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Artifact Subspace Reconstruction (ASR) for
electroencephalography artifact removal must be optimized
for each unique dataset
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Artifact subspace reconstruction (ASR) is an automatic artifact reject method that can e�ectively remove transient or large-amplitude artifacts found in

electroencephalographic (EEG) data. There is little systematic evidence on the e�ective parameter choice of ASR in real EEG data. No existing study has

evaluated ASR’s performance in functional connectivity analysis, such as renormalized Partial Directed Coherence (rPDC). This paper systematically

evaluates ASR on 31 EEG recordings taken during a source episodic memory retrieval task. Independent component analysis (ICA) and an independent

component classi�er, ICLabel, are applied to separate artifacts from brain signals to quantitatively assess the e�ectiveness of ASR. The e�ectiveness of

ASR was quanti�ed on the following metrics: the number of dipolar independent components, model order for multivariate autoregressive modeling,

and the number of preserved trials. Results showed that ASR is either as e�ective or more e�ective than manual rejection of artifacts. Contrary to

previous literature, the present study shows that the optimal ASR parameter could be substantially higher than 20 to 30 and could be as high as 120,

depending on experimenter decisions for what to preserve. As such, ASR parameter choice should be justi�ed in each study using quantitative

preliminary analysis. This is the �rst study to systematically analyze ASR’s e�ectiveness in rPDC-based functional connectivity research. NOTE: This is

the �rst draft; several methodological changes might occur at a later time upon further analysis.

            Electroencephalography (EEG) is a relatively low-cost, non-invasive method to measure cortical brain activity in human participants. It has found

wide appeal in research settings, due to it being well equipped to answer questions about the temporal dynamics of high-level cognitive functions. Relative

to other techniques, such as positron emission tomography (PET) or functional magnetic resonance imaging (fMRI), EEG allows for the investigation of

higher-order cognitive processes with high temporal resolution on the scale of milliseconds.

           Analyzing these dynamics allows for the discernment of 1) a temporal order of processes in a given construct, such as episodic memory (e.g., Zion-

Golumbic et al., 2010), or 2) the presence of neural dysfunction, such as mood and anxiety disorders (e.g., Al Zoubi et al., 2019). When coupled with fMRI,

which has high spatial resolution, EEG allows for the characterization of functional networks in the brain with high spatiotemporal resolution (e.g., Shu et

al., 2021).

            EEG also has promising applications in the clinical sphere including, but not limited to, personalized medicine (Keizer, 2021), anesthesia

administration (Sun et al., 2020), and diagnostic procedures (Adamou et al., 2020). However, EEG is still rightfully resisted in a wide-reaching clinical

setting because many analysis techniques are not standardized (Robbins et al., 2020) and both the algorithmic and manual preprocessing steps used to

clean the data are often insu�ciently reported or contextualized (Clayson et al., 2019). As a result, research can di�er even between studies that use the

same dataset, simply from minor changes in the order of preprocessing steps or the parameters used.

           Calls for more standardized preprocessing pipelines are not new (Gross et al., 2013; Keil et al., 2014; Pernet et al., 2018). In fact, several attempts at

standardizing pipelines have already been released, with one popular example being the Harvard Automated Processing Pipeline for

Electroencephalography (HAPPE) (Gabard-Durnam et al., 2018). However, even with these pipelines, there is an enormous amount of space for the

researcher to alter parameters or algorithms used that make results non-replicable. Further, there is a serious question of whether standardization

necessarily produces robust analyses.

            It is reasonable to doubt whether it is possible for a single, or even a few, universal pipeline(s) to exist that work across EEG experiential designs

(Robbins et al., 2020). Analyses need to become more transparent in order to explicitly state and justify the parameter choices made for a given study,

rather than relying on choices from previous research that might not apply in a di�erent setting. While it is not a desirable goal to ‘take out’ the autonomy

of the expert researcher in designing a methodological pipeline–nor it is not possible–it is essential for the integrity of the �eld to build more robust

analyses. One way to approach more robust research, as measured through measures of validity and replicability, is through using automated algorithms

to remove the researcher-to-researcher variability introduced at each analysis step. 

