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This paper is an endeavor to discuss some properties of zero-divisor graphs of the ring Z,, the ring of integers modulo n. The
zero divisor graph of a commutative ring R, is an undirected graph whose vertices are the nonzero zero-divisors of R, where
two distinct vertices are adjacent if their product is zero. The zero-divisor graph of R is denoted by I'( R). We discussed
I'(Z,)'s by the attributes of completeness, k-partite structure, complete k-partite structure, regularity, chordality,

v — B perfectness, simplicial vertices. The clique number for arbitrary I'(Z,,) was also found. This work also explores related
attributes of finite products I'(Z,,, x --- x Z,, ), seeking to extend certain results to the product rings. We find all

I(Z,, x---x Z,,) that are perfect. Likewise, a lower bound of clique number of I'(Z,, x Z,) was found. Later, in this paper,
we discuss some properties of the zero divisor graph of the poset D,, the set of positive divisors of a positive integer

n partially ordered by divisibility.
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1. Introduction

Zero-divisor graphs were first discussed by Beck M a5 a way to color commutative rings. They were further discussed by
Livingston and Anderson in 2l and L A zero-divisor graph of a ring R, denoted by T'(R), is a graph whose vertices are all the
zero-divisors of R. Two distinct vertices v and v are adjacent if uv = 0. Beck [ considered every element of R a vertex, with 0
sharing an edge with all other vertices. Since then, others have chosen to omit 0 from zero-divisor graphs [2, 3, 4, 5]. For our

purposes, we omit O so that the vertex set of I'(Z,,) denoted by Z D(Z,,) will only be the non-zero zero-divisors.

In the first section, we explore a concept explored by Smith [8] called type graphs. In [ type graphs were used to find all perfect
T'(Z,). We extended the notion of type graphs for I'(Z,, X --- x Zy, ) to find all perfect zero-divisor graphs of such products,
where nq,ng, - - -, ny, are positive integers and I'(Z,, x - -- X Z,,) is the direct product of Z}, s, 1 < i < k. We then move on to
various properties of I'(Z,) and I'(Z,, X - - X Zp, ). In the last section, we explore zero divisor graphs of the poset D,, the set of
positive divisors of a positive integer n partially ordered by divisibility and we catalog them in a similar way. Zero divisor graph

of poset is studied in [51 el 71,

2. Type Graphs

When we consider zero-divisor graphs of I'(Z,,), it is useful to consider the type graphs of these rings. A type graph has vertices
of T, where a is a factor of n that is neither 1 nor 0. The set of all such T, forms a partition of the vertex set of I'(Z,) where
T, = {& € ZD(Z,)|gcf(z,n) = a}. This concept was shown by Smith £l where the type graph was used to find all perfect
I'(Z,). Smith used the notation I'”(Z,) to denote the type graph. In that paper, four key observations were shown to be true

regarding the type graphs on Z, . In this section, we modify the definition of type graph to fit the zero divisor graph of the finite
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direct product Zy,, X Zn, X + -+ X Zn,, n1,M2,- - -7t being k many positive integers. Additionally, we show these observations to
be true over this type graph as well. We then use analogues of some theorems from [4 to characterize the perfectness of

T(Zny X Ly X -+ X Ly,,).
The following are two important theorems from 41,

Theorem 2.1. (Smith's Main Theorem). 41 A graph I'(Z,,) is perfect iff n is of one of the following forms:

1.n = p® for prime p and positive integer a.
2.n = p°q® for distinct primes p, q and positive integers a, b.
3.n = p®qr for distinct primes p, g,  and positive integer a.

4. n = pqrs for distinct primes p, q, T, s.

Theorem 2.2. (Simth's Theorem 4.1). 1 T(Z, ) is perfect iff its type graph T'T (Z, ) is perfect.

Definition 2.3. (Type graph of Z, X Zp, X ---XxZy,). The type graph of Zn, X Zn, X -+ X Ly, denoted by
TT(Zny X Zny X -+ X Ly,) has a vertex set of the type classes T(z1,22, --,zr) Where (z1,z2,-,zx) # (0,0,--+,0) nor
(1,1,---,1),and z; is a divisor of n;, 1, or O.

T(z1, 22, -, xx) = {(a1,a2,---,ax) | |a;i € Zy, /0 and gcf(a;,n;) = z;0ra; = 0if x; = 0 }. Arbitrary T'(z1, @2, - - -, k) shares an
edge with arbitrary T (y1,y2, - - -, &) iff z;y; = 0 for all i.

Smith 4 gave the following four observations for the type graph of I'(Z,, ).

Theorem 2.4. Each vertex of I'(Z,,) is in exactly one type class.

Theorem 2.5. Arbitrary distinct vertices T,, and T, share an edge inT'T (Z,) iff each a € T, shares an edge with each b € T, inT\(Z,).

Theorem 2.6. Arbitrary distinct vertices T, and T, don't share an edge in T'T(Z,) iff each a € T, doesn't share an edge with each

b e T,inT(Zy,).

Theorem 2.7. InT'(Z,,) consider arbitrary a and b in the same type class. An arbitrary vertex c inI'(Z,,) shares an edge with b iff it shares

an edge with a also.
Following are the four analogues to the above results for I'7(Z,, X Z,, X - -+ X Zy,).
Theorem 2.8. Each vertex of I'(Zn, X Zn, X - -+ X Ly, ) is in exactly one type class.

Theorem 29. Arbitrary distinct vertices T, =T(z1,z2,---,@x) and Ty, =T(y1,y2,---,yx) share an edge in

TT(Zpy X Zny X -+ X Zy,) iffeach a € T, shares an edge with eachb € T, inT(Zn, X Ly, X +++ X Ly,).

Theorem 2.10. Arbitrary distinct vertices T, = T(x1,%2,---,xx) and T, = T(y1,y2,---,yr) don't share an edge in

1"T(Zn1 X Ly X -+ X Ly,) iffeach a € T, doesn't share an edge witheachb € T, inT(Zn, X Zpy X - -+ X Lnp,).

Theorem 2.11. In T'(Zy,, X Zp, X - -+ X Zy, ) consider arbitrary a = (ay,az2,---,ax) and b = (by, by, - - -, by) in the same type class

T(t1,t2,- - -, t). An arbitrary vertex c = (c1,cz, - - -, cx) shares an edge with b iff it shares an edge with a also.

Proof. Follows from Theorem 2.5 and 2.6. [J

Next, we have the following theorem:
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Theorem 2.12. T'(Zy, X Zn, X -+ X Zy,) is perfect iff its type graph TT (Z, X Zy, % - -+ x Zy, ) is perfect.
To show this, we will use the following three theorems, whose proofs are analogous to the corresponding proofs in 1,

Theorem 2.13. Given arbitrary hole or antihole H of length greater than 4 in T'(Zyn, X Zy, X - -+ X Zy,), every vertex in H belongs to a

different type class.

Theorem 2.14. Let there be a hole or antihole H length 1 >4 in T(Zy X Zyp, X --- X Zy,). Then the type graph

I‘T(Zn1 X Ly X -+ X Ly, ) must also contain a hole or antihole length [.

Theorem 2.15. Let there be a hole or antihole H length 1 > 4 in the type class TT(Zy, x Zy, % «++ x Zn,,). Then the graph

T(Zn, X Ly, % -+ X ZLy,) must also contain a hole or antihole length I.
Using these theorems, now we can establish the following proof of Theorem 2.12.

