression curve (shown in orange) was determined based on the AIC and was

almost identical to that obtained by curve �tting for age and GM-BHQ. The shape of

the curve was similar to those of the other models for different   values, with a

peak in the early teens, decrease until the 50s, plateau in the 50-70s, and a decrease

thereafter.

K
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Figure 4. Results of curve �tting of FC-BHQ and age by

Model 1 with K = 7 clusters. The horizontal and vertical

axes correspond to FC-BHQ and age, respectively.

Curves from polynomial regression (orange) were

determined for orders based on the AIC.

3.3. Results of Clustering and Sparse Modeling for

ROI Evaluation

The results of the 10-fold CV for each value of    in the

range   for   �xed between [0, 1], are

now described. As shown in Figure 5, there was no

signi�cant difference in the mean MSE for different 

. This was also the case for    , that is, a

simple Lasso 10-fold CV that did not consider the group

structure of the explanatory variables.

Figure 5. Results for group sparse Lasso (a-d) and

Lasso 10-fold CV (e) considering the clustering results

in Model 1: the horizontal axis shows the value of   on

a logarithmic scale, and the vertical axis is the average

value of the mean squared errors (MAE) of the 10-fold

CV performed for each value of  . The mean is shown

in red, and the black error bars represent the standard

deviation.

We present the results of soft clustering in the Ra-

GConv layer of the �rst block of Model 1. The distance

between clusters was calculated using cosine similarity,

and the resulting matrix was visualized on a two-

dimensional plane using T-distributed stochastic

neighbor embedding (t-SNE). As shown in Figure 6, the

soft clustering results show that the clusters are clearly

separated, which con�rms the signi�cance of the ROI-

based convolutional kernel learning mechanism.

Figure 6. (Left) Heatmap showing distances between

seven clusters using cosine similarity based on soft

clustering of Ra-GConv layer values. (Right) Each

cluster mapped on a two-dimensional plane using t-

SNE.

The results of the hard clustering, in which each ROI

was assigned to the cluster with the largest

membership score, showed some variation depending

on the computational conditions. However, the results

were stable and similar for the top ROI contributing to

the prediction. The names of the ROIs were based on

AAL. Note that the 10-fold CV of the sparse group Lasso

did not differ signi�cantly among the models with

respect to the behavior of the loss function; therefore,

we only show the results for Model 1, which recorded

the best performance for predicting GM-BHQ. The

parameter   was set to    ,

as described above, where α = 0 means that only the

group Lasso effect is applied in the objective function to

be minimized. However, when α = 1, only the effect of

Lasso is applied and the group structure of the

explanatory variables is not considered. When α = 0, the

sparse group Lasso coincides with the group Lasso and

there is no partial regression coef�cient that reduces to

zero; this is also the case for α = 0.25. Thereafter, there

was an increase in the number of coef�cients

degenerated to 0 as the value of α increased. There were

six coef�cients at α = 0.5, 13 at α = 0.75, and 32 at α = 1,

which is consistent with the Lasso.

Table 2 lists the absolute values of the partial regression

coef�cients under each α value in increasing order.

Figure 7 also shows the sum of the ranks under each

condition in ascending order, with left amygdala

(Amygdala_L) and left Rolandic operculum

(Rolandic_Oper_L) in �rst and second places,

respectively, under all conditions. In addition, the

medial orbital parts of the right superior frontal gyrus

(Frontal_Med_Orb_L), right superior temporal gyrus

(Temporal_Sup_R), and left cuneus (Cuneus_L) recorded

mean ranks in the top �ve, followed by the right

hippocampus (Hippocampus_R). Considering the hard

clustering, it can be seen that the top-ranking AAL

λ

[ ,   ]10−4 100 α = αfixed

αfixed =  1αfixed

λ

λ

αfixed α  =  0,  0.25,  0.5,  0.75,  1
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regions are concentrated in cluster numbers 1, 2, 3, and

6.

Table 2. The twenty areas recording the highest

absolute partial regression coef�cients under each of

the α values {0, 0.25, 0.5, 0.75, 1}.
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Figure 7. Bar chart of the rank sums in ascending order for each

ROI recording the absolute values of the partial regression

coef�cients under each α value.

4. Discussion

4.1. Interpretation of the Model

For the predicted (FC-BHQ) and correct (GM-BHQ)

values obtained in this study, a moderate positive

correlation (r > 0.6) was achieved, although the slope of

the regression line remained at approximately 0.4. This

indicates that there is room for improvement in our

model but suggests the possibility of applying GNNs to

regression in the �eld of neuroimaging. Although the

dataset used in this study consisted of a wide range of

age groups and the GM-BHQ was unbiased, there was a

tendency for the model to have signi�cantly lower

prediction accuracy at the base of the distribution; that

is, the farther from the mean, the less accurate the

model. It is possible that outliers prevented the model

from learning useful graphical representations.

Therefore, future studies should examine this

possibility using outlier detection algorithms based on

multivariate approaches, such as the k-nearest neighbor

method (Su & Tsai, 2011).

