L4
11 August 2025, Preprint v1 - CC-BY 4.0 Qe 10S PREPRINT

Research Article
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Superposition is a quantum mechanical concept currently without a recognized equivalent in
metrology measurements. Relative Measurement Theory (RMT) established the significance of unit
standards for metrology measurements. This paper introduces a limit into Cantor’s Transfinite Set
Theory (CTST) and explains how it relates to a unit standard. Recognizing that CTST also describes a
superposition, this paper explains how a transfinite superposition transforms into a normal
distribution of metrology measurement results when measurement results include calibration to a

unit standard. A superposition then has an equivalent set of metrology measurements.
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1. Introduction

There are discrepancies and misunderstandings related to finite measurements (both empirical and

theoretical) and their results across scientific disciplines:

« Godel's incompleteness theoremst must apply to finite measurement systems.

» Finite measurement results must meet Tarski's undefinability Jrequirement.fll

e What is the "non-local structure” of a measurement that J. S. Bell identified?3

« How do normal measurement distributions (without noise or distortion) occur?4l
« The discrepancies between quantum and classical measurement results.21

¢ The paradoxes in CTST (see Section 3.2).

» How can completely different properties (e.g., wave and particle) of the same entity appear?l—(’1

These can all be resolved with a deeper understanding of metrology unit standards and how they impact

finite measurements.
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J. C. Maxwell defined a finite measurement result as a quantity (1), where he assumed each unit! was
equivalent to a unit standard. In metrology (the empirical measurement process), the measurement

instrument? units Maxwell applies are calibrated to a unit standard, which establishes the precision[§l of

the measurement instrument units relative to a unit standard.
quantity (Q) = numerical value (z) times unit (u) (1)

Because Maxwell did not include accuracy or precision in (1), it implies that accuracy and precision are
experimental artifacts of an empirical measurement process. This has become the current understanding
of empirical measurement. Thus, in representational measurement theory (the current theory of
measurements in physics),[2l his implication has been formalized and each unit is incorrectly assumed to
equal a unit standard after empirical calibration. In effect, representational measurement theory requires
that calibration occurs but does not define it, which is backward. A valid measurement theory must

define calibration for measurement apparatus units to equal unit standards.

In addition, the numerical value of a unit standard in this representational theory is often treated as unity
(i.e., without formal effect), which ignores unit uncertainty. Relative Measurement Theory (RMT)
01 developed that measurement calibration to a unit standard must be included in a measurement
theory because a unit standard makes independent measurement comparisons possible and because of

measurement instrument unit uncertainty.

All finite measurement results have a variation due to the precision of the measurement instrument unit
(see Fig. 2 below) relative to a unit standard as determined and corrected by calibration. In QM, the
minimum uncertainty of QM measurement results is limited by a Planck state.ll] There is a correlation
between a Planck state as the lower limit of the possible QM uncertainty and a measurement

instrument's calibration state as a lower limit of the possible precision.

This correlation is developed by first relating Maxwell's definition of a quantity to a finite subset of
Cantor's Transfinite Set Theory (CSTS).12l In this paper, the finite and transfinite parts of CSTS are
treated separately. This paper proposes that Maxwell's numerical value is represented by a finite cardinal,
which is the limit of one or more ordinals (see Fig. 1) and not a set member. It also proposes that in finite
sets, Maxwell's unit, or the minimum factor thereof applied, is an ordinal (set member) representing a

physical property between two contiguous cardinals.

As an example, a physical meter stick measurement instrument (calibrated to a meter standard) is divided

into 100 units of a centimeter each (a finite set) by black vertical marks. Each black mark is a cardinal.

geios.com doi.org/10.32388/SH5D0Z


https://www.qeios.com/
https://doi.org/10.32388/SH5D0Z

Between contiguous marks, each one-centimeter length property is one minimum ordinal (u; ), which is

one possible meter stick measurement result.

Sections 2.0—4.0 (below) introduce CTST, analyze finite sets as a subset of CTST, provide evidence for
limits in finite sets, identify transfinite sets as superpositions, and give the definition of a unit standard
based upon limits. Section 5.0 reviews the RMT development of property, accuracy, and precision. Section
6.0 formalizes the relationship between uncertainty and precision. Section 70 explains how the

discrepancies and misunderstandings can be resolved. Section 8.0 offers conclusions.