Proof. The proof is analogous to the proof in 4. O

Now that we know perfectness in the type graph implies perfectness in the zero-divisor graph, it is possible to find all such
perfect I'(Zy, X Zy, X - -+ X Zy, ). As it turns out, for both I'7(Z,) and T (Z,,, X Zy, X - -+ X Zy, ), we can exchange the primes
of each n;, and as long as the form of the primes (the amount of distinct primes and the power of each prime) stays the same, the
type graph will be isomorphic. To illustrate this, consider FT(sz ¢ X Zy) where p, g are prime. This type graph is isomorphic to
I'T(Z,2, x Z4) where r,s,t are prime, even if the value of the primes are different. We will use this to find all perfect

T(Zny X Ly X -+ X Lyy,,).
Theorem 2.16. Consider some ' (Z, ) and ' (Zy,) such thatn. = p{*p3?* - - - p* andm = ¢{* qy* - - - ¢;*. Then T'T (Zy,) = T7 (Zp,).

Proof. Consider arbitrary vertex u in T'7(Z,). u is a factor of n, so we can write u = py'p;?- - - p;*. Note that 0 < z; < a, Vi.
Define a function f:I'7(Z,) — I'T(Zn) as f(u) = f(p'py* - P;") = 4;' g5 ---q,*. Since n and m both have the same

amount of prime factors, and each corresponding prime has the same power «;, the result follows. (J

Theorem 2.17. Consider I‘T(Zn] X+ -+ X Ln,) and l“T(Zml X +++ X L, ) where the prime factorization of n; has the same form as
m; for each i. That is, n; and m; have the same amount of prime factors and the same power for each prime. Then
TT(Zny X -+ X Zny) 2T (L) X v+ X L)

Proof. Take arbitrary n;.

i, i

Denote the prime factorization of n; = p;3' - - p; 2/ where j; is the amount of prime of n;. Likewise, m; = gt -+ g% Note
. Ji : ;

Ji

that the only difference between these factorizations is the values of the primes that are used. The powers and the number of
distinct primes in the respective factorizations are the same. Consider arbitrary (u1,- - -,ux) € I‘T(Zn1 X +++ X Ln,).Eachu;isa
factor of n; or 0. We can write u; = pffl’l e pf]:’ where 0 < z;; < o,. Note that if u; is 1, each z;; is 0 and if u; is 0, x;; = «; for
every l.

Defining a function f : T7(Zy, x -+ X Zy,) = T'T(Zm, x +++ X Zp,) in a natural way component-wise, by using the bijective

function in the proof of the last theorem we get the desired bijection. (J
Theorem 2.18.T'7(Z,,, x -+ x Zy, ) is isomorphic to TT(Z,,...,,) if all ;s are mutually co-prime.
Proof. The proof follows by Chinese Remainder theorem. (]

The next theorem will show how we can characterize the perfectness of I'(Z,, x --- x Z,, ). Because now by the above three
theorems, without loss of generality, we can simply choose primes that will make the n;'s mutually co-prime. Then we know the

type graph will be isomorphic to I'(Z,, ) where n is the product of all such co-prime n;. So, we have the following theorem.
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Theorem 2.19. I'(Z,,, X Zy, - - - Zy,) is perfect iff it is possible to find mutually coprime positive integers my,ms - - - my, so that each

m; has same amount of prime factors with same exponent in its prime factorization as that in n; and T'(Zu,m,...m, ) is perfect.

Example 2.20. For example, '(Z,2, x Zy,) is perfect because T'(Z,2y.) is perfect as shown by 5 Also note, no product with a dimension

greater than four can be perfect. I'(Zy, x - -+ x Zp,) is not perfect since no I'(Zy, ....,,, ) is perfect as shown by 4]

3. Some properties of I'(Z,,)

In this section, we characterize I'(Z,) by various qualities such as completeness, cordiality and clique number. A helpful
construction used is the strong type graph. We define the strong type graph as the type graph with self-loops. We normally do
not consider self-loops, in zero-divisor graphs and type graphs, but in the strong type graph, a vertex has a loop at it if it
annihilates itself. We denote the strong type graph of I'(Z,,) as T'%(Z,).

Another construction used commonly in this section is n*. Consider some I'(Z,). For n =p]'py?---pa",

n* = py'py* - py where §; = [ 2],
Lemma 3.1. Two arbitrary vertices u and v in I'(Z,,) that are both in the same type class T; share an edge iff T; has a self-loop in the

strong type graph.

Proof. Let T; have a self-loop. Then i? = 0. Since every u,v € T; are multiples of 4, u and v will share an edge.

Conversely, let T; does not have a self-loop. Take arbitrary v and v in T;. According to the definition of type class, © and v are

some multiple of i where gcf(u,n) =4 and likewise for v. We can write v = ai and v = bi where gcf(a,n/i) =1 and
abi®

gef(b,n/i) = 1. Assume u and v share an edge. Then uv = cn, abi* = cn where ¢ is a natural number. So £ = c. Since T; does

not have a self-loop, i? # 0 which means n has a factor that is not a factor of 2. Let this factor be called d. Let g represent the

abg

, 5 =¢ This is a contradiction since a, b and g do not share a

2
simplified form of the fraction = where d is not 1. By substitution
factor with n/4, so cannot cancel the d out of the denominator. Therefore, the expression cannot be equal to ¢, a natural number.

So, v and v do not share an edge. [J

As a result, we have

Theorem 3.2.T'(Z,: ) is complete where p is prime.

Theorem 3.3.T'(Z,= ) where p is prime and & > 3 is not complete.

Proof.Letz > 3.
Case 1: p = 2: p and 3p are distinct non-zero zero-divisors that are not connected.
Case 2: p # 2: pand 2p are distinct non-zero zero-divisors that are not connected. [

Theorem 3.4.T'(Z,,), where n > 2 is complete iff n = p?.

Proof. Let I'(Z,,) be complete. Assume n has two or more distinct prime factors. Label the smallest such factor by p. Now choose
another one as q. p is a zero divisor and shares an edge with n/p. Since p and g are both prime factors of n, pg < n. Also, since
p < g, p* < pq. So p* < pg < n which means p? is non-zero and distinct from p. p? shares an edge with n/p so p? is a distinct
zero-divisor that does not share an edge with p, making I'(Z, ) not complete. The converse follows by the above two Theorems.

O

Theorem 3.5. T'(Z,,) is k-partite if T'5(Z,,) is k-partite.
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Proof. Let T'%(Z,,) be k-partite. Then I'(Z,,) can be partitioned into k disjoint subsets S;, S, - -, Sy such that no vertex in the
same set share an edge. Partition I'(Z,,) into a similar grouping Q1, Q>, - - -, Qr Where u € Q; iff u € T,, € S;. Consider arbitrary

w and v, vertices of I'(Z,,) that are in the same partitioned set Q;.

Case 1: w and v are in different type classes.
Call such classes T;, and T,,. Then since u and v are both in @;, T,, and T}, are both in .S; which means T,, does not share an edge

with T,. So, by 4l 4, and v do not share an edge.

