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Abstract

The roles of languages, processes, and objects in mathematical thinking have led to many theories, yet no consistent

big picture has evolved from this. This paper puts forth the hypothesis that the Curry-Howard correspondence from

computer science and the theories it is built on provide a unification framework. This correspondence asserts that

(formal) proofs and programs (in functional programming languages) do not only have some similarities, but can, at

least if formalized in an appropriate way, be mapped to each other by an isomorphism such that proofs are programs

and vice versa. Moreover, objects can be realized as function evaluation strategies, and this provides a model of the

reification process. The paper explores all this and discusses the didactical relevance; especially, the reification

theories are revisited. Computer-based realizations of concepts are used as a tool to show the consistency of ideas

and the practicability of concepts.
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1. Introduction

Mathematics is a great and complex endeavor of human thought. The status and genesis of mathematical objects is still

the subject of active philosophical thought, see e.g., Shapiro (2001) for a survey of the last decades regarding the

question of whether mathematical objects are discovered or constructed. While for many years the view that they are

constructed was dominant (e.g., Ernest, 1991), a new wave of mathematical realism has emerged recently (e.g.,

Balaguer, 2017). In mathematics education, the existence of objects is often assumed without explicitly analyzing where

they come from. For example, it is commonplace to speak about multiple representations of functions, tacitly assuming

that the represented objects exist (see Thompson & Sfard, 1994).

Where do these mathematical objects come from? If they are not given in a Platonic fashion, one needs to understand

how they are constructed. Reification and procept theories (Sfard, 1991; Tall, 1991) are widely accepted approaches to

this problem. A pivotal role in these theories is played by processes that turn into objects. The notion of process is,
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however, very wide and fuzzy. It includes algorithms that can be described in a very concise way, as well as vague and

metaphorical ideas. Moreover, it remains open how the transformation of a process into an object is actually possible.

Dubinsky’s APOS theory (Arnon et al., 2014) is widely used as well. It emphasizes the view that procedures may act on

other procedures, an idea that is essential for the following exposition as well, but the role of data types in APOS theory is

not developed in such a depth as is needed for the correspondence described here.

After objects have been constructed, we use mathematical language to discuss their properties. In this view, the meaning

of language is given by referring to objects (Kripke, 1980). For example, the common meaning of the symbol π is a certain

numeric object referred to by the symbol, and + is a symbol that refers to an operation that combines two numbers

(depending on the types of objects it operates on). This referential meaning of language has a long tradition and famous

protagonists (Quine, 1974). However, at least since Wittgenstein’s philosophical investigations (Wittgenstein, 1953) and

the following language turn of philosophy (Rorty, 1967), the role of language has become central. Sfard’s commognition

theory (Sfard, 2008) emphasizes this by melting communication and thinking into one construct. But if language stands for

itself and does not need reference to objects to fix its semantics, then meaning must come from out of the language itself,

and Wittgenstein saw the language play as the source of meaning.

Having said all this, it should be clear that one can construct a dichotomy between giving either language or objects a

pivotal role. Table 1 emphasizes this dichotomy, and it already contains some pairs that will come from the theory

developed later in this paper.

Language is pivotal Objects are pivotal

Objects are constructed from language Language gets meaning by reference to objects

A single symbol is senseless, only the rules of its use in language play give it
meaning

A single symbol can be assigned meaning

Quantification is to be understood by substitution of expressions Quantification is to be understood by reference to objects

Mathematical questions are at least semi-decidable There are undecidable questions in mathematics

Countable many objects are sufficient to do mathematics There are more than countably many objects

All math can be learned from language play, therefore there is no upper limit
for large memory models

Math needs object reference and thus cannot be reduced to language

Math can be represented in programming languages based on term rewriting
Math can be represented in programming languages that allow one to
reference mathematical objects

Proofs are mathematical objects just like numbers Proofs are separate from mathematical objects

Lambda calculus Model theory

Brouwer’s intuitionism Hilbert’s formalism

Table 1. Language vs objects

Table 1 emphasizes differences between the two points of view. However, we have already met reification theories, and in

some sense, they bridge both sides by explaining how objects are constructed from processes (such as language play or

others). This point of view will be strengthened by the theory developed in the present paper. The main goal of this paper
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is to show that the Curry-Howard-Correspondence provides a clear and sound theoretical framework that ties both sides

closely together, thus resolving some apparent differences but also explaining and sharpening real differences.