Qeios

qeios.com doi.org/10.32388/SMEI50 1

https://doi.org/10.1162/jocn.2009.21251
https://doi.org/10.1162/jocn.2009.21251
https://doi.org/10.3389/fnhum.2019.00056
https://doi.org/10.1016/j.nicl.2021.102572
https://doi.org/10.1016/j.nicl.2021.102572
https://doi.org/10.1177/1550059419874945
https://doi.org/10.3389/fmed.2020.00251
https://doi.org/10.3389/fpsyt.2020.00871
https://doi.org/10.1109/tnsre.2020.2980223
https://doi.org/10.1111/psyp.13437
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.1111/psyp.12147
https://doi.org/10.31219/osf.io/a8dhx
https://doi.org/10.1016/j.dcn.2018.06.004
https://doi.org/10.1109/tnsre.2020.2980223
https://www.qeios.com/
https://doi.org/10.32388/SMEI50


            There are many open-source or freely available algorithmic toolboxes available, including those packaged in, or compatible with, the popular GUI

MATLAB program EEGLAB. One algorithm that comes preinstalled with EEGLAB 2021 is artifact subspace reconstruction (ASR). ASR was �rst proposed by

Mullen et al. (2013). It is an automatic, component-based artifact removal method. It e�ectively removes transient, large-amplitude or uniquely variable

artifacts in multi-channel EEG recordings. It does so by �rst automatically selecting ‘clean’ portions of data to serve as a reference and then applying a

principle component analysis (PCA) to remove artifacts relative to the selected reference. The intuition for this approach is that meaningful brain signals

across channels, especially those clustered in a particular scalp region, should have low variation relative to artifacts. As such, artifacts are detectable

relative to regions with minimized variance. For more technical discussion on the function of ASR, see Chang et al. (2019).

            ASR has been adopted widely across contexts (e.g., Bulea et al., 2014; Mullen et al., 2015; Perera et al., 2016; Artoni et al., 2017; Blum et al., 2019).

However, because of this widespread adoption, methodological research has not been able to e�ectively keep up with understanding the best-practice use

and parameter choices of ASR in a speci�c area. The best attempt thus far is by Chang et al. (2019) where they convincingly demonstrate that ASR is a

powerful tool for removing artifacts both online and o�ine and that it has an optimal parameter choice of 20-30 standard deviation (SD). This parameter

range, they argue, was the best choice for their real data to balance the removal of non-brain signals and retaining brain signals. While Chang et al. (2019)

conducted crucial work, it is worth testing whether this recommendation remains ideal in other types of data sets (e.g., muscle movement tasks, cognitive

tasks) where artifacts look very similar to meaningful brain signals. It is also worth testing the performance of ASR in areas that rely heavily on the low

variability of data, such as in functional connectivity analysis. 

        Recently, ASR has been used in coordination with information-theoretic techniques such as renormalized Partial Directed Coherence (rPDC) to infer

the directional �ow of information between brain regions–a useful step in functional connectivity analysis (Loo et al., 2019; Koshiyama et al., 2020a;

Koshiyama et al., 2020b; Koshiyama et al., 2020c; Miyakoshi et al., 2021; Jurgiel et al., 2021). rPDC and other similar techniques such as Granger-Geweke

causality analysis are based around using multivariate autoregressive models (MVAR) to describe empirical data, and then those models are used to

determine the directional �ow of information between brain regions (for full discussion on each, see Schelter et al., 2009 and Seth et al., 2015,

respectively). 

        As a brief aside, the following questions can be used to understand the logic of the simplest form of information-theoretic measures: Granger-Geweke

causality analysis. Suppose an EEG channel worth of data X and another simultaneously recorded channel worth of data Y. First, how well can we predict

Xt+1 based on the preceding data points in X? In other words, if we only knew the characteristics of one of the channels, how well does the time series

predict itself based on how it behaved in the past? This is heavily dependent on how variable the data are. Second, how well can Xt+1 be predicted based on

the preceding data points in X and the past terms of the other channel Y ? In other words, how well can the model predict the behavior of channel X if we

have information both about X and Y? Finally, how do these predictions compare? If the model that takes both channels into account better predicts the

overall behavior, Y is sending information to X.

            rPDC essentially uses the same logic as Granger-Geweke causality analysis, except with some mathematical di�erences that do not necessarily

drastically change the interpretation of the results (i.e., some brain region is sending information to another brain region). For full discussion on rPDC, see

Schelter et al. (2009) and for a comparison on the intricate di�erences between most information-theoretic techniques including the non-renormalized

version of rPDC (i.e., PDC) and Granger-Geweke causality analysis, see Gourévitch et al. (2006). 