Case 2: u and v are in the same type class.
Call this class T,,. Then since I'%(Z,) is k-partite, T,, does not form a loop with itself. Hence, by Lemma 3.1, u and v do not share

an edge. [
Theorem 3.6. T'(Z,,) is complete k-partite if T'(Z, ) is complete k-partite.

Proof. Let I'5(Z,,) be complete k-partite. Then by the above theorem T'(Z,) is k-partite. Using the partition used in the above
Theorem, if we let T'%(Z,) be partitioned into k disjoint subsets S;, Sy, - - -, S, then T'(Z,) can be partitioned into k disjoint
subsets Q1,Q2, - - -, Qk, Where arbitrary vertex of I'(Z,,) is in Q; if its type class is in .S;. Consider arbitrary vertices in I'(Z,),

u and v, that are not in the same ;. Then » and v must be in different type classes in two different .S;'s. Call these classes

T, and T,,. Since '(Z,,) is complete k-partite, T, and T, share an edge. Then u and v share an edge by [ o

Remark 3.7. The converse of Theorem 3.5 and 3.6 is not always true. If the zero-divisor graph is k-partite, but has a self-annihilating
vertex, the strong type graph will have a self-loop, which prevents it from being k-partite. For example, I'(Zq) is complete bi-partite,

whereas I'%(Zy) is not.
Theorem 3.8. If n is square free, I'(Z,,) is k-partite, where k is the number of distinct prime factors of n.

Proof. Consider the strong type graph I'S(Z,). Let, n = pips - - - p;. Partition the graph into k sets S;, Sy, - -, Sy. A vertex T, in
the strong type graph is in S; if gcf(a,p;) = 1 and gef(a,pr) > 1 forall h < 3.

We now claim that S;, S, - - -, S covers all the vertices of I'*(Z,).

Assume there is a 7, that is not in any S;. Since T, is a vertex, a must be a factor of n that is also less than n. So @ must omit at
least one p;. So gcf(a,p;) = 1. Since T, is not in any S;, there must exist some h < 7 such that gcf(a,psr) = 1. Choose the
smallest index h of such pj, . Then T, must be in S}, which is a contradiction.

Our next claim is any two vertices v and v in the same partition do not share an edge.

Consider arbitrary v and v in S;. Both u and v do not contain p; so they do not share an edge. So the strong type graph is k-
partite.

By Theorem 3.5, '(Zy, p,.. ., ) is k-partite. O]

Lemma 3.9. Arbitrary type class T, inT'T (Z,,) contains only one element iff a = 5
Proof. Let T, € T'(Z,) have a type class that has only one element. Assume a # % Since a is a factor of n, = f is also a factor
of n. Note that f > 3.

Consider the vertex a(f—1) of I'(Z,). The quantity (f —1) does not share any factors with f. Since af =n,
gef(a(f —1),n) = a. So a(f — 1) € T,. Also note that a < a(f — 1) < n. So a(f — 1) is a distinct vertex in 7, which is a

contradiction. Soa = %

Leta = % Then a is the only element in 7, since 2a = n.
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Corollary 3.10. Analogous to above, T,, /,, in T'7(Z,) contains exactly p — 1 elements if p is the smallest prime factor of n.
Lemma 3.11. There is at most one type class with only one element.

Proof. Assume there are two or more distinct type classes that have only one element. Call two of these classes T;, and T;,. By

Lemma39,u=v = % which is a contradiction. [J
Theorem 3.12. T'(Z,,) is k-partite if ' (Z,,) is k-partite or T'7(Z,) is k-partite and the only self-connected vertex of T'(Z,) is T'n .
2

Proof. Let T'%(Z,,) be k-partite. By Theorem 3.5, T'(Z,) is k-partite. Let I'7(Z,) be k-partite and let T'*(Z,) have only one self-

connected vertex, T'» . Consider arbitrary distinct  and v, zero divisors of I'(Z,, ), that are in the same partition.
2

Case 1: u and v are in the same type class.
By Lemma 39, T'» has only one element, so if v and v are distinct, they cannot be in T'» . Then, the type class they are in is not
2 2

self-connected, so u and v do not share an edge.

Case 2: v and v are in different type classes.
Since u and v are in the same partition, their type classes are in the same partition and do not share an edge. Thus, « and v do not

share an edge. [
Lemma 3.13. A vertex in T'(Zy,,) annihilates itself iff it is a multiple of n*.

Lemma 3.14. Consider two arbitrary vertices in I'(Zy,), u and v such that w is a factor of v. The largest clique containing v, M, has a

magnitude greater than or equal to the M, the largest clique containing u.

Proof. Take arbitrary vertices u and v in I'(Z,,). Let u be a factor of v. Every element e in M, \ u has the property eu = 0. Then

Ve € M,,ev = 0.Soa clique C exists with v and each e in M,, \ u. So, C is a click containing v magnitude of at least M,. O
Theorem 3.15. cl(I'(Z,,)) > - + k — 1 where kis the number of distinct primes having odd power in the prime factorization of n.

Proof. The multiples of n* form a clique. Call it C. An arbitrary vertex of C will be of the form an* for 1 < a < % The number of
elements in this clique is % — 1, so the clique number of the graph is at least -*- — 1. Now consider all vertices of the form
n* /g where ¢ is an arbitrary odd-power prime in the prime factorization of n. Arbitrary n* /q shares an edge with each an* in C.
Also, each n*/q; shares an edge to each other n*/gs. Since k is the number of distinct odd powered primes in the prime

factorization of n, cl(I'(Z,)) > =+ +k—1.0

Theorem 3.16. cl(I'(Z,,)) < = + k — 1 where kis the number of odd-power primes in the prime factorization of n.

n
Proof. Consider arbitrary clique C. Partition C into sets L and N where L is the set of vertices of C' that are not multiples of
n* and N is the set of vertices of C that are multiples of n*. Consider arbitrary vertex /; in L. Since /; is not a multiple of n*, there
must be some prime factor p; of n whose power in /; is less than half of its power in n. Every other /; in L must have its p; factor
with a power greater than or equal to half its power in n for it to share an edge with [;. Consider another vertex [, in L. l; must
also have a prime factor whose power is less than half its power in n, but it cannot be p;. Call it ps. So each /; in L must have a
distinct prime factor p; that has a power less than or equal to half its power in n. Let m be the number of distinct prime factors
of n. Then there can be a maximum of m many /; in L. N has a maximum size of ni — 1, so the clique number is at most
= +m-—L

Consider some ey, a vertex in L whose corresponding p;, has an even power in n. e; does not share an edge with n*. This means
the clique number is one less if n has an even-powered prime. Consider another e, that has an even p, whose power is less than

half. Then e; does not share an edge with p; n*. In general, a vertex e; whose corresponding p; has an even power does not share
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an edge with distinct vertices p;p, - - - p;_1n*. So the size of C is reduced by the number of even powered primes of n. This value
can be represented by m —k where k is the number of odd-powered primes of n. Hence, since C is arbitrary,
A(l(Z,)) < x+m—(m—k)-1.c((Z,)) < = +k-1.0

Theorem 3.17. c{(I'(Z,)) = 2+ + k— 1.

Proof. The proof follows by Theorem 3.15 and Theorem 3.16. [J

Theorem 3.18. There are no non-empty, non-complete, reqular I'(Z,,).

Proof. Consider all I'(Z,,) that are non-empty and not complete. Assume 3 some regular graph among these graphs.