2. Cantor's set theory

Cantor's set theory is based upon elements with a common property that determines their set
membership (he uses "aggregate”; the modern usage is "set"). "Since every single element m, if we
abstract from its nature, becomes a 'unit’, the cardinal number M is a definite aggregate composed of
units, and this number has existence in our mind as an intellectual image or projection of the given

aggregate M."I13] e Cantor denotes a set by its highest cardinal number.

3. Finite sets and their limits

Changing the cardinal from a set member to the limit of a set supports a formal definition of a unit
standard. A limit is defined as the numerical value that a function (or sequence) approaches as the

argument (or index) approaches some value.!4)

Fig. 1 relates a measurement apparatus scale to a finite set defined by its ordinals (e.g., u;—ug). Cantor

described m as an element of the set .3 In this paper, m is replaced with u; to represent elements with

both property (u) and numerical order (sub i, where i identifies any one well-ordered ordinal in the set).
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Figure 1. A measurement scale and a finite set
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Fig. 1 identifies that a cardinal is the limit of one or more ordinals. The cardinal 8 remains the set

designation as Cantor indicates.

3.1. A cardinal is the limit of a set

When the numerical value and unit of a quantity are defined as a cardinal and an ordinal, the cardinal
does not have a property that determines finite set membership. Therefore, a cardinal is not a member of
a set, even when it designates a set. The cardinal is the limit of a finite set, as the upper limit of the
ordinals u; - ug is the cardinal 8. It is infinitesimally larger than the largest ordinal (ug) of the set, as a

limit must be.

Three paradoxes in Cantor's set theory have been identified. They disappear when cardinals are limits,

not set members.

1. B. Russell identified that using a cardinal to define a set allows the logical possibility that a set is a
member of itself, which creates a paradox.lﬁ1 When a cardinal is a limit, not a set member, this
paradox is removed.

2. The C. Burali-Forti paradox identifies the cardinal of a set of all ordinal numbers as a set, which
creates a paradox similar to the B. Russell paradox.2l When the cardinal of the set of all ordinal
numbers is a limit, not a set member, this paradox is removed.

3. Cantor asserts, but it has not been proven, that there is no set of all cardinalities.”Zl When ordinals
are identified as finite set members and cardinals are identified only as set limits, his assertion

appears to be true.

3.2. A transfinite class of cardinals is a superposition

Cantor recognized the difference between finite (empirical or theoretical) sets and transfinite sets: "C.
Every finite aggregate E is such that it is equivalent to none of its parts... D. Every transfinite aggregate T
is such that it has parts T; which are equivalent to it"l18l Cantor is stating that ordinals are finite in
empirical sets and go to zero as a limit (i.e., without a limit) in transfinite sets, allowing the cardinals T
and T; to become equivalent. These transfinite cardinals: T, Ty, ... are proposed as a set-theoretic QM

superposition.
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4. Definition of a unit standard

A measurement apparatus scale is divided into units, each with the same property in common with a unit
standard. A unit standard establishes the limit of the measurement apparatus units by a secondary

measurement process termed calibration in metrology (International Vocabulary of Metrology, vImLI),

Based upon the limit of a set as proposed in Section 3, a unit standard is defined as:

e Aunit standard (e.g., the BIPM units: meter, kilogram, second)” independently identifies a property and

defines the limit(s) of one or more independent sets of ordinals representing that property.

Multiple BIPM unit standards are often designated as one property. Examples: the position property may
include units of time (seconds), the velocity property includes units of length (meters) divided by units of

time (seconds), or the momentum property includes units of mass (kilograms) times units of velocity.

4.1. Unit standards in current measurement theory and empirical practice

In the widely applied representational measurement theory, calibration (VIM 2.39) to a unit standard is

considered only empirical.[@1 Then accuracy and precision are also considered empirical. QM

measurements are based upon representational measurement theory.