        These techniques are powerful for functional connectivity analysis, but have drawbacks, mainly related to how data are altered in preprocessing steps,

such as artifact rejection or �ltering. For example, Granger-Geweke causality is theoretically invariant to �ltering, but practically can be disrupted by

high- and low-pass �ltering since it will alter the success of MVAR model �tting (Florin et al., 2010; Barnett and Seth, 2011). Thus, it is important to

understand how ASR impacts key measures of success in MVAR �tting for a given information theoretic technique. 

            The present study set out to investigate how di�erent parameters used in ASR a�ect several widely accepted measures of success when manually

rejecting data and when �tting MVAR models for rPDC. Speci�cally, model order,[1] number of preserved trails, and number of brain-related independent

components were analyzed for 7 di�erent parameter conditions:[2] ASR parameters of 20 SD, 40 SD, 60 SD, 80 SD, 100 SD, and 120 SD, along with a control

condition of expert manual rejection. These ASR parameters were selected because Chang et al. (2018) demonstrated that the optimal empirical range is

between 10 SD and 100 SD and Anders et al. (2020) similarly demonstrated that there is no value in picking ASR values below 10. The present preliminary

results from using ASR vs hand rejection suggested that values as high as 120 SD could produce favorable e�ects. Thus, the analysis expanded beyond

Chang et al. (2018)’s recommendation to a maximum of 120 SD. 

            The present study was an exploratory, benchmark analysis on the best-practice parameters to use on a speci�c data set. As such, no speci�c

hypotheses were generated. However, a few general trends were expected. First, higher SD values result in rejecting fewer data; in this case, it would be

expected that fewer trials would be rejected. Second, for the same reason, as SD increased, there would be more data to decompose in independent
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component analysis (ICA), which would then potentially result in a better chance of brain ICs being identi�ed. This expectation might be complicated,

however, because it has been shown that the higher the variance of the data to which ICA is applied, the worse ICA decomposition becomes (Delorme et al.,

2005); as such, it is possible the number of brain related ICs detected might decrease if the data are still highly variable after ASR is applied. Finally, it is

expected that the lower the lower the SD for ASR, the lower the model order of the MVAR �tting. In the most basic sense, if there are fewer data left after

more aggressive (lower) parameter selection for ASR, then necessarily the data that is left for MVAR �tting has a relatively low variance. If that is the case,

it should be easier to construct a model that requires fewer parameters (i.e., model order).

Method

Data Source and Computational Design

        Data were collected as part of a larger experimental design that was studying source episodic memory retrieval in the context of the “old/new” e�ect;

data correspond to experiment one in Nyhus (2010). The details of that experiment have been redescribed below for clarity. These data have been used for

several subsequent studies, such as Bloniasz (2022) and Patel (2020). For full discussion of the theoretical background, see Nyhus (2010), Patel (2020), and

Bloniasz (2022).

        Participants completed two sessions of the experimental design. As such, there were seven total conditions for testing the ASR algorithm’s e�ects on

the data (described in “Artifact subspace reconstruction (ASR)” section) across two sessions (session 1, session 2) in two di�erent epoch conditions

(Correct rejection and Hit, described below). Thus, in-line with the expected use of ASR, the algorithm’s performance was analyzed in real experimental

conditions on real data.

Participants

            Participants were made up of 17 males and 15 females, ranging between 19-29 years old; one participant was rejected because of corrupted data. All

were native English speakers and were right-handed. All participants were pre-screened for neurological and psychiatric disorders via a questionnaire and

all participants had normal or corrected to normal vision. All participants gave informed consent for the study. No personal identi�able information was

available to the present author and all data was collected under the Nyhus (2010) protocol; as such, no IRB approval was required to work with this data.