Case 1: n = p® where p is prime
If z = 1, the graph is empty, and if z = 2, the graph is complete, so x > 3. Then p is a vertex that shares an edge with p — 1 many
other vertices, and p? is a vertex that shares an edge with p* — 1 many other vertices. Since the graph is regular, p — 1 = p* — 1,

thus p = p?, which means p = 1 — i.e., a contradiction.

Case2:n = p'py? - - -pam, m > 2and p; are all prime
Vertex p; shares an edge with p; — 1 many other vertices, and the vertex p, shares an edge with p, — 1 many other vertices.
Since the graph is regular, p; — 1 = ps — 1, thus p; = p which is a contradiction since p; and p, are distinct.

So the only non-empty regular graphs are complete. [J
Theorem 3.19.T'(Z,) is chordal iff n = p®, 2p or 2p?, where p is prime and z is a positive integer.

Proof. Let n = p”. Assume that I'(Z,= ) is not chordal. Then 3 a cycle C of length > 3, that has no chord. Let y be a vertex of
C that is not a multiple of n*. Then, since the power of p in y has a power strictly less than %, each neighbor must be a multiple
of n*. Then the two neighbors of y in C' share an edge which is a chord. So all vertices in C must be a multiple of n* which also

causes a chord. So I'(Z,= ) is chordal.
Letn = 2p. Then, I'(Zy,) is chordal.

Letn = 2p?. Assume I'(Zy,2) is non-chordal. Then 3 a cycle C of length > 3 that has no chord.

Let abe a vertex of C in the type class T},. Each neighbor of a must be a multiple of 2p, and therefore, is in the type class T,. Each
multiple of 2p shares an edge, so there exists a chord in C'. So there can be no vertices in the type class T}, in C.

Let b be a vertex of C' that is in the type class T5. Every neighbor of b must be in the type class 7). But there is only one element
in T} so b cannot have two distinct neighbors. So b is not a vertex of C.

So each vertex of C must be in either 7> or T5,. Then since there is only one element of 7}, and the magnitude of C is at least 4,
there are at least 3 elements of T3, in C. Those 3 elements form a triangle since each multiple of 2p annihilates each other

multiple of 2p. But C can't have a triangle since it is chord-less. This is a contradiction.
Let n not be p*, 2p or 2p>.

Casel:n = 2%pY wherey > 3,z > 1 and p is an odd prime.

Then 2%p — p¥ — 2°+1p — p¥~! isa chord-less cycle.

Case2:n = 2%pY wherez > 2,y > 1 and pis an odd prime.

Then 2p¥ — 2% — p¥ — 2%+ is a chord-less cycle.

Case 3:n = p”qY where p,q > 3 where p # gare primes and z, y are non-zero.

Then p* — ¢¥ — 2p® — 2¢Y is a chord-less cycle.
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Case 4:n = p{'py? - - - p* where k > 3 and a; is non-zero. Since k > 3,n has an odd prime factor p; .

Thenp;* — n/p;* — 2p;* — 2n/p;* is a chord-less cycle.
SoT'(Z,) is non-chordal if n is not p®, 2p or 2p*. O

Lemma 3.20. If n* # n, I'(Z,) has a simplicial vertex.

Proof. Let n* # n. Then n/n* is a vertex since n/n* shares an edge with n* which is not a multiple of n. Since every neighbor of

n/n* is a multiple of n* and any two multiples of n* share an edge, n/n* is a simplicial vertex. So I'(Z,,) has a simplicial vertex. (]

Another construction n, can be useful. It is similar to n*, but for the odd powered primes, round down instead of up. Consider

I'(Zn) wheren = p{'p,? - - - p,*. Define n, asn, = p‘flpf2 . -pfk and 8; = [%’j foralli.
Note that n,n* = nand if n is square-free, n, = 1.
Lemma 3.21. Arbitrary vertex v in T'(Zy,) is a simplicial vertex iff v € T or v € T, where g is a factor of n,.

Proof. Take arbitrary v in T'(Z,). Let v € T3. Then v only shares an edge with vertices in T}, ,. By Lemma 39, T, , has only one
element, which makes a clique. So v is simplicial.

Let v € T, where g is a factor of n,. So n, = ag where a is a positive integer. Consider some vertex h in T that shares an edge

with v. Then jg = bn for some positive integer b. Z = bn.n*. % = bn*. Then j = abn*. So j is a multiple of n* and therefore,

h is a multiple of n*. Since every multiple of n* shares an edge with every other such multiple, v is a simplicial vertex.

Conversely, let v be neither in T, nor in any T, where g is a factor of n,. Then, since v is not in any T}, v has some prime with a
power greater than half of that in n. Call that prime p, and its power in v, o, . Let the type class of v be called T;,. Consider the
type class Ty, ,, . Each vertex in T, ,, shares an edge with v. Since v £ T3, T, ,, # T},/- So by Lemma 3.9, T}, ,, has more than one
element. Since n/w has a power of p, less than that of half in n, none of the vertices in 7}, ,, share an edge with each other. So

the neighbors of v do not form a clique. Hence, v is not simplicial. (]

Theorem 3.22.I'(Z,,) has a simplicial vertex iff the prime factorization of n is not square free or n is an even greater than 2.
Proof. Let n not be square-free. Then, n* # n. So by Lemma 3.20, I'(Z,,) has a simplicial vertex.

Let n be even. Then, 2 divides n. So, by the above lemma any v € T3 is a simplicial vertex.

Let n be square free and odd. 2 is therefore not a factor of n. Then consider arbitrary vertex x. = shares an edge with both
n/x and 2n/z. 2n/z is non-zero since z is necessarily odd, and n/z and 2n/z do not share an edge since n is odd. For if

2
In _ py,2n = yz? and n = - which is a contradiction. So there are no simplicial vertices of I'(Z, ). O

I Zn
r T 2

Note: It follows by V—*l, (observation 3.2), if in I'(Z,) a vertex  is simplicial then T;, is simplicial in T (Z,,). But, not conversely. For

example, in T'7(Z;2), Ty is simplicial, where as 3 is not so in T'(Z;2).

Lemma 3.23. If n has three or more distinct prime factors then, I'(Z,) is not v — 3 perfect.

Proof. Letn = py'py? - - - pzk where k > 3. By [51, the domination number of I'(Z,,) is k. If there is a vertex cover V whose size is k,

we claim that V' must contain the vertex n/p, for every p, prime factor of n. Consider the vertex n/p, for some p, prime factor
of n. Let n/p, not be in V. Construct set C = {p,p;|1 < i < k}. Since n/p, ¢ V, every element of C is in V. C has k many
vertices, so V has at least k many vertices. Consider vertex p, . p, shares an edge with n/p, which is not covered by V, so V has

atleast k + 1 vertices. That is a contradiction since the size of V' is k. So each n/p, isin V.

Consider the type classes Ty, , T/, and T, ,, . By Lemma 3.11, there can be at most one type class with only one element. At

least two of these type classes have more than one element. Without loss of generality, let them be T,,/, and T,,,,. Since
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n/p1 and n/p, are both in V, choose different vertices in the type classes u and v. u and v share an edge since they are multiples
of n/p; and n/p, respectively, so they share an edge, but are not in V, as the size of V' is k. This is a contradiction to the

assumption that V is a vertex cover. So, I'(Z,,) is not y — 8 perfect. O
Theorem 3.24.T(Z,) isy — Bperfectifn = 23,32, p, 2p and 3p for prime p.