The research questions that will be addressed are:

Q1: How can the reification process be modelled in a theoretically and formally precise way?

Q2: Is language play sufficient to provide all mathematical meaning?

Q3: Is reference to objects needed to do mathematics?

The methods to answer these questions come from logic and computer science. Thus, the paper will appear very

technical in some parts. The benefit is that this approach demonstrates that the theories presented are not just vague

ideas but precise notions. It is not, however, meant that humans and computers think the same way. Computers don’t

think at all; they compute. But if an idea can be turned into an algorithm that can be executed on a computer to give

exactly the desired results, then this is a proof that the notion is well-defined. As this approach is not widely used in

mathematics education, some details and explanations will be given that go beyond a classical literature review. To

compensate for this, well-known mathematical facts will be used without reference to the literature.

It seems that, up to now, there is not a single publication that discusses the Curry-Howard correspondence (short: CHC)

from an educational perspective. Of course, there are hundreds of papers in theoretical computer science and in logic,

including several books (Girard et al., 1989; Mimram, 2020; Sørensen & Urzyczyn, 2006). Moreover, there are some

discussions about the philosophical relevance: Zach (2020) puts CHC in one league with Gödel’s incompleteness

theorem and the Löwenheim-Skolem theorem. For him, the main reasons to do so are that CHC allows to normalize

(simplify) proofs because proofs become mathematical objects themselves, and that it allows strict type inference in

programming languages. Quite differently, de Queiroz (2008) emphasizes the role of CHC in the attempt to give a

meaning-by-use underpinning of language semantics.

2. Objects as basis of semantics

This short section recalls the standard approach (model theory) to the semantics in mathematical logic (Hilbert &

Ackermann, 1967; Rautenberg, 2010; Tourlakis, 2003). Semantics is defined relative to a given domain of objects or

universe of discourse. Variables are symbols that gain meaning by assignments that specify an object from the domain for

each free variable in a formula. Similarly, function symbols and predicate symbols get interpreted by functions and

relations over the domain. Universal quantification, e.g., is meant to mean that a formula is true under all assignments of

the quantified variable. This model-theoretic point of view thus requires that there are objects. As Quine has put it, an

object exists in this view if it can be the referent of a variable. That does not mean that objects need to exist in a platonistic

way, it only means that an “ontological commitment” (Quine, 1948) is necessary, but this may be relative to some

discourse or framework. The meaning of all parts of the language is then defined in terms of elements of this domain and

relations between them.

Qeios, CC-BY 4.0   ·   Article, March 13, 2024

Qeios ID: S1074V   ·   https://doi.org/10.32388/S1074V 3/15



Not only does the semantics of logical language need a precise description, but also the semantics of programming

languages. Denotational semantics is the “computer science sister” of model theory, as it uses the same idea of symbols

that refer to objects by means of an assignment (Scott & Strachey, 1971). Thus, the idea that the meaning of symbols is

given by the objects they refer to can be observed in programming languages. For example, in the Scheme programming

language (Shinn et al., 2013), a reference can be defined, e.g., by (define a 5), which lets a refer to 5 so that (+ a 1)

evaluates to 6 (the notation with the operator written before the operands needs some getting used to but minimized

ambiguities). Entering a into the language interpreter simply returns 5. And entering + returns a description of a function,

i.e., + refers to an object in the computer memory, namely the procedure that carries out additions. Similarly, = refers to a

procedure that determines if two objects are the same. In that way, all language elements (besides syntactical elements

such as the parentheses) get their meaning by reference.

3. Language-game based semantics

Wittgenstein (1953) gave birth to the idea that meaning is defined alone by the actual use of words in the language game.

This point of view is, of course, very appealing to educators because it naturally fits the way children learn their mother

tongue by playing the language game with other speakers of the language.

If this point of view is correct, then large language models from artificial intelligence can indeed understand all aspects of

language, as their only access to semantics is the observation of language use in a large corpus of text – but according to

language game theory, this is sufficient. I have argued elsewhere against this position and proposed that observation of

the language game may not be enough to cover all the logical content of language (Oldenburg, 2023). Even from a non-

technical point of view, one can see that this idea is inherently vague, as no one can observe all the uses of words in a

language. Nevertheless, this point of view is, of course, attractive from a constructivist perspective.