Electroencephalography Methods

            Brain activity was collected over a 128-channel scalp EEG system and was sampled at 250Hz/ch using a high-input impedance NetAmps ampli�er

(Electrical Geodesics Inc., Eugene, OR). The impedances of the individual channels were adjusted until they were less than 50 kΩ. EEG data were measured

with respect to a vertex reference (Cz). However, to minimize the e�ects of reference-site activity, a cross-channel average-reference transform was used

after channel rejection (Dien, 1998). EEGLAB 2021.0 (http://sccn.ucsd.edu/eeglab/) was used to epoch data, apply the ASR algorithm, perform independent

component analysis (ICA), �t dipoles via DIPFIT, and characterize dipoles as brain related; each of these will be �eshed out further below.

        Data were downsampled to 100 Hz/ch in EEGLAB. A linear, high-pass, FIR �lter at 1 Hz was applied to the EEG data in order to improve model order

and ICA performance (Klug and Gramann, 2020). The data were epoched from 500 ms pre-stimulus onset to 1500 ms post-stimulus onset and saved by

condition of interest (Correct Rejection, abbreviated as ‘CR,’ and Hit). The theory behind the interest in CR and Hit conditions is not relevant to the present

computational study. However, epoching across certain behavioral conditions is a core feature of many studies interested in information �ow, so the

analysis was done for each subject on each condition for practicality reasons. 

        Channels were removed by hand if roughly 40% of the data were unusable. After downsampling, �ltering epoching, and channel rejection, EOG (eye

blink) artifacts were still present in the data along with discontinuous data. For the full preprocessing pipeline, see the appendix.

Artifact subspace reconstruction (ASR)

        A full technical description of ASR can be found in Chang et al. (2019) and is omitted here for brevity. Similar to Chang et al. (2018), ASR varied the SD

for artifact rejection, referred to in the documentation as k, stepwise. In the present study, k was increased by 20 SD with each iteration, starting with it

being inactive. When ASR was active, the following parameters were used: 20 SD, 40 SD, 60 SD, 80 SD, 100 SD, 120 SD. ASR can be run on any data set

loaded into EEGLAB using the following example code for 80 SD: 

EEG = pop_clean_rawdata(EEG, 'FlatlineCriterion' , 'off' , 'ChannelCriterion' , 'off' , 'LineNoiseCriterion' , 'off' ,

'Highpass' , 'off' , 'BurstCriterion' , 80 , 'WindowCriterion' , 'off' , 'BurstRejection' ,'on' , 'Distance' ,'Euclidian' ,

'channels', []);
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        When ASR was inactive, artifacts were rejected via manual inspection. Speci�cally, waveforms more positive than 100 mV or more negative than -100

mV were rejected, except for EOG artifacts. EOG artifacts left in by hand were later removed using ICA decomposition, which is standard practice. Leaving

EOG artifacts in the data for later ICA decomposition is considered to preserve the largest number of trials. In theory the brain signals at a particular

oscillatory frequency (e.g., theta oscillations at 4-8 Hz) are present under the EOG activity, and using ICA to remove non-brain related frequencies can

salvage those trials.

Independent Component Analysis and ICLabel

        The extended version infomax ICA algorithm, called in EEGLAB via (CODE), was used to decompose data. The extended parameter takes a subgaussian

approach to decomposing data, which can often remove line noise at 50 Hz/60 Hz. This is of particular interest in preparing data for rPDC or Granger-

Geweke causality analysis, because low-pass or notch �lters, which typically remove line noise, severely impact these information-theoretic techniques

(Florin et al., 2010; Barnett and Seth, 2011). The extended infomax ICA (Lee et al., 1999), which is one of the most widely used algorithms for ICA and is

available in EEGLAB, was used because other studies investigating ASR have used it (Chang et al., 2018; Chang et al., 2019). There is some logic to this

selection, since the extended infomax appears to be one of the best algorithms for preserving mean mutual information reduction (i.e., the information in

a signal) and the dipolarity of a signal (Delorme et al., 2012). 