Proof. Let n = 23 or n = 3% . The domination number clearly equals the size of the smallest vertex cover.
Let n = p. Then both the domination number and the smallest vertex map are 0 since the graph is empty.
Let n = 2p. Then the graph is a star, so the domination number and the vertex covering numbers of any of its induced subgraphs

areboth 1. Let n = 3p. Then V' = {p, 2p} is both a minimal dominating set and a minimal vertex cover of the original graph.
Now, we will show that all other I'(Z,,) are not y — 3 perfect.

Let n = 2%,z > 4. Then 2°~! — 222 — 3. 22 i a triangle. Triangles prevent vertex covers of size 1, and by {8l the domination
number is 1, so the values do not match.
Letn = 3%,z > 3.Then 3*~! — 2. 31 — 3°~2 js a triangle that prevents vertex maps of size 1.

Letn = p®,p > 5,2 > 2. Thenp® ! —2.p* ! —3.p* ! isatriangle.
Theorem 3.25. For n = p®q, theI'(Z,,) is not domination perfect.

Casel:ip = 2.

Then p®~1q — p® — ¢ — p**! — pq is a non-induced sub-graph that cannot be covered by a vertex map size 2.

Case2:p # 2.

Then p® — p® 'q — p — 2p® g — 2p is a non-induced sub-graph that cannot be covered by a vertex map size 2. The smallest
vertex map is larger than 2 making the graph not y — S perfect.

Let n = p®¢Y, x,y > 2. The domination number is 2 by [81 Assume there is a vertex map V size 2. Consider the edges
p—p® ¢ and ¢ — p®¢¥~!. V must contain at least vertex one of each edge. By Lemma 3.1 only one type class can have only one
vertex. Consider the type classes Tpegqv1 and Tpe140 - At least one of them must contain more than one vertex. Without loss of

generality let that be T);z-15y . Then there exists some u € Tj.1,y thatis notin V. The edge p — u is not covered by V, so the size

of V is at least one more than 2 which is a contradiction.

Q1 Q2

Letn =p;'p,”--- p‘,:", k > 3. Then by Lemma 3.23, the graph is not y — § perfect.

So the only v — B graphs I'(Z,) are 2%,3%,p, 2p and 3p. O

4. Some properties of I'(Z,,, X -+ X Zp,)

In this section, we discuss some facts about I'(Z,, x --- x Zp, ). It is often possible to relate some properties of the individual
T'(Zy,) to the graph of the product. One example is that the domination number of I'(Z,, x - -- X Z,, ) has an upper and lower

bound corresponding to the domination number of each I'(Z,, ).
Theorem 4.1. Consider two arbitrary commutative rings with unity, R and S.T'(R x S) is complete iff |[R| = | S| = 2.

Proof. Consider some R and S such that |R| = |S| = 2. Since both R and S have 1, the only elements of R and S are 0 and 1,
where by 1 we denote the unity of the respective ring. Then the zero divisor graph is (0,1) — (1,0) which is complete.

Conversely, let R or S have more than 2 elements. Without loss of generality, let R have more than 2 elements. Then R has some

geios.com doi.org/10.32388/SA4X14


https://www.qeios.com/
https://doi.org/10.32388/SA4XI4

element a that is neither 1 nor 0. The graph I'(R x S) has vertices (1, 0) and (a, 0). These vertices do not share an edge because

1-a = a which is not zero. SoI'(R x S) is not complete. (]

Theorem 4.2. T'(R; X --- X Ry) where k > 2 and each R; is a commutative ring with 1. This graph is complete iff k = 2 and
|R;| = 2 forall 3.

Proof. One direction follows from the last theorem.

Consider some I'(R; x - -+ x Ry) that does not meet these criteria. If k¥ > 3, then (1,0, 1) and (1,1, 0) are two vertices that do
not share an edge. If any |R;| > 2, then R; has an element a that is not 0 or 1. Then (- -, a,- - -) does not share an edge with

(--+,1,---),where aand 1 are placed in the ¢ — ¢th entry of the respective elements. SoI'(R; x - - - X Ry) is not complete. [J
Theorem 4.3.T'(Z,, X Z,) where n,m > 2 is complete-bipartite iff n and m are prime.

Proof. Let m and n be prime. Then construct S,, and S,, such that S,, = {(z,0)|0 < z < n} and S,,, = {(0,%)|0 < y < m}.

We claim that S, U S,, = V(T'(Zy, X Zy,)).

Assume, 3 a zero divisor a = (a1, a2) that is not in S,, U S,,. Both a; and a, are non-zero. Since a is a zero-divisor, there must be
some b = (b1, by) that shares an edge with a. So a1b; = 0. Since Z,, has no non-zero divisors, and a; is not zero, b; = 0. In the
same way, we find that b, is zero. This means a is not a zero-divisor because it only shares an edge with 0. So
SpUSm = V(I(Zyn, X Zn)).

Take arbitrary u,v € S,,. Then u = (u1,0) and v = (v1,0). Since uyv; # 0, uv # (0,0) which means u and v do not share an
edge. In the same way, v and v do not share an edge if they are both in \S,,,. So u and v do not share an edge if they are in the same
partition which is the definition of bipartite.

Thus, it follows from the construction of .S,, and S,,, that I'(Z,, x Zy,) is complete bipartite.

Conversely, let I'(Z,, x Z,) be complete bipartite. Assume one or both n and m are not prime. Let the non-prime be n. Then,
there is a non-zero zero divisor of Z,. Call it k. Since I'(Z, x Z,) is complete-bipartite, the vertices of I'(Z,, x Z,,) can be
partitioned into 2 disjoint subsets such that no edges exist between two vertices in the same partition, and every pair of vertices
in different partitions share an edge. (1,0) is a zero divisor since it shares an edge with (0, 1). (k, 0) is also a zero divisor since it
also shares an edge with (0, 1). Since (k,0) does not share an edge with (1, 0), they must be in the same partition. Call it S; and
let the other partition be S,. Since k is a zero-divisor of Z,, 3k’ not necessarily distinct such that k- ¥ = 0. Then (£, 1) shares
an edge with (k,0) which means (k¥',1) € S,. Since I'(Z, x Z,) is complete-bipartite, (1,0) must share an edge with
(K, 1) since they are in opposite partitions, but their product is not 0, which is a contradiction. So both n and m must be prime.

O
Corollary &.4. From this theorem it follows that T'(Z,, x Z,) has a complete bipartite sub-graph.

One way to form this is by constructing S,, by taking all the non-zero elements in Z,, that are not zero divisors of n in the first

entry and accordingly for .S,,.

Theorem 4.5.T'(Zy, X -+ X Zy,) where Vn; > 2 and k > 2 is bipartite iff k = 2 and both n; are prime, or one n,, is prime and the

other is 4.

Proof. Let k = 2 and both n; and n, be prime. By Theorem 4.3, T'(Z,, X Z,,) is bipartite.
Let k£ = 2 and let one of n; be 4 and the other be prime. Without loss of generality, let n; = 4. Then n; is prime. Partition the
vertices into sets A and B where A is the set of all vertices of the form (a,0) where a € Z,, \ {0} and B is everything else.