Next, we investigate in detail the brain region clustering

in the hidden layer of BrainGNN. As a result of soft

clustering, the non-negative membership score matrix 

 showed several areas in which the score at one

cluster was signi�cantly larger than those at the others;

that is, where the belonging cluster was uniquely

determined. However, there were also clear patterns of

ambiguous cluster af�liation. It is worth noting here

that Li et al. (2021) suggested the existence of ROIs that

would not be con�dently assigned to any cluster when

the non-negative membership score matrix is sparser

than that obtained in this study. Although the

prediction tasks and data were different in the two

studies, it would be appropriate to say that they

generally exhibited similar behavior.

Thus, the results of hard clustering were affected by

subtle differences in membership scores by cluster.

Simultaneously, each hard cluster was not necessarily

composed of ROIs that were anatomically close. In

addition, most clusters were not determined as a set of

ROIs, as indicated by the default mode network (DMN)

or other popular resting-state networks (RSNs), but

rather as a complex set of ROIs simultaneously

attributed to various RSNs. Therefore, this study does

not focus on the interpretation of cluster attribution but

interprets ROIs with large absolute partial regression

coef�cients by referring to the context in which they

co-occur in prior aging science studies. In this section,

we discuss Model 1 in particular, which was the most

accurate in predicting GM-BHQ. We evaluated the

absolute values of the partial regression coef�cients in

the sparse group Lasso (0 ≤ α < 1) and Lasso (α = 1) and

consistently found that the left amygdala (Amygdala_L),

left Rolandic operculum (Rolandic_Oper_L), and right

superior temporal gyrus (Temporal_Sup_R) were the

three brain regions that contributed most to the

prediction of GM-BHQ (Table 2). Other brain regions

with stable contributions were the left cerebellar lobule

X (cerebellum _10_L), bilateral medial prefrontal and

( )α
(1)
iu

+
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orbitofrontal cortices (Frontal_Med_Orb_L and

Frontal_Med_Orb_R), and the right hippocampus

(Hippocampus_R).

Here, we �rst address the left amygdala, which

consistently showed the largest contribution to

prediction. The amygdala, located in the limbic system

at the base of the forebrain, is part of the circuitry

responsible for emotional processing, and many studies

have shown that its function changes with age. For

example, memories related to emotions tend to be

retained better with age, whereas episodic memories

deteriorate with age (Wright et al., 2006; Ritchey et al.,

2011). This is called the “positive effect,” and various

studies have suggested that age-related changes in

functional connectivity (FC) with the amygdala might

be a neurological biomarker for this effect (Sakaki et al.,

2013; Addis et al., 2010). Aging and amygdala FC changes

have not only been reported as progressing from

younger to older adulthood, but also begin before

adulthood, since FC between the amygdala and cortex is

modulated from childhood through to the 20s (McRae

et al., 2012; Gee et al., 2013). This suggests that FC in the

amygdala may be related to cognitive developmental

processes. The amygdala is of interest in relation to the

medial prefrontal cortex (Frontal_Med_Orb_L), a brain

region included in the DMN. The medial prefrontal

cortex and amygdala have been suggested as important

brain regions associated with the positive effects

described above (Xiao et al., 2018). The FC between

these brain regions belonging to the DMN and the

amygdala have been reported to change with age,

suggesting the involvement of the Frontal_Med_Orb_L

in the amygdala-centered aging-related network.

For other ROIs, the interpretation of the results can be

facilitated by discussing them considering the

functional networks to which they belong. Cognitive

functions, including executive control, generally decline

with age, even in the absence of a con�rmed disease,

and this modulation is characterized by a change in FC

during the aging process (Ferreira & Busatto, 2013).

DMN connectivity is signi�cantly attenuated by

senescence (Andrews-Hanna et al., 2007; Sambataro et

al., 2010; Grady et al., 2010; Damoiseaux et al., 2008), and

this phenomenon has been reported to be associated

with reduced cognitive processing speed and

performance in tasks related to working memory in

elderly people. Such a disruption of the network

con�guration due to changes in connectivity is called

dedifferentiation. In a review article on this topic, Koen

and Rugg (2019) noted that although the mechanisms of

reduced behavioral performance and various memory

impairments may be explained by the loss of diversity

in neural representation due to age-related

dedifferentiation, this process does not necessarily

imply a detrimental consequence of aging. When

dedifferentiation is not accompanied by failure, it is

speci�cally referred to as degeneracy, that is, an

adaptive mechanism in which a dysfunctional network

with some of its impaired nodes mobilizes a group of

different nodes from another normally working

network (Fornito et al., 2015.

After the amygdala, the next two areas of focus from

the partial regression coef�cients were the left Rolandic

operculum (Rolandic_Oper_L) and right superior

temporal gyrus (Temporal_Sup_R). Interestingly, in the

context of age-induced changes in FC reported by

Geerligs et al. (2014), Rolandic_Oper_L belongs to the

cluster DAN-SMN (Damoiseaux et al., 2008), which

consists of both the dorsal attention network (DAN) and

somatomotor network (SMN). When seed regions were

set in the DMN, connectivity with the DAN-SMN

containing Rolandic_Oper_L was enhanced in the

elderly population. Furthermore, Geerligs et al. (2014)

observed reduced connectivity between DAN-SMN

seeds and Temporal_Sup_R in older participants. In

addition, elderly people showed connectivity

modulation within the DAN-SMN or with relationships

to other networks. This change in connectivity can be

considered as typical dedifferentiation associated with

aging, and our model may have captured this

phenomenon.