        There are two drawbacks to the extended infomax algorithm in the context of using information-theoretic techniques. First, because of the way the

extended infomax ICA decomposes data, it can return di�erent solutions on the same data (Delorme & Makeig, 2004). If getting the same solution is the

end goal every time, a better algorithm would be SOBI because it does not involve random partitioning of data (Belouchrani et al., 1997). Rather, it uses

cross-correlation for joint diagonalization to separate source information. Other algorithms for replicable decomposition are JADE (Rutledge and Jouan-

Rimbaud Bouveresse, 2013) and PICARD (Ablin et al., 2018). Both have tradeo�s for their ability to preserve signal information and dipole �tting, though

the e�ects can be considered marginal.

           Another drawback is that the infomax ICA can drastically alter the EEG signal when used to remove EOG artifacts (Pontifex et al., 2017). This would

alter the ultimate goal of MVAR model �tting and could potentially create false relationships in the data or erase real relationships in the data. As such,

eyeblinks should be rejected prior to ICA for information theoretic techniques. In the present paper, eye blinks were not rejected in the manual condition

prior to ICA because that is standard practice in the �eld and is used as a demonstration. 

        The extended infomax algorithm was run on epoched data in EEGLAB using the following code:

Ncomp = sum(eig(cov(double(EEG.data([1:EEG.nbchan],:)'))) > 1E-7);

EEG = pop_runica(EEG, 'icatype', 'runica','concatcond', 'on','extended',1,'interupt','on','pca', Ncomp, 'stop', 1e-7);

 

The ‘Ncomp’ variable is used to �x an unaddressed problem in the literature where a bug in MATLAB’s code around the ‘rank’ function can produce a

phenomena called ‘ghost ICs’, which is when data rank is under-determined.[3]

            During ICA decomposition, components were determined as ‘brain related’ if they were detected as being greater than 70% brain activity using the

EEGLAB toolbox ICLabel, which is a widely used automatic IC classi�er (Pion-Tonachini et al., 2019); ICLabel has been used in other ASR focused papers

(Chang et al., 2019) and papers using rPDC in EEG data (e.g., Lou et al., 2019; Koshiyama et al. 2020). The remaining components were rejected. 

            Dipole localization was performed using the Template Boundary Element Model (Montreal Neurological Institute standard brain) in EEGLAB. After

dipole localization, dipoles were rejected if their residual variance was greater than 15% and if their centralized dipole density was outside of the canonical

head, as done in with Lou et al. (2019) and Koshiyama et al. (2020). Remaining ICs after these rejection criteria are considered ‘dipolar’ in the present

study. Dipolarity is “the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance”

(Delorme et al., 2012). In short, a dipolar IC is considered to be a biological meaningful signal. Chang et al. (2019) used the criteria of 5% residual variance;

however, more recent papers using this de�nition of dipolarity use 15% as a cut-o� (e.g., Loo et al., 2019). The resulting ICs were recorded for each subject.

Multivariate autoregressive (MVAR) model �tting

            The most important step prior to conducting the hypothesis test for rPDC is MVAR model �tting. The Source Information Flow Toolbox (SIFT)

(https://sccn.ucsd.edu/githubwiki/�les/eeglab2011_tm_sift.pdf) is a GUI-based plugin in EEGLAB that can easily generate MVAR models. The broader

function of SIFT is for modeling and visualizing dynamical interactions between electrophysiological signals (e.g., rPDC). SIFT has recently been extended

into groupSIFT (https://github.com/sccn/groupSIFT) which allows for the group analysis of information �ow between dipoles across many participants.

As such, all EEG data underwent MVAR �tting using the SIFT plugin within groupSIFT, since groupSIFT is quickly becoming a popular option for functional
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connectivity analysis (Loo et al., 2019; Koshiyama et al., 2020a; Koshiyama et al., 2020b; Koshiyama et al., 2020c; Miyakoshi et al., 2021; Jurgiel et al.,

2021). 