In metrology, the measurand (VIM 2.3) in Fig. 2 represents one or more quantities, each with a numerical
value (x) and a unit (u) which is not ordered. That is, all measurement instrument units are assumed to
be equal to the unit standard after calibration, i.e., no unit order is required. This is the same as

representational measurement theory.

In metrology, calibration may change both accuracy (VIM 2.13) and precision (VIM 2.15) as they are not
recognized as independent variations of the numerical value and the unit, respectively. In this paper,
except as used in the previous sentence, accuracy and precision are defined as variations of the numerical

value and the unit, respectively.

Metrology measurement practice requires calibration of the measurement instrument to a unit standard.
From Fig. 2, a measurement instrument mean unit (;1 ) is much larger than a calibration state (7—1 ). Then
a common metrology calibration process calibrates the mean unit of a set of measurement instrument
units to be % within i% of the unit standard. As is discussed below, this calibration process becomes

misleading when n and m are both small, e.g., QM measurements.
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Following metrology measurement practice and recognizing that measurement result comparisons are

fundamental, RMT, as shown in Fig. 2, includes a unit standard in a measurement system.

5. Review of RMT

Relative Measurement Theory defines a theoretical finite measurement system (Fig. 2) to include a
measurand (one or more quantities), a measurement apparatus, and a unit standard as defined above, and
to be without any noise (external to the measurement system) or distortion (internal to the measurement

system), including distortion due to the measurement apparatus affecting the measurand.

measurement scale N .
------------------------ each u; projected on U

defines each u; £ precision

uantity xu ) )
measurand q y quantity xu projected on N
L ey determines x £ accuracy
1 0 x=4 n,
measurement ! ‘ ‘ ’ | !
apparatus i 0 ‘ UZ‘ U ' TR ‘ |
1 1
1 1

il
3

1
! I

a0 | theoretical calibration
U unit | !
standard ! 4‘ state 1/m :
Ltheoretical calibration scale U _ _ _ _ 1

Figure 2. Theoretical measurement system

Applying set theory as shown in Fig. 1 to understand Fig. 2, the cardinal 4is the numerical value of a

measurement result quantity, which is also the limit of the sum of the ordinals u;+u,+us+u,.

L. Euler identified, "It is not possible to determine or measure one quantity other than by assuming that
another quantity of the same type is known and determining the ratio between the quantity being

measured and that quantity”" 2!

As an example, a brick, similar to any physical entity (in metrology, a measurand), has multiple properties
expressed in units: three space dimensions, weight or mass (i.e., particle property), de Broglie wavelength
(i.e., wave property), color, velocity, spin, etc. When a measurement apparatus measures an entity (e.g., the
brick), any property (i.e., Euler's "known" type) is only "known" by being relative (i.e., calibrated) directly
or indirectly at some time to a non-local BIPM standard representing that property or properties

(expressed in units) and the unit's numerical value(s).
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In QM, the duality (wave or particle) of a measurand is not understood because QM (which does not
formally treat units) does not recognize that any measurand's unit property or combination thereof is

only known relatively (see ref 9), not absolutely.

Fig. 2 is formalized as:
i=zta
@)= wtl/m (2)
i=1

Equation (1), @ = zu, shows that the current theoretical understanding of an empirical measurement is
definitive (a single measurement result). However, (2) identifies that a measurement result quantity's
numerical value (z) has a fundamental accuracy (+a, see Section 5.1) and the unit (u,) has a fundamental
precision of + % These forms of accuracy and precision are theoretical in a finite measurement process

and will always establish a distribution of measurement results over enough measurements.

Maxwell's definition of an empirical measurement result (1) is not complete. Equation (2) is proposed as

the formal representation of any one-dimensional measurement apparatus relative to unit standard(s).”

Recognizing that a comparable measurement result quantity exists only relative to a unit standard, both
the unit property and its precision relative to a unit standard are theoretical in a relative measurement
system. A distribution of measurement results is not always caused by empirical effects; it is defined in

(2), the proposed measurement theory.

5.1. Worst-case accuracy

In any finite measurement system, when a measurand is projected22 onto a measurement apparatus
scale, the minimum state of the scale (1/m) determines the variation between two contiguous pairs of
units on the scale. In the worst case (rare when % > %), the minimum calibration state is not small
enough to determine how close the maximum or minimum measurand quantity is to which unit of a

contiguous pair of units on a scale.

