Review of: "C70 Fullerenes Closed hollow cages are made of interconnected carbon atoms in pentagonal and hexagonal rings with a cage-like melted ring structure that resembles a rugby ball"

Teresa Wesley

1 Switchboard of Miami

Potential competing interests: No potential competing interests to declare.

C70 Fullerenes Closed hollow cages are made of interconnected carbon atoms in pentagonal and hexagonal rings with a cage-like melted ring structure that resembles a rugby ball. Each carbon atom on the cage surface connects to three carbon neighbors, and its sp2 bonds combine with a carbon atom at the vertices of each polygon and a bond along each polygonal edge.

Molecular Fluorine can underlie a wide range of Roman novel chemical reactions. Easily accept and donate electrons. Nano tubes of carbon C70 as a strong oxidizing insulation layers for low power energy organic act. The name of the Bucky Ball C70 is taken from its size, because its diameter is in nanometer dimensions (approximately 50,000 times smaller than the diameter of a human head), while its length can reach several millimeters. The long length of several microns and their small diameter of a few nanometers results in a very large length to diameter ratio. Therefore, they can be considered almost as florins later. As such, the C70's wing wings have special electronic, mechanical, and molecular properties. The characteristic of carbon nanotubes is due to the almost one-to-one effect of their structure on their molecular and electronic properties. Nanotubes exist in two main categories: single-walled nanotubes and multi-walled MWNTs nanotubes. Single-walled nanotubes can be thought of as high-graphite sheets wrapped in a cylindrical shape. The length-to-diameter ratio of nanotubes is about 1000 and they can be considered as almost one-dimensional structures. Nanotubes, like graphite, are fully formed.

Conclusion:

Nano graphite and graphene nano strips are electrically conductive due to cloud scattering. Active nano diamond particles with such features, especially electronic ones, can be the foundation of completely new types of powerful nano electronic devices.
References

1. ^Lei Choe. (2024). Review of: “The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.”. Qeios. doi:10.32388/23oxov.


8. ^Chad Allen. (2024). Review of: “FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities”. Qeios. doi:10.32388/h3qk7b.


28. Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”. Qeios. doi:10.32388/a0nexa.

29. Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”. Qeios. doi:10.32388/a0nexa.


33. Afshin Rashid. (2024). Review of: “bipolar transistors (pMOS) have a state voltage connected (Von) around £ to £ volts”. Qeios. doi:10.32388/c8zgvw.


35. Afshin Rashid. (2024). Review of: “Normally, the length of nanowires is more than 1000 times greater than their
diameter. This huge difference in ratio (length to diameter) compared to nanowires is often referred to as 1D materials". Qeios. doi:10.32388/xapduf.


38. Afshin Rashid. (2024). Review of: "Micro and nano-electromechanical systems (MEMS / NEMS) are devices in which the physical motion of a micro- or nano-scale structure is controlled by an electronic circuit", Qeios. doi:10.32388/2zjn6h.