4.2. Limitations and Future Perspectives

In this study, we trained a deep learning model called

BrainGNN to learn the relationship between rs-fMRI

data and the brain health index GM-BHQ based on GMV

and validated the output of the model by de�ning it as

FC-BHQ. Thus, we created a model that expanded the

functions of a GNN from discrimination to regression in

the �eld of neuroimaging. Although the model had

dif�culty predicting the data at the base of the GM-BHQ

distribution, it achieved a moderate positive correlation

(r > 0.6) between the predicted and correct values.

Moreover, we con�rmed that the parameter settings

used by BrainGNN to learn the ROI-speci�c

convolutional kernel did not cause a signi�cant

difference in performance. We also attempted sparse

modeling to interpret the clustering generated at the

hidden layers of BrainGNN. We found that the model

emphasized changes in connectivity inside and outside

of a functional network with age, and concluded that

the FC-BHQ is a valid predictor of the GM-BHQ. Of

particular interest was the extraction of network

structures related to emotional processing in the cortex,
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particularly in the left amygdala. To further develop

this method, a future challenge is to devise a

mechanism to interpret the learning process that

occurs inside the model and introduce it into BrainGNN

so that it can be completed by deep learning modeling

alone without resorting to additional analysis,

especially sparse modeling.

The model constructed in this study achieved a

moderate performance correlation (r > 0.6) between the

predicted and correct values, and the clustering

performed inside the model extracted brain regions

that have been reported to undergo signi�cant changes

with aging. However, there are some limitations and

issues regarding the analytical methods and data. First,

it is unclear whether the model predicting GM-BHQ can

provide meaningful information on the cognitive

abilities of participants in the form of test score

predictions at the individual level. Furthermore, this

study only compared the prediction performance

within BrainGNN, and the lack of similar research did

not allow for adequate comparisons. These results alone

do not fully demonstrate the usefulness of BrainGNN

for regression tasks or the validity of the FC-BHQ. If

prediction is considered at the individual level, the GNN

framework is insuf�cient, and a hierarchical GNN, for

example, needs to be constructed. This is a powerful

framework (Bessadok et al., 2022) that uses a

population graph constructed with brain graph

representations built from brain image data as nodes

and the pairwise similarity of phenotypic data (gender,

age, genetic information, etc.) between subjects as

edges. More concisely, a graph can be assumed in which

each subject is a node and the similarities between

subjects are constructed as edges. However, obtaining a

wide range of brain images and phenotypic information

simultaneously is dif�cult.

Regarding the algorithm used in this study, two issues

must be addressed. First, we could not apply the group-

level consistency loss function (GLC Loss), which has

been implemented in previous studies, to the regression

task in this study. GLC Loss constrains the nodes

selected for pooling in the R-pool layer as close within a

class. This loss function is easily applicable when the

problem to be solved is classi�cation, that is, the

prediction of discrete values. However, the forecasting

task in this study was the prediction of continuous

values, so the data could not be directly categorized

based on the predicted values; improving GLC Loss for

the regression task could enhance the interpretability of

the model and is expected to increase the prediction

accuracy and make the results more robust, as it

encourages common feature selection across similar

data.

Another issue is the methodological limitation of the

sparse modeling performed to analyze the clustering

results of BrainGNN. The FCS used as features in sparse

modeling is a further summary of the FC, which may

miss some functional information. Modeling using

different features is necessary to generalize the results.

It should also be noted that the interpretation of results

by the sparse group Lasso may be inherently different

from the interpretation of nonlinear, complex, and

highly abstract data that BrainGNN performed in its

model. The possible introduction of modules that make

BrainGNN more interpretable alone would help to avoid

these methodological limitations and problems. For

example, attention maps (Huang et al., 2022), which

visualize the brain function features on which the

model has focused, could be used.

Finally, the limitations of the NKI-RS dataset used in

this study should be mentioned. All fMRI data were

collected at the same facility. In general, fMRI data are

sensitive to imaging parameters; therefore, data

collected at different imaging locations or with

different imaging protocols may yield results different

from those obtained in this study. Therefore, a new

challenge is to introduce a mechanism that enables

harmonization in the model. Another future challenge

is to conduct experiments using an atlas other than

AAL and to compare the results. The graph

representation extracted by the GNN is also expected to

change. Owing to the above limitations, future

experiments using different datasets and atlases should

be conducted for comparison and validation to

generalize the results. It should also be noted that we

were not able to con�rm the association between GM-

BHQ and health information in the NKI-RS dataset

because we could not obtain information on the health

status of the subjects in the dataset.

Note

This paper is an abstract of the master’s thesis of the

�rst author, who is an alumnus of the Tokyo Institute of

Technology, Japan.
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