Consider arbitrary, distinct elements of A, (a;,0) and (az,0). They do not share an edge. Consider all vertices in B. Assume
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Ju,v € B such that u shares an edge with v. Then, u = (u1,u2) and v = (v, v2). Note that usvs # 0, as ny is a prime. So
T(Zn, X -+ X Z,) is bipartite.

Conversely, let I'(Z,, x --- X Zj, ) be bipartite.

We first claim, that £ = 2.

Assume k > 3. Then, (1,0,0,---,0) — (0,1,0,---,0) — (0,0,1,---,0) is a triangle which cannot exist in a bipartite graph. So
k < 3.By our definition, k > 2,s0k = 2

We now claim no I'(Z,, ) can have two or more distinct zero divisors.

Assume otherwise. Call two such divisors u and v that share an edge in I'(Z,, ). Without loss of generality, let « and v be in the
first slot (so ¢ = 1). Then (u,0) — (v,0) — (0,1) is a triangle that cannot exist in a bipartite graph. The only I'(Z,, ) that has one
element is I'(Z,4). So all n; must be either 4 or prime.

Our final claim is it is not possible for both n; to be 4.

Assume otherwise. Then (2,0) —(2,2) —(0,2) is a triangle which cannot exist in a bipartite graph. So, because

T(Zn, X Ly, X -+ X Ly,) is bipartite, k = 2 and either both n; are prime, or one is 4 and the other is prime. [J
Theorem 4.6.T'(Zy, x Zy, X --- X Zp,) is k-partite where every p; is prime.

Proof. Consider some graph I'(Z,, X Zy, X -+ X Zj, ). Construct a collection of subsets S; which is the set of all vertices with a
non-zero term in the ith slot and zero in any slot less than i.
S1={(a,---.)|a € Zp,,a # 0}

Sy ={(0,a,--)|a € Zy,,a # 0}

Sy = {(0,0,---,0,a)|a € Z,,,a # 0}
No two vertices u, v from the same subset S, share an edge.
All these S; form a partition of I'(Z,, X Zy, X -+ X Zy,).

SOT(Zyp, X Zpy X -+ X Ly, ) is k-partite. (]
Theorem 4.7.T'(R; X --- X Ry,) where each R; is a commutative ring with 1 is not perfect if some I'( R;) is not perfect. (]

Proof. Let some I'(R;) be non-perfect. Then by the Strong Perfect Graph theorem, there exists an odd hole or anti-hole H of
length 5 or greater. Let H have a length [. Then we write it as, v; — va — - -+ — v;-1 — v; — v1. Then to obtain a hole or antihole of
length 5 or greater in I'(R; x --- x Ry) fill in the sth position with the vertices of H, and fill the rest in with zeros.
(0,--+,0,v1,0,---,0) — (0,---,0,v,0,---,0) —--- — (0,---,0,v;_1,0,---,0) — (0,---,0,0;,0,---,0) — (0,---,0,v1,0,- - -,0) is
a hole or antihole of odd length of 5 or greater making the graph I'(R; x - - - X Ry) non perfect. [J

Note 4.8. The converse of Theorem 34 is not true. In the graph T'(Zy X Zo X Zo X Zo X Zs), every I'(Zy) is perfect, but we find the hole
(1,1,0,0,0) — (0,0,1,1,0) — (1,0,0,0,1) — (0,1,1,0,0) — (0,0,0,1,1).

Theorem 4.9.T'(R; x - -+ X R,) where each R; is a commutative ring with 1is not regular if any I'(R;) is not empty.

Proof. Take I'(Ry X - -- X R,). Let some I'(R;) be non-empty. Consider the vertex g = (0,---,0,1,0,---,0) that has a 1 at the
i" index and O filled in all other indices. All neighbors of g must be of the form (ay,az, - - -,a;_1,0,a;11 - - -, 021, @ ), with a zero
at the ** index and any value in the other indices, not all zero. Let there be f many such vertices. Since T'(R;) is non-empty,

3k € T'(R;). Since k is a zero divisor, there must be some k' € T'(R;), not necessarily distinct, such that k£ - ¥ = 0. Consider the

vertex h = (0,---,0,k,0,---,0) with k in the i index. This vertex shares an edge with all vertices that share an edge with g. So
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h shares an edge with at least f vertices. But it also shares an edge with (1,---,1,k',1---,1) which means h shares an edge with
atleast f + 1 vertices. This means g and h have a different number of neighbors, soT'(R; X - -+ x R;) is not regular. (J

Theorem 4.10. For arbitrary rings R and S, cl(T'(R x S)) > cl(T(R)) + cl(T'(S)) + |R'||S’| where R’ and S’ are any set of self-
annihilating vertices in a maximal clique of T'(R) and T'(S).

Proof. Let C' be a maximal clique in I'(R) and D be a maximal clique in I'(S). Construct an induced sub graph
X ={(c,0),(0,d)|c € C,d € D}. X isaclique inI'(R x S) with size cl(T'(R)) + cl(T'(5)).

Now consider R/, the set of all self-annihilating vertices in C and S’, the set of all self-annihilating vertices in D. Define the
induced sub-graph Y = {(r,s)|r € R’,s € S'}. Every vertex (r,s) € Y shares an edge with every other vertex in ¥ and every
vertex in X, so X U'Y forms a clique size cl(T'(R)) + cl(T'(S)) + |R'||S’]. O

Corollary 4.11. Consider n many arbitrary rings Ry, Ra, - - - R,,. Then,

cl(T(R1 x Rz-+-Ry)) > 20, cl(T(Ry)) + Ditiigeite, a1 BUIRG 4 20t jneqie, - ny [RUBGIRL + - + | RY[|Ry| -+ | Ry |,

where each R!, is any set of self-annihilating vertices in a maximal clique in T'( R;).
Lemma 4.12. Consider I'(Zy,) for arbitrary n. There is a maximal clique M that contains all self-annihilating vertices.

Proof. Follows from Theorem 3.15 and Lemma 3.13. [J

Theorem 4.13. The clique number of T'(Z,, x Zy,) has alower bound of cl(T'(Zy,,) + cl(T'(Zm)) + (& — 1)(2 —1).

n m*

Proof. Follows from Theorem 4.10 and the proof of Theorem 3.15 and Lemma 3.13. J

Theorem &4.14. I'(Ry X - -+ X Ry,) where k > 2 and R; is a commutative ring with 1 has a simplicial vertex iff some T'(R;) has a

simplicial vertex or some |R;| = 2.

Proof. Take arbitrary I'(R; x --- x Ry). Let some I'(R;) have a simplicial vertex c. Then the vertex (1,---,1,¢,1,---,1) where

cisin the ith slot is a simplicial vertex of I'( Ry X - -+ X Ry).

Let some |R;/=2. Then (1,---,1,0,1,---,1) only shares an edge with (0,---,0,1,0,---,0) making
(1,---,1,0,1,---,1) simplicial.