The semantics of programming languages can also be described in this manner, i.e., focusing on the behavior of the

language interpreter. This is done in “operational semantics” (Kahn, 1987). This allows one to describe the semantics of

languages without using the notion of reference. There are also languages that minimize the relevance of reference, e.g.,

Pure (Graef, 2017) or the Wolfram language of Mathematica (Wolfram Research, 2023). In Mathematica, e.g., the equal

sign == does not refer to any procedure that checks equalness; it is a pure symbol. Its semantics is defined in a set of

rewrite rules (Baader & Nipkow, 1998) that determine how the system transforms the input to the output.

4. Theories of reification

Several theories have investigated the relation of processes and objects in the learning process of mathematics. Sfard

(1991; 2000) proposes that students evolve from understanding mathematical concepts initially as processes and then go

on to gradually start seeing them as objects. Initially, in the learning process, students see concepts, e.g., like addition, as

a procedure to be carried out, but as they get used to this, they can encapsulate the process into a new entity; it is frozen

to become a new object, a sum. The same analysis can be carried out for many other mathematical objects that are
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mentally constructed: square roots, complex numbers, polynomials, etc.

Closely related is the theory of procepts developed by Tall (1991; 2014). A "procept" is a blend of a process and a

concept, signifying that a mathematical symbol can represent both a procedure (like an operation or a calculation) and the

abstract idea behind that procedure. A single mathematical symbol or expression can thus be understood in two ways: as

a process to be carried out and as a concept to be contemplated. Tall assumes that students initially see a mathematical

symbol only in terms of the process it represents. As their understanding grows, they start to see it as a concept as well.

Both theories deal with a developmental shift from operational (process-based) to more abstract (conceptual)

understanding. One of the differences is that Sfard describes a developmental transition from processes to objects

(reifying a process into a concept), while Tall focuses on the simultaneous duality of symbols as both processes and

concepts.

5. From lambda calculus to reification

This rather technical section shows that reification is not just a metaphor, but that it can be realized in programming

languages. This proves that it is a consistent theory. Some technical theory must be recalled first, however.

The two most fundamental models of computation are Turing machines and the lambda calculus. They have been shown

to be equivalent, and it is the content of the widely accepted Church-Turing-Hypothesis (Church, 1936; Turing, 1937; for a

modern description: Davis et al., 1994) that they describe everything that can be calculated at all. Lambda calculus is a

formal (i.e., purely syntactic) calculus that has a very simple syntax. Its expressions are of the form e f, called an

application, or λx:e, where x is a variable and e, f are valid expressions. The idea is that a lambda expression describes

an unnamed function, i.e., where in mathematics one writes x ↦ 2x, one would write λx:2x. The rules of the lambda

calculus are (see Barendregt et al., 2013):

λx. e → λy. e ′, if e is free of y, and e‘ is obtained from e by substituting x → y

(α-conversion: variables bound by λ can be renamed)

(λx. e)y → e ′, where e‘ is obtained from e by substituting x → y

(β-conversion: function application)

(λx. e)x → e (η-conversion: trivial application)

So, in principle, nothing else but lambda expressions exist. That is similar to building mathematics on top of set theory,

where only sets exist, and numbers are defined from sets. In lambda calculus, numbers are defined to be functions:

 ‘‘0‘‘ ≡ λf. λx. x , ‘‘1‘‘ ≡ λf. λx. f x , ‘‘2‘‘ ≡ λf. λx. f f x etc. (church numbers). The addition 3+4 is then carried out by 

λf. λx. ‘‘3‘‘ f (‘‘4‘‘ f x) which, when fully reduced by the three rules given above, yields the lambda expression for 7. Sets,

tuples, and all other objects of math can be created from functions as well. To make more accessible how this works, we

will realize this in a programming language.
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Lambda calculus is realized in several programming languages, historically starting with Lisp (McCarthy, 1960). Progress

in the correct understanding of the implementation of lambda calculus led to further development, and the language

Scheme is a Lisp offspring that puts the theoretical power of the lambda calculus in a very plain and applicable language