As there is both a maximum and a minimum of a one-dimensional measurand quantity and the units of
the measurement instrument scale are not treated as equal, the variation of a quantity at each end of the
scale is independent of the other end and is added in this worst case. Then the measurement result
quantity's worst-case numerical value of accuracy is: a = 2(;1 ), where accuracy (a) is the variation (in %,

the mean u;) of the numerical value of a measurement result quantity.
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5.2. Theoretical calibration determines precision

Theoretical calibration defines each u of the measurand as a u; in calibration states (1/m) relative to a unit
standard. Since the calibration states (1/m) are defined as equal and a unit standard (U) is defined exactly,
eachu; = U £ % Theoretical calibration with statistical summing describes how each of the varying
u; impacts the mean unit precision. Theoretical calibration is more rigorous in theory but is not practical
when n and m are large. However, it becomes necessary when n and m are small, ie, in QM

measurements.

5.3. Statistical summing of the theoretical calibration states

The measurement system formalized in (2) is without any noise or distortion (i.e., theoretical) yet
produces a normal distribution of measurement results, not a single result. One verification of (2) is that
making multiple experimental measurements of a fixed measurement system (minimum noise and
distortion) will also produce a normal distribution of measurement result quantities at high enough
precision. Statistical summing effects then add to any experimental precision effects created by noise or

distortion. Statistical summing explains how both theoretical and empirical normal distributions occur.

In (2), each measurement result quantity (Q) consists of a numerical value (e.g., x= 4 in Fig. 2) of u;. This
measurement result quantity is the sum of u;+u,+uz+u,. In any measurement process, each u; has a
probability of the completely random +1/m precision even when the entity, the measurement instrument,

and the standard are fixed. The two random states of +1/m and -1/m change each of the four u;. When the

four changed u; are statistically summed over a large enough number of measurements, a total of 2* = 16
measurement result quantities occur, which approximate a normal distribution. A set of equal ordinals
(u) with a cardinal numerical value becomes an empirical distribution of measurement instrument
results (> w;) by statistical summing. In QM, statistical summing has been described as wave function

collapse or decoherence (ref 5).

The probability of the unit precision of a measurement instrument changing a measurement result's
quantity is rare when % > % and n is large. General metrology practice is that m is at least 10 times
greater than n. However, when both n and m are small, the statistical sum (empirical) diverges from the
cardinal limit (set theoretical), and the probability of a measurement result quantity changing is

significant1231
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This understanding that normal distributions are caused by calibration states, as well as by noise or
distortion, had not been recognized before RMT. RMT answers the question, "Why are Normal
Distributions Normal?". The ubiquitous occurrence of normal distributions in metrology measurements
(without noise or distortion) verifies the statistical summing of u;, the precision of each u;, theoretical

calibration, and eq. (2).

6. Uncertainty and precision

In current physics (except metrology), without the concept of measurement precision relative to a unit
standard, the uncertainty of finite measurements is often determined between two conjugate variables.
Conjugate variables(24! is the physics term applied when two different quantities change in unison (are

synchronized) as their common units change.

Heisenberg's uncertainty relation, p;q; ~ h, is an example of the synchronized precision of conjugate
variables (ref 11). p; is the precision of p (momentum) = mass units times velocity (position units/time
units), and ¢; is the precision of q (position numerical value and unit at a time in units). Holding the mass
fixed, p; and ¢; vary inversely with the time unit applied (the wavelength of the light). This explains the
interaction between the precision of these conjugate variables using the units of a measurement result

quantity.