Let I'(R; x -+ x Ry) have a simplicial vertex v. Also, assume all |R;| > 2 and no I'(R;) have any simplicial vertices. Consider
arbitrary v in I'(R; x - -- x Ry). Let v have 0 at some index, v = (---,0,---). Then since no | R;| = 2, there exists some vertex
a € R; thatis not 0 or 1. v then shares an edge with (0,---,0,1,0,---,0) and (0,---,0,a,0,- - -,0) and they do not share an edge.
So for v to be simplicial, it cannot contain any 0. Let v have a at some index, where a is a zero divisor in its respective I'(R;).
v=(--+,a,---). Then v shares an edge with every (0,---,0,d’,0,---,0) where a - @’ = 0 in I'(R;). a is not simplicial since no
I'(R;) have any simplicial vertex, so some neighbor (0,---,0,d’,0,---,0) will not share an edge with another neighbor of the
same form. So v is not simplicial if it has any zero-divisors in its slots. For v to be simplicial, every slot must be a non-zero, non-
zero-divisor. However, elements of that form are not vertices. So I'(R; x --- X Ry) has no simplicial vertices, which is a
contradiction. The assumption that all |R;| > 2 and no I'(R;) have any simplicial vertices is false. So some |R;| > 2 or some

T'(R;) has a simplicial vertex. (]
Theorem 4.15.T'(R; x - -- X Ry) where R; is a commutative ring with 1 is non-chordal if any T'(R;) is non-chordal.

Proof. Consider arbitrary I'(R; x ---x Ri). Then let some I'(R;) be non-chordal So there exists a cycle
a —ay—---—ap—a; greater than 3 with no chords. Then in TI'(R; X---x Ry), there is a cycle

,..,a1,--+,0) — (0, --,a,-++,0) —--- — (0,---,ay,---,0) — (0, -,a1, - - -,0), which makes it non-chordal. OJ
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Lemma 4.16.I'(R; x --- x Ry) where R; is a commutative ring with 1 and k > 2 is non-chordal if more than one |R;| > 3.

Proof.InT'(R; x - -+ X Ry),let two or more |R;| > 3. Without loss of generality, let the first two slots be the R; with a magnitude
greater than or equal to 3. Then (1,0,---,0) — (0,1,---,0) — (a,0,---,0) — (0,b,---,0) where a is a non-trivial element of

R; and b is a non-trivial element of R, is a cycle with no chord. SoT'(Ry X --- X R}) is non-chordal. [J
Lemma 4.17.T'(Ry X - -+ X Ry) where R; is a commutative ring with 1is non-chordal if k > 4.

Proof. Let k > 4. Then (1,1,0,0,---,0) - (0,0,1,1,---,0) — (1,0,0,0,---,0) — (0,0,0,1,---,0) is a chord-less cycle. So

T'(Ry x --- x Ry) isnon-chordal. O
Lemma 4.18.T'(Z,, X Zn, X Zy,) where at least one n; > 2 is non-chordal.

Proof. Without loss of generality, let n3 > 2. Then,

(1,0,0) — (0,0,2) — (1,1,0) — (0,0,1) is a chord-less cycle. J

Theorem 4.19. The only chordal T(Zy, X Zp, X -+ X Zy,) where n; >2 and k> 2 are T'(Zy x Zy), T'\(Zy x sz) and

F(Zz X Zz X Zg)

Proof. Consider I'(Z, x Z,). Since I'(Z,) has no vertices, the only vertices of I'(Z; x Z,) are (1,0) or of the form (0, ) where

0 < z < p. So the graph is a star making it chordal.

Consider I'(Zy x Z,»). Assume that T'(Z; x Z,2) is non-chordal. Then there exists a cycle C length greater than 3 that has no
chord. Let v be an arbitrary vertex in C.

Let v have a multiple of p as its second entry, v = (a, bp). Then every vertex that is not a neighbor of v in C' must have a non-zero
non-multiple of p as its second element. Therefore, both neighbors of v must have 0 as their second element so that they share
an edge with their other neighbor. So both neighbors of v are (1,0). We cannot repeat vertices so v cannot have a multiple of p as
its second element. That means the only possible vertices in C are (1,0) and (0,b) where b is a non-zero non-multiple of p. A
cycle of size 4 or greater cannot be constructed out of these vertices since we cannot write (1,0) more than once and a vertex of

such form (0, b) does not share an edge with a vertex of the same form. C' cannot be constructed, so I'(Z; x Z,) is chordal.

Consider I'(Zy X Zy X Zjy). The graph of I'(Zy x Zs x Z3) is shown below and is chordal.

)

|
(1, 0, 0)
v/
(0, 1,0) — (0, 0, 1)
/ \
(1,0, 1) (1,1, 0)

—_

0, 1,

N

To prove the converse, let's assume the opposite. Let there be a chordal I'(Z,,, X Zn, X - -+ X Zy, ) not listed. By Lemma 4.16, only
one n; can be greater than 2. By Lemma 4.17, k < 3. By Theorem 4.15, if any n; are non-chordal, I'(Z,, X Zy, X - -+ X Zy, ) will be

non-chordal. So every n; must be p®, 2p, or 2p? which was shown by Theorem 3.19.
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So the only possible T(Z, X Zp, X -+ X Zy,) are T[(Zy X Zy), T(Zy X ZLap), T(Za X ZLay), T(Zy X Ly X Ly ),

T(Zy X Zy X Zp) andT(Zy X Zy X Zyy2).

InT(Zy x Zy ) where z > 3 and p s prime, (1,p*~!) — (0, (p — 1)p) — (1,0) — (0, p) is a chord-less cycle.
InT(Zy x Zyp) wherep > 3 isaprime, (1,0) — (0,4) — (1,p) — (0, 2) is a chord-less cycle.

InT(Zy x Zy,2) wherep > 3 isaprime, (1,2p) — (0,p) — (1,4p) — (0, p?) is a chord-less cycle.

By Lemma 4.17, T'(Za X Zy X Ziye ), T(Zy X Zy X Zap) and T'(Zy x Zy X Lo, ) are all non-chordal where p > 3.

So there are no other chordal I'(Zy, X Zg, X - -+ X Zy,).O

5. Zero divisor graph of the poset D,,

Zero divisor graph of a poset has been studied in [51 16 7 we always have the Clique number of the zero-divisor graph of a ring
that does not exceed the Chromatic number of that. Beck conjectured that for an arbitrary ring R, they are the same. But
Anderson and Naseer 2 have shown that this is not the case in general, namely, they presented an example of a commutative
local ring R with 32 elements for which Chromatic number is strictly bigger than the clique number. In £l Nimbhorkar,
Wasadikar and DeMeyer have shown that Beck's conjecture holds for meet-semilattices with 0, i.e., commutative semigroups
with 0 in which each element is idempotent. In fact, it is valid for a much wider class of relational structures, namely for partially
ordered sets (posets, briefly) with 0. Now, to any poset (P, <), with a least element 0 we can assign the graph G as follows: its
vertices are the nonzero zero divisors of P, where a nonzero = € P is a called a zero divisor if there exists a non-zero y € P, so
that L(z,y) = 0, L(z,y) = {z € P|z < z,y}. And z, y are connected by an edge if L(z,y) = 0. We discuss here some properties
of the zero-divisor graph of a specific poset D,,. Very often we used the prime factorization of the positive integer n. By abuse of
notation, let us call D, as the zero-divisor graph of the poset D,,. Note that, the vertex set of D, is the set of all factors of n that
are not divisible by some prime factor of n. Also, note that two vertices in D,, are connected by an edge if and only if they are

mutually co-prime.