(Shinn et al., 2013). Scheme provides built-in implementations of numbers and other basic types of objects so that there is

no need to realize them with lambda expressions, although this could be done. It also extends functions to allow them to

have more than one argument (this is handy, but not necessary, neither for theory (due to a process called “currying”) nor

for practical programming, as the Haskell programming language shows). The application of a function f to arguments

a1… an is written as (f a1 an). A lambda expression has the form (lambda (x1 … xn) e) where x1..xn are the variables of

the function and e is the function body. The following example shows an application of a function that doubles its

arguments. When entering this in Scheme (following the prompt >), the system responds with the result:

> ((lambda (x) (* x 2)) 7)

14

A further convenient function is the ability to name expressions. This is not necessary for the theory but very convenient to

reduce complexity (and typing). (define a b) says that from now on a shall be a reference to b. Thus, one can write:

> (define mean (lambda (x y) (/ (+ x y) 2)))

> (define four 4)

> (mean 2 four)

3

Lambda expressions may be returned from functions, of course. The following takes a function f and builds a function that

applies it to the absolute value of the input. Note that the minus sign in the name is part of the symbol (function name),

not an operator.

> (define make-symmetric-function

    (lambda (f) (lambda (x) (if (< x 0) (f (- x)) (f x)))))

> ((make-symmetric-function sqrt) -16)

4

Next, we show how to create data objects, namely tuples, from functions. A tuple of two objects (a, b) is an object that

allows one to extract its first and its second part. Moreover, there must be a way to construct the tuple objects from their

constituents. Here is the realization in Scheme:

(define make-pair (lambda (a b)

        (lambda (n)

            (if (= n 1) a b))))

(define get-first (lambda (pair) (pair 1)))

(define get-second (lambda (pair) (pair 2)))

(define p (make-pair 17 23))
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Then (get-first p)  yields 17 and (get-second p)  yields 23.

This is a first example of reification realized in technology: The process of selecting and giving a or giving b is

encapsulated into a function, and this gives the tuple-object. When the object is used, this encapsulated object is turned

into a process again. Next, the reification process is applied to construct the procept of square roots and real numbers.

The following calculates an approximation of the square root of x by bisection of the interval from low to up, with a

precision of eps.

(define sqrt-eps

    (lambda (x low up eps)

        (let ((m (/ (+ up low) 2)))

            (if (< (- up low) eps)

                m

                (if (> (expt m 2) x)

                    (sqrt-eps x low m eps)

                    (sqrt-eps x m up eps)

                    )))))

Then (sqrt-eps 5 0 5 0.001) yields 2+3867/16384 , i.e., it calculates √5 from the interval [0, 5] up to precision 0.001. Note

that the result is a rational number. By specifying a smaller eps, one can calculate better approximations, but, of course,

none of these approximations is the real number √5. But encapsulating this calculation process, one gets an object that

really is the real number in the sense of computational real numbers (Weihrauch, 2000).

(define Nsqrt

    (lambda (x)

        (lambda (eps)

            (sqrt-eps x 0 (+ 1 x) eps))))

(define sqrt2 (Nsqrt 2))

(define sqrt3 (Nsqrt 3))

> (sqrt2 0.0001)

1+27143/65536

The point here is that one really can say that sqrt3 is √3 as an object created from the process. To show that it is an

object, one needs to exhibit how operations with these objects are performed. Here is summation:

(define Nadd

    (lambda (x y)

        (lambda (eps)(+ (x (/ eps 2)) (y (/ eps 2))))))
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(define sqrt2-plus-sqrt3 (Nadd sqrt2 sqrt3))

Then (sqrt2-plus-sqrt3 0.0001)  yields 3+19167/131072

The result of Nadd is again an object of the same kind as sqrt2  or sqrt3 , which when called with a value for eps  gives a

rational approximation of the sum. Thus, this example shows a full reification process, including encapsulating a process

and evoking the process again on demand. The only thing missing from this is the symbolic level, but this may be added if

the functions are defined in a way that gives symbolic descriptions when the required precision is e.g., negative. This

requires new definitions, now called Ssqrt  and Sadd.