        SIFT used a hamming window technique that minimizes the optimum model order. The sliding window length was at 0.5 seconds and moved stepwise

from initial time t0 to �nal time tn in intervals of 0.048 seconds. The entire frequency analysis range of interest was from 2 to 30 Hz. The frequencies were

broken down into 28 individual frequency bins. The full width at half maximum of the Gaussian distribution was set to 20 mm (FWHM/2.355*3)–the

default parameter in groupSIFT. The order of the resulting MVAR model was recorded for each subject.

Results

Experiment 1. Trails modi�ed across ASR parameter choices

A concern for artifact rejection, whether using algorithm-based or manual techniques, is balancing the amount of data removed with having a high

enough trial count to maximize statistical power. As such, it is relevant to see how the number of trials are a�ected with each parameter choice for ASR. It

was expected that the exploratory analysis would show a relationship between the number of trials and the parameter choice of ASR. It was predicted that

as the parameter choice of ASR became more aggressive (i.e., a lower SD threshold), the fewer trials would be preserved. This general hypothesis was

corroborated across all conditions. For the remainder of the results an ASR k (SD) value will be combined with the name (e.g., ASR SD = 40 will be “ASR

40”).

Experiment 1: Session 1, Correct Rejection condition

            In session 1 of the correct rejection condition, a one-way ANOVA determined that there was a signi�cant di�erence between conditions (Figure 1;

f(6,210)=10.240, MSE = 1256.819, p=6.148 x 10-10). This e�ect has medium power (1-β=0.7837), which further increases con�dence in this result. To

characterize which conditions were signi�cantly di�erent, a post-hoc Tukey’s Honest Signi�cant Di�erence test was used (Table 1). There were seven

statistically signi�cant di�erences based on a Tukey's critical mean of 26.81.

            Hand rejection preserved 55.10 more trials on average than ASR 20 (p  = 9.53 x 10-8). Hand rejection preserved 37.97 more trials than the ASR 40

condition (p = 7.22 x 10-4). ASR 60 preserved 29.971 more trials on average than ASR 20 (p = 0.0182). ASR 80 preserved 37.065 more trials on average than

ASR 20 (p = 0.001073). ASR 100 preserved 42.8065 more trials on average than ASR 20 (p = 7.513 x 10-5). ASR 120 preserved 56.387 more trials on average

than ASR 20 (p = 4.43 x 10-8). ASR 120 preserved 39.258 more trials on average than ASR 40 (p = 4.039 x 10-4).

        When checking the variances across each condition, a Levene’s test to assess the equality of variance determined that the variances were, in fact, not

all equal (F = 3.731, p = 0.00151). ASR 20 had signi�cantly higher variance than ASR 120, with ASR 20 having a variance 19.581 trials higher on average than

ASR 120 (p = 0.00513). ASR 40 had signi�cantly higher variance than ASR 120, with ASR 40 having a variance 20.161 trials higher on average than ASR 120

(p = 0.00347). See appendix A for full analysis. As such, an additional analysis was done to account for this reality. 

        The Kruskal-Wallis H test indicated that there is a signi�cant di�erence in the number of preserved trials between the di�erent ASR parameters, χ2(6)

= 45.78, p < .001, with a mean rank score of 142.6 trials for Hand Rejection, 60.56 trials for ASR 20, 83.68 trials for ASR 40, 98.65 trials for ASR 60, 109.71

trails for ASR 80, 120.56 trials for ASR 100, and 147.24 trials for ASR 120. The Post-Hoc Dunn's test using a Bonferroni corrected alpha of 0.0024 indicated

that seven mean ranks were signi�cantly di�erent (Table 2).

        Hand rejection preserved 82.032 more trials on average than ASR 20 (p = 2.685 x 10-7). Hand rejection preserved 58.919 more trials on average than

ASR 40 (p = 2.2 x 10-4). ASR 80 preserved 49.145 more trials on average than ASR 20 (p = 0.00206). ASR 100 preserved 60 more trials on average than ASR 20

(p = 1.681 x 10-4). ASR 120 preserved 86.677 more trials on average than ASR 20 (p = 5.46 x 10-8). ASR 120 preserved 63.565 more trials on average than ASR

40 (p = 6.714 x 10-5). ASR 120 preserved 48.597 more trials on average than ASR 60 (p = 0.00231). 