Remark 5.1. (Properties of D,,).

i. If n = p™ for some prime p and positive integer m, then D,, is trivial.
So from now on consider D,, where n. # p™ where p and m are as mentioned.

ii. The diameter of D,, is 3 iff n has three distinct prime factors namely p, g, r. This is shown by the path pg — r — p — gr. Otherwise,
the diameter is 1 or 2, as Dymgn is complete bipartite which has diameter 2 or in the case of m = n = 1 has diameter 1. 001 shows
zero divisors of a poset have diameter of 1, 2, or 3.

iii. D,, is complete only when n = pq, where p and q are two distinct primes. D,, is complete bipartite iff n = p™q® where m and s are
two positive integers.

iv. We have the clique number of D,, and a few coefficients of the clique polynomial. The clique number of D,, is the number of distinct

prime factors of n. For if n = p* py*p3® - - - " where p;'s are distinct primes Vi, any set of vertices {pf Y pgz, p§3 .-

. pfr }, where
1 < B; < o Vi forms a maximal clique. Hence the clique number is r, the number of distinct primes of n. And the leading
coefficient in the clique polynomial is ajag - o The coefficient of 2! is

Si(onay - aitougn - on) + (5)aras - - - o Reason: Consider a clique of size v — 1. If all the vertices have single prime

factors then, there are > ;_, (10 -+ - a;_10441 - - - @) many of this type, as a typical clique of this type is a set of the form
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{pfl,pgz, . -pfﬁ"f,pfﬁl, --pl) where 1 < Bj < a;Vj € {1,2,---r}. Otherwise, exactly one vertex will contain two primes.

And in that case, we will obtain (;)alaz -+ - a, many such clique sets with cardinality r — 1.

v. The domination number of D,, is the number of distinct prime factors of n, the same as the clique number, as any dominating set
must not omit a prime factor of n. If some p; is missing from a set of vertices V, then the vertex p1ps - - - pi—1Pi+1 - - * pr iS not
adjacent to any vertex in V.. Furthermore, if we let V' be the set of all distinct primes of n, each vertex in D,, must share an edge with
at least one vertex in V because each vertex in D,, must omit at least one prime of n from its prime factorization.

Vi.

=

D,, is regular iff n = (pg)™ for some positive integer m. If n = p™q", m # r, then D,, = K,, ,, complete bipartite which is not
regular. Then, if n has more than two distinct primes in its prime factorization, then for two distinct primes p and q in its prime
factorization p and pq are vertices with different degrees making the graph non-regular.

.In Iﬂ, it is discussed that the girth of the zero divisor graph of any poset is 3, 4, or co. The girth of D,, is oo iff n = p™q, where p and

=+

vi
q are two distinct primes and m is a positive integers bigger than 1. The girth of D,, is 4, if and only if n = p™q", where p and g are
two distinct primes and m and r are both positive integers bigger than 1. Otherwise, the girth of D,, is 3, because if n has at least
3 different prime factors p, gand r, then p — ¢ — r — pis a triangle in D,,.

viii. D,, is not perfect iff n is the product of least five different primes p,q,7,s,t in its prime factorization, then
ps — gt — pr — gs — tr — psis a cycle of length five in D,,. Hence by Strong perfect graph theorem D,, is not perfect.
Suppose n has 4 distinct prime factors p, g, 7 and s. Assume there is an odd cycle of length 5 or greater that contains a vertex v that is
the product of two such primes. Let v = p” g¥. Then the two neighbors of v cannot be a multiple of p or ¢. Suppose the neighbors
both consist of * for some positive integer a. Then, we get part of the cycle as 7* — p®q¥ — r° for another positive integer b. Then,
@ will necessarily share an edge with the other neighbors of r* making the cycle length 4. So, the neighbors of v must have both
rand s. Additionally, these parts of the cycle must be of the form r* — p®q¥ — r"s?; otherwise, we get a cycle of length 4 again. But
any vertex that shares an edge with r s* must also share an edge with r® making such a cycle impossible. This means any odd cycle
length greater than 5 cannot contain a vertex with two or more prime factors, making an odd cycle length greater than 4 impossible.
The other two situations when v consists of only one prime, or three primes also give contradiction. Thus, D is perfect iff n has 4 or
fewer prime factors.
ix. Dy, is chordal iff n = p™q or n = pgr where p, q and r are distinct primes and m > 1. For if n is not of that form,

p—q—p°—q*—porp—q—p>—qr—porp—r—pqg— s — pwill give holes of length greater than 3 in respective D,,s.

>

. Let, n be a square free positive integer. Then, its simplicial vertices are precisely those factors of n that miss exactly one prime in its
prime factorization. Now, suppose n is not square-free. Then, if all primes in its prime factorization are not square-free, it has no
simplicial vertex. Otherwise, the simplicial vertices are precisely those that miss exactly one square free prime factor. For example, if

n = p?q®r, pg, p*q pq® and p*q® are the only simplicial vertices because r is the only square free prime factor.

a.

xi. The only planar D,, has n of the form n = p™q, p™q?, pqr or p*qr. First, let n _have only 2 prime factors. If n = p™q' where
1 > 3 and m > 3, then K3 3 is a subgraph of D,,. So, by Wagner's theorem, D,, is non-planar. But in the case of p™q, D, is a star, so
it is planar. And, in the case of p™q?, the graph can be drawn without any crossing edges. Next, let's have three prime factors. If
n = pqr or n = p’qr the graph is clearly planar if drawn. If n = p™qr where m > 3, the subgraph consisting of p, p?, p°, ¢, 7 and
gr form K3 3 if we delete the edge between q and r. Then by Wagner's theorem, the graph is non-planar since K3 3 is a minor. Next,
if n = p™q'r, where m > 2 and 1 > 2 the set of vertices q, ¢%, p, p*, v, pr and gr is a subdivision of Ks. Then, by Kuratowski's

theorem, the graph is non-planar. So the only planar D,, with only 3 primes in n are pqr and p*qr. Lastly, consider the case where

n has 4 primes in its prime factorization, n = pgrs. Then, the vertex set of p, g, , s, pg and rs can be made isomorphic to K5 by
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contracting the edge between pq and rs to make a single vertex. Therefore, K5 is a minor of D,, for this case, and by Wagner's
theorem the graph is non-planar.

. D,, is Eulerian iff the power of each prime in the prime factorization of n is even.

=N

xi
For, if n has a prime p* that appears in its prime factorization where « is odd, then the vertex p—’; has an odd degree, otherwise
every vertex has even degree.

xiii. If n is square free, then we have the edge cardinality of D,, as Z:;ll or—i-1 (:) — 2"~1 — 1, where r is the number of distinct primes
of n.

For, if we consider n =pips---p,, Where p;'s are distinct primes, then the degree of each vertex p; is
2:;11 (Tgl) =21 —1 giving r(2"! — 1) to the degree sum of the vertices. Similarly each vertex p;p; is adjacent to

E:;IZ (";?) = 272 — 1 many vertices, giving (})(2"~2 — 1) in the degree sum. Proceeding in this way, we obtain the sum of the

vertex degrees are i1 (1) (277" — 1) = S20_} (7)2"~* — 2" — 2. Then, as the sum of vertex degrees is twice the edge cardinalities

i i

the result follows.
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