(define Ssqrt

    (lambda (x)

        (lambda (eps)

            (if (< eps 0)

                (list 'Ssqrt x)

                (sqrt-eps x 0 (+ 1 x) eps)))))

(define Sadd

    (lambda (x y)

        (lambda (eps)

            (if (< eps 0)

                (list 'Sadd (x -1) (y -1))

                (+ (x (/ eps 2)) (y (/ eps 2)))))))

(define ssum25 (Sadd (Ssqrt 2) (Ssqrt 5)))

> (list (ssum25 -1) '= (ssum25 0.001))

'((Sadd (Ssqrt 2) (Ssqrt 5)) = 3+5325/8192)

Summing up, the examples given in this section show that computational processes can indeed be frozen to form objects

and that the processes can later on be evoked when needed. The crucial ingredient in this is functional abstractions,

which leaves an expression unevaluated. This is like students that shall not carry out 2*13*5 immediately (starting from

the left) but view it as an unevaluated expression that can be rearranged to get 2*5*13 which is easier to calculate – if a

result is needed.

6. Curry-Howard correspondence

The lambda calculus is too powerful in a sense (as there are now restrictions on what applications can be written down)

and allows formulating paradoxical things. Since all objects are functions, it is hard to tell functions that shall represent

numbers apart from functions that represent sets etc. The solution is (not accidentally) the same that cures naïve set

theory, which was plagued by Russel’s antinomy, namely, to give types. An extensive description of typed lambda
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calculus is given by Barendregt et al. (2013).

The usual notation is e:T to say that e is an expression of type T. Types may be thought of as somewhat similar to sets,

and e:T to be like e ∈ T. However, expressions are elements of a formal language, so there are only countably many

expressions of a given type, while sets may be much bigger. The type A → B of a function means that the function maps

elements of type A to elements of type B. Already this example shows that the set of types must be richer than just basic

types like integers, floats, character strings, and arrays available in many programming languages. Especially, one needs

the following type constructors: If A, B are types, then A × B is the type of tuples (a, b) where a:A, b:B and A + B is the

type of elements that are either of type A or of type B.

Assume f:A → B and x:A, then f(x):B. Taking only the “type part” of this statement, one has: Assume A → B and A, then 

B. That is, types can be seen as propositions and that programs (lambda expressions) of that type exist can be seen as

proofs of these propositions. This is the famous Curry-Howard Correspondence (CHC), see Curry & Feys (1958), Girard

et al. (1989), Mimram (2020), and Sørensen & Urzyczyn (2006). The CHC is given in table 2.

Lambda calculus Logic

Expression Proof

Type Proposition

Function type A → B Implication A → B

Product type A × B Conjunction A ∧ B

Sum type A + B Disjunction A ∨ B

Empty Type, Unit type False, true

Universal quantification Dependent type

Program reduction by calculus rules Proof simplification/normalization

Application of program to specific input
Apply/specialize proposition to an
example

Continuation Negation

Table 2. The Curry-Howard-Correspondence

The original CHC regarded only intuitionistic propositional logic. The extension to dependent types allowed the inclusion

of the quantifiers of intuitionistic first-order predicate logic. Intuitionistic logic is constructive logic (Brouwer, 1981), which

means that only those objects exist that can be constructed by an algorithm (note that this has nothing to do with

epistemic constructivism as it extends objective truth even beyond humans, namely to machines, rather than restricting it).

CHC brings out the constructive nature of intuitionistic logic clearly; one can say that it exhibits the computational content

of a logical proposition. Consider a:A,  a ′ :A and b:B. Hence, a, a ′ prove the same proposition. The existence of a can be

seen as a witness of the truth of A and there may be more than one witness: All expressions of the same type prove the

same proposition. Applying the rules of lambda calculus gives a simplified proof (normalization). A wrong proposition

cannot have a proof; thus, falsity is the empty type. To prove A ∧ B, one needs a proof of \(A\\)and a proof of B, thus one

has to have an element of type A × B. A function f:A → B takes a proof of A as input and transforms it to a proof of B, thus
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it is an implication.

The main drawback of intuitionistic logic is that the law of excluded middle is not true: A ∨ ¬A may not be true because

neither A nor ¬A may be provable (recall Gödel’s results), and hence the method of proof by contradiction is not

considered valid.

The extension to non-intuitionistic logic was discovered by Parigot (1992). He discovered that the non-local control-flow

operations, called continuations, that have been investigated in computer science for decades (and are part of the

Scheme programming language), extend the correspondence to classical logic. The technical details are very difficult, but

for our purposes, we only need an intuitive understanding. Consider that you are investigating a proposition A of which

you don’t know if it is true. When you go on hypothetically assuming it is true and drawing conclusions and finally discover

that you get a contradiction, then you must go back to the point where you set the hypothesis that A is true and then go on

knowing that ¬A is true. Thus, one has to jump non-locally in the proof text – and this is what continuations do (they

abstract over the future of a computation).

