Review of: "Electron tunneling from one atom to the adjacent atom is a phenomenon that happens a lot between electrons in small dimensions"

Karim Brouzoglo

Istanbul University

Potential competing interests: No potential competing interests to declare.

First, with the increase in electric charge density, the possibility of electric charge discharge from the insulating areas of the transistor increases, and this causes damage to the transistor and its failure. This event is similar to the discharge of excess electric charge between the cloud and the ground in the phenomenon of lightning, which causes the ionization of air molecules into negative and positive ions. Secondly, with the increase of the electric charge density, the electrons may leave the range of the radius of one atom and enter the range of the neighboring atom's radius under the influence of repulsive or abduction forces, which have now increased in value. This is called tunneling in quantum physics. Electron tunneling from one atom to the adjacent atom is a phenomenon that happens a lot between electrons in small dimensions. This phenomenon is the basis of the work of some electronic components and some nanoscopes. But in nanotransistor, this phenomenon is not a useful phenomenon, because electron tunneling from one atom to the adjacent atom may continue and cause an electric current. Minimizing transistors and entering dimensions below 100 nanometers in the performance range of nanoelectronics technology, although it has many advantages, but it faces various challenges. Designing, manufacturing, developing and using products whose sizes range to 1nm 100 are called nanoelectronics. In fact, we are talking about miniaturization, which allows for more contact, more activity, and an increase in area. Nano is a new scale in technologies and a new approach in all disciplines, and it gives mankind the ability to expand its involvement in the structure of materials and design and manufacture in very small dimensions and in all technologies. that the human being has already achieved, to have an effect. And this process has been taken into consideration in the production of nano transistors.

References

1. Lei Choe. (2024). Review of: “The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.”. Qeios. doi:10.32388/z3oxov.


8. Chad Allen. (2024). Review of: "FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities". Qeios. doi:10.32388/h3qk7b.


26. Afshin Rashid. (2024). Review of: "In general, an electrical nano-biosensor consists of an immobilized static biological system (based on their own built-in immobilized static biological system)". Qeios. doi:10.32388/pq6ho0.


28. Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas". Qeios. doi:10.32388/a0nexa.

29. Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas". Qeios. doi:10.32388/a0nexa.

30. Afshin Rashid. (2024). Review of: "Nano supercapacitor called (electrostatic) -- The total thickness of each &lt; a i=4&gt;electrostatic nanocapacitors only 25 nm". Qeios. doi:10.32388/247k3y.