In theory, and without treating accuracy, (3) presents the same Heisenberg conjugate variables, not as a
relationship between the uncertainty of two properties (above), but as two standard deviation (o)
distributions of the measurement results of the same properties (left side). The right-hand side, applying
(2), shows two distributions of measurement results. u; has a superscript that indicates this property
consists of multiple BIPM units, even though only the time units (1/m) are varied. 1/m = smallest
wavelength of light (time unit) applied. Both the QM and metrology measurement result distributions are

equal:

a(p)a(q) = (Z ul + 1/m> (Zuf + l/m) (3)

The standard deviations of p and ¢ shown on the left side each equal the equivalent measurement result
distribution on the right-hand side of (3) established by two versions of equation (2). The equality shown

in (3) is proven in RMT.[23] The different p or ¢ of each measurement result are members of the

distribution shown in (2), not an indication of non-commuting measurement results of conjugate
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variables. Equation (3) verifies this paper's proposal that QM and metrology measurement results in

theory are equivalent.

7. Understanding measurement discrepancies and

misunderstandings

The property of a quantity's unit (u), as well as the numerical value (x) and well-ordered unit (u;), with
accuracy and precision respectively, define independent measurement result quantities. The property,
numerical value, unit, accuracy, and precision are all relative. xu is a notation appropriate for counting.

Measurement as shown in (2) has accuracy and precision relative to a unit standard.

Measurements as shown in (2) are required by Tarski's undefinability theorem or G6del's incompleteness
theorems. These theories apply to any formal system (e.g.,, @ measurement system), identifying that
comparable measurement results and their accuracy and precision (Tarski) or measurement apparatus
capable of comparable measurement results (Godel) are relative. These requirements are verified by all

BIPM-based experimental measurements.

In metrology (VIM), the calibration state (I/m) is usually considered instrument resolution. The
apparently instantaneous interactions of entangled particles have been shown to be an illusion created by
not recognizing the effect of two calibration processes.[28l When a calibration process is recognized as
part of a measurement, the imprecisely calibrated measurement system proposed by Schrédinger is no

longer a paradox.[271

In most QM measurement calculations (using QM Dirac notation), a quantity is a numerical value and the
unit is defined to be unity (one). Unity units simplify a quantity to a numerical value. In QM experiments,
good metrology practice ensures the unit variation is not significant. However, in QM interferometer
experiments, when measurement result quantity units are not recognized, the property of a

measurement quantity's unit (spin) appears paradoxical.lﬁ1

When the number of units and calibration states is small (e.g., neutron spin experiments@l), the
different measurement result quantities are distributions, not non-commuting. Mathematics rigorously
represents physical systems. Measurement results of conjugate variables that do not commute would

violate this.
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The non-local structure described by J. S. Bell is a unit standard that makes possible comparisons

between independent measurement results.

8. Conclusion

Maxwell's measurement theory assumed measurement results are definitive (a single numerical value).
Later, Heisenberg's uncertainty made definitive measurement results impossible in theory, but
metrology measurement theory did not change. Then QM superpositions, when measured, generated
distributions. The dichotomy between metrology measurement results assumed to be definitive and QM
superpositions known to cause measurement result distributions is confounded when calibration to a

unit standard is considered empirical in metrology and units are not treated in QM.

This paper relates finite metrology to transfinite QM by defining measurement units as ordinals and
recognizing transfinite cardinals as superpositions in CTSE. Then metrology becomes not an

experimental appendage to physics theory but the foundation for all physics.

When metrology describes all measurements, the apparent discrepancies and misunderstandings
between the metrology and QM disciplines disappear. This resolves the issues explored by Bell's
inequality, Bohr's complementarity, the Copenhagen interpretation, Einstein-Podolsky-Rosen, Everett's
many-worlds, Heisenberg's uncertainty, Mermin's instantaneous interactions of entangled particles,

Rovelli's relational QM, Schlosshauer’s measurement problem, and Zurek's envariance.

Footnotes

1 Units are italicized when perfect (or assumed perfect) in this paper.

2 In this paper, a measurement instrument is physical and has a unit scale. A measurement apparatus

may be physical (scale) or theoretical (well-ordered ordinals).
3 Cantor's cardinal notation, with two overbars, is applied to identify cardinality.

“ BIPM is an intergovernmental organization that acts on matters related to measurement science and

measurement standards and is responsible for defining the seven SI base units that are the basis of all

physical standards. https://www.bipm.org/en/measurement-units/si-base-units, December 2022.

5 The notation shown in (2) is offered as an improvement over the notation used in RMT (5).
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