To sum up, proofs and programs (expressions in the typed lambda calculus) are in a 1:1 correspondence. Every proof

can be read as a program, and every program can be seen as a proof. Thus, the intellectual activities to find proofs and to

find programs should correspond, although the individual cognitive processes in setting up proofs and programs may

differ. Yet it is a remarkable insight that computer science and mathematics developed independently with exactly the

same structures. The CHC was not constructed but discovered!

7. A possible resolution of the language-objects duality

By now, a possible resolution of the language-object duality made in table 1 can be given by simply appending table 1 and

table 2 to form a consistent theory: CHC bridges the gap by showing that differently looking things are indeed the same.

As explained in section 2, the semantics of mathematical logic, and thus of standard proof theory, rests on the existence

of object domains, and meaning comes from reference to these objects. Consider especially universal quantification 

∀x:A(x). This is understood to mean that A(x) holds, whatever element of the domain x refers to. There has been a second

interpretation advocated by Ruth Marcus (for a discussion, see Hand, 2007), namely that the sentence A(x) holds,

whatever expression describing an element is inserted in the placeholder. At first sight, these two things seem to be

different because there are domains with uncountably many objects, but there are only countably many expressions in

any language. However, it was already settled by the Skolem-Löwenheim theorem within model theory that this difference

may not be relevant, at least for first-order predicate logic. The CHC framework shows both interpretations to be

equivalent (restricted to the logics covered) in the sense that they yield the same logical results. It does not mean, of

course, that argumentations on both sides are equally easy to understand for humans and hence, one or the other may

have specific advantages.

On the language side, equality of a, b means that a can be substituted for b (and vice versa) everywhere without changing
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the value of expressions (this is exactly how Leibniz defined identity). On the object side, a = b means that both refer to

the same object. Again, by benefit of CHC, both views are isomorphic, and hence one can choose the view by

convenience depending on the situation. At this point, the importance of type theory comes in again. Consider the simple

true formula 4(x + 1) = 4x + 4. Hence, one can substitute in the equation √4x + 4 = 12 to get the equivalent √4(x + 1) = 12,

which can be further transformed to √x + 1 = 6. But what about the sentence “4(x + 1) is factored”? After substitution, one

gets “4x + 4 is factored”. Type theory clarifies the situation: When expressions are considered to have the type of real

numbers, then 4(x + 1):R = 4x + 4:R, but over the type of expressions E, one has 4(x + 1):E ≠ 4x + 4:E.

Taken together, CHC bridges “meaning by use” and “meaning by reference”. Regarding proof theory, similar ideas have

been formulated by de Queiroz (2008), but the use in general mathematics and in mathematics education is new.

Both sides of the two tables fit together according to CHC. However, one may see reification as another band that ties

both sides together: From the process of language use, a domain of objects is reified that enables a model-theoretic

semantics that is equivalent to the process semantics that the reification process started from. And, conversely, one may

start with already (mentally) constructed objects and try to understand the computational content. On the language side,

substitution and its properties are essential for meaning and especially identity (recall Leibniz’s definition of identity), and

the same holds true on the object side because the primary feature needed to qualify as an object is that questions of

identity are clarified (“No entity without identity,” Quine, 1960).

8. Didactical relevance

An explicit teaching of the CHC is only possible at the university level, where it can be justified as an intellectual

masterpiece. For mathematicians, CHC can have direct importance because proof assistant systems (such as Lean) and

automatic provers are increasingly used in mathematics research, and most of them are based on CHC. For high schools

and for universities, the theory may, however, have indirect consequences.

First of all, a scientific discipline should be clear about the nature of the things it investigates. Mathematics is often

characterized by its deductive method of proofs, but CHC tells us that – with the same right – it could be characterized by

its constructive method of algorithms. Proving and programming lead to the same results and are thus related, and they

pose the same intellectual challenges. It is often said that an important goal of teaching mathematics at all levels is to

show an authentic picture of what mathematics really is. As the CHC has the power to change the way professional

mathematicians work, it obviously changes what mathematics is and what the role of logic and programming is within

mathematics. Therefore, e.g., teacher students should have an opportunity to get an idea about this.

