Review of: "The miniaturization of components in microelectronic systems and circuits has caused a significant growth of this industry in recent years"

Chris Olsen

1 General Electric (New Zealand)

Potential competing interests: No potential competing interests to declare.

The miniaturization of components in microelectronic systems and circuits has caused significant growth in this industry in recent years. The speed of growth of this industry is such that, with the smaller components, the number of transistors in the unit area of each semiconductor chip and nanochip has increased. Reducing the dimensions of these components can reduce the consumption of raw materials and energy, lower the cost of these parts, and increase their speed and efficiency. Therefore, making and developing electronic tools with smaller dimensions and greater speed and efficiency has become more important day by day. Lithography is one of the most common methods for making electronic circuits. With the help of this method, structures can be made with a precision of 0.1 nm. Finding techniques with the help of which this method can be used for the industrial production of these parts (nanochips and microchips) is important.

Among the common methods of producing nanostructures, stretching, molding, phase separation, self-assembly, and electrospinning, electrospinning has many advantages such as ease of production, the possibility of industrialization, the ability to control the dimensions of the raw materials of nanochips and nanotransistors, and repeatability.

References


2. ^ Monta O,konte. (2023). Review of: "linking nanoelectronics and nanoplasmonics) many advantages such as ease of production, the possibility of industrialization, the ability to control the dimensions of the raw materials of nanochips and nanotransistors.". Qeios. doi:10.32388/r9g095.


circuits (positive and negative)". Qeios. doi:10.32388/jreu5m.


8. Afshin Rashid. (2023). Review of: "Propagation of Oligophenylene vanillin nanowires by focused ion beam (FIB) nanolithography method (below 1 \cdot \cdot nm - 1 \cdot \cdot nm range)". Qeios. doi:10.32388/whhfa8.