        All but two results are consistent between the two di�erent tests. First, with the post-hoc test for the one-way ANOVA, ASR 60 preserved statistically

more trials compared to ASR 20; this did not occur in the post-hoc test for the Kruskal-Wallis ANOVA. Second, with the post-hoc test for the one-way

ANOVA, ASR 120 was not signi�cantly di�erent from ASR 60, though it was close (p = 0.0547); there was a signi�cant di�erent in the post-hoc test for the

Kruskal-Wallis ANOVA (p = 0.00231).
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Figure 1. Shown are the mean number of trials preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of

the 95% con�dence interval for session 1 Correct Rejection data. A one-way ANOVA demonstrated that there was a signi�cant di�erence somewhere across the

conditions (f(6,210)=10.240, MSE = 1256.819, p=6.148 x 10-10). There were seven signi�cant di�erences across conditions. ASR 120 preserves similar numbers of

trails as the hand rejection condition. ASR 20 and ASR 40 are signi�cantly more variable compared to ASR 120.
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      Con�dence interval  

Pair Di�erence Critical-Q Lower Upper p-value

Hand Rej - ASR 20 55.0968 8.6531 28.2884 81.9052 9.53E-08***

Hand Rej - ASR 40 37.9677 5.9629 11.1593 64.7761 0.000722***

Hand Rej - ASR 60 25.2258 3.9618 -1.5826 52.0342 0.08008

Hand Rej - ASR 80 18.0323 2.832 -8.7761 44.8407 0.4162

Hand Rej - ASR 100 12.2903 1.9302 -14.5181 39.0987 0.8198

Hand Rej - ASR 120 1.2903 0.2026 -25.5181 28.0987 1

ASR 40- ASR 20  17.129 2.6902 -9.6794 43.9374 0.4811

ASR 60 - ASR 20  29.871 4.6913 3.0626 56.6794 0.0182*

ASR 80 - ASR 20  37.0645 5.8211 10.2561 63.8729 0.001073**

ASR 100 - ASR 20  42.8065 6.7229 15.998 69.6149 0.00007513***

ASR 120 - ASR 20  56.3871 8.8557 29.5787 83.1955 4.43E-08***

ASR 60 - ASR 40  12.7419 2.0012 -14.0665 39.5503 0.7933

ASR 80 - ASR 40 19.9355 3.1309 -6.8729 46.7439 0.2925

ASR 100 - ASR 40 25.6774 4.0327 -1.131 52.4858 0.07027

ASR 120 - ASR 40 39.2581 6.1656 12.4497 66.0665 0.0004039***

ASR 80 - ASR 60 7.1935 1.1298 -19.6149 34.002 0.9849

ASR 100 - ASR 60 12.9355 2.0315 -13.8729 39.7439 0.7814

ASR 120 - ASR 60 26.5161 4.1644 -0.2923 53.3245 0.05469

ASR 100 - ASR 80 5.7419 0.9018 -21.0665 32.5503 0.9955

ASR 120 - ASR 80 19.3226 3.0347 -7.4858 46.131 0.33

ASR 120 - ASR 100 13.5806 2.1329 -13.2278 40.3891 0.7397

Note. * Denotes p < 0.05, ** Denotes p < 0.01, *** Denotes p < 0.001. The critical mean for the comparisons was 26.8084. The SE was 6.3673. N = 31 values.