CHC implies that if somebody feels that proving is more difficult than programming (or vice versa), this must be due to

different acquaintance with the notation (or with the theory of the domain, as proving in algebra is different from proving in

calculus), but not with the intrinsic complexity of the problem.

The theory clearly exhibits the power of giving types to expressions. Type judgements are propositions and carry
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essential information. Declaring types is stating propositions. The theory therefore suggests that typing should be done

with care and that students should be introduced to using typing as a tool to clarify thinking. It seems reasonable that even

in elementary mathematics, clear definitions of types should be helpful. For example, Weigand & Oldenburg (2023) found

that many students mix up operations (such as 
¯
z for the complex conjugate of a number) and attributes (e.g., the attribute

of being a vector 
→v). It may help them when types are declared by standard notation, not by rules for attributes that are

domain specific. It seems also reasonable that the famous professor-student type task (Rosnick & Clement, 1980) may

lead to fewer reversal errors when given as “At a university there are P :N professors and S :N students….” (assuming, of

course, that this is not the first time students see type declarations). Moreover, in geometry, there is a distinction between

a side of an object and the length of this side. This can concisely be expressed by type declarations – and the types

determine what operations on the objects are possible. One might object that the same can be achieved by set-theoretic

declarations, e.g. a ∈ Q, However, this is cognitively more demanding than a:Q because it requires the set of all rational

numbers to be constructed and because a refers to an element of this huge set (it is essential to understand this reference

relation because not the variable a is an element in the set of rational numbers but the object that it refers to by means of

some assignment). Let's shift to another domain to make the argument clearer: Assume your neighbor has an animal

called Snoopy and you know what a dog is, i.e., you recognize a dog when you see one. Then you can certainly assert the

type judgement Snoopy:Dog. Compare this to Snoopy ∈ Dogs. This set-theoretic form requires that you form the set of all

dogs, which is a cognitive monster: Does it include only living dogs or all dogs, even those that will be born in the future?

Does it include toy dogs or paintings of dogs? In contrast, the type declarator “:” is a formalization of “is a” in everyday

language, and its semantics is therefore much clearer.

The distinction between procedural and conceptual knowledge is used widely in mathematics education (Hiebert &

Lefevre 1986). This distinction, while often useful, is however sometimes difficult to draw (Oldenburg, 2023b). Further

questions arise when viewing proofs as the bearers of conceptual knowledge in mathematics and programs as bearers of

conceptual knowledge. Then, of course, the distinction is no longer possible.

The relevance of CHC for a deep understanding of reification has already been pointed out. CHC strengthens the general

approach, and the concrete realizations in Scheme above show that the “freezing” of processes is the central step. The

programming technique applied in section 5 is also known as “lazy evaluation,” which suggests that reification of algebraic

constructs is connected to avoiding work. How this insight can be used in teaching is yet to be explored. However, in

computer science education, there is a related and wide-spread teaching technique: E.g., if students are to learn loops,

they are first instructed to draw a picture with repeated elements by textual programming. Hence, they have to repeat a lot

of code and therefore appreciate when they are taught that writing loops greatly shortens the task. Or put the other way

round: Getting tired of repetition can pave the way for abstraction. For mathematics education, the benefits of this principle

are yet to be explored.

Coming back to the research questions posed in section 1, one can conclude that Q1 was answered in section 5. CHC

also shows that the answer to Q2 is yes, but with the restriction that full classical logic requires non-local control flow,

which extends the usual understanding of what language play is. In this sense, the answer to Q3 is that reference is not
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needed, but it makes a lot of things easier, especially when intuitionistic logic is not sufficient (e.g., as it avoids the

complexity of non-local control on the language side).

These answers to Q2 and Q3 fit well with the developmental perspective on mathematical thinking: The language

perspective is best for beginners, as there is no need to have constructed a domain of mathematical objects. By

reification, these objects can be constructed from the processes in the language and can then form the basis of a

referential understanding that makes advanced reasoning easier.

9. Conclusion

It has been argued that the Curry-Howard Correspondence, which states that programs and proofs are the same, is

connected deeply with reification theory and has further didactical consequences. Most of them are not yet fully

understood, but it seems that there is potential for better understanding of learning processes both in mathematics and in

computer science. Maybe future research can use this as a basis to further cooperation between both subjects and

research on their teaching and learning.
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