Table 1. Post-hoc Tukey Honest Signi�cant Di�erence test comparing the impact of each ASR parameter condition on the average number of persevered trials with a 95%

con�dence interval (Session 1, Correct Rejections)
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Pair Di�erence Z-value p-value

Hand Rej - ASR 20 82.0323 5.1443 2.69E-07***

Hand Rej - ASR 40 58.9194 3.6949 0.00022***

Hand Rej - ASR 60 43.9516 2.7562 0.005847

Hand Rej - ASR 80 32.8871 2.0624 0.03917

Hand Rej - ASR 100 22.0323 1.3817 0.1671

Hand Rej - ASR 120 4.6452 0.2913 0.7708

ASR 40- ASR 20  23.1129 1.4494 0.1472

ASR 60 - ASR 20  38.0806 2.3881 0.01694

ASR 80 - ASR 20  49.1452 3.0819 0.002057**

ASR 100 - ASR 20  60 3.7627 0.0001681***

ASR 120 - ASR 20  86.6774 5.4356 5.46E-08***

ASR 60 - ASR 40  14.9677 0.9386 0.3479

ASR 80 - ASR 40 26.0323 1.6325 0.1026

ASR 100 - ASR 40 36.8871 2.3132 0.02071

ASR 120 - ASR 40 63.5645 3.9862 0.00006714***

ASR 80 - ASR 60 11.0645 0.6939 0.4878

ASR 100 - ASR 60 21.9194 1.3746 0.1693

ASR 120 - ASR 60 48.5968 3.0476 0.002307**

ASR 100 - ASR 80 10.8548 0.6807 0.4961

ASR 120 - ASR 80 37.5323 2.3537 0.01859

ASR 120 - ASR 100 26.6774 1.673 0.09433

Note. ** Denotes p < 0.0024 *** Denotes p < 0.001. The critical mean for the comparisons was 48.4456. The SE was 15.9462. N = 31 values.

Table 2. Post-hoc Dunn's test comparing the impact of each ASR parameter condition on the average number of persevered trials (Session 1, Correct Rejections)

Experiment 1: Session 2, Correct Rejection condition

            In session 2 of the correct rejection condition, a one-way ANOVA determined that there was a signi�cant di�erence between conditions (Figure 2;

f(6,210)=7.225, MSE = 11427.7742, p=5.036 x 10-7). This e�ect has medium power (1-β=0.7837), which further increases con�dence in this result. To

characterize which conditions were signi�cantly di�erent, a post-hoc Tukey’s Honest Signi�cant Di�erence test was used (Table 3). There were six

statistically signi�cant di�erences based on a Tukey's critical mean of 28.5736. Unlike in session 1, the variances across conditions were considered to be

equal (F = 1.79383, p = 0.101713).

          Hand rejection preserved 56.871 more trials on average than ASR 20 (p = 2.631 x 10-7). Hand rejection preserved 35.226 more trials than the ASR 40

condition (p = 0.005614). ASR 60 preserved 32.581 more trials on average than ASR 20 (p = 0.0142). ASR 80 preserved 39.677 more trials on average than

ASR 20 (p = 0.001). ASR 100 preserved 45.129 more trials on average than ASR 20 (p = 9.432 x 10-5). ASR 120 preserved 37.1935 more trials on average than

ASR 20 (p = 0.002683).
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Figure 2. Shown are the mean number of trials preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of

the 95% con�dence interval for session 2 Correct Rejection data. A one-way ANOVA demonstrated that there was a signi�cant di�erence somewhere across the

conditions (f(6,210)=7.225, MSE = 11427.7742, p=5.036 x 10-7). There were six signi�cant di�erences across conditions. ASR 120 preserves similar numbers of trails

as the hand rejection condition.
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      Con�dence interval  

Pair Di�erence Critical-Q Lower Upper p-value

Hand Rej - ASR 20 56.871 8.38E+00 2.83E+01 85.4445 0.0000002631 ***

Hand Rej - ASR 40 35.2258 5.1905 6.6522 63.7994 0.005614**

Hand Rej - ASR 60 24.2903 3.5792 -4.2832 52.8639 0.1537

Hand Rej - ASR 80 17.1935 2.5335 -11.38 45.7671 0.5553

Hand Rej - ASR 100 11.7419 1.7302 -16.8316 40.3155 0.8844

Hand Rej - ASR 120 19.6774 2.8995 -8.8961 48.251 0.3865

ASR 40- ASR 20  21.6452 3.1894 -6.9284 50.2187 0.271

ASR 60 - ASR 20  32.5806 4.8008 4.0071 61.1542 0.01422*

ASR 80 - ASR 20  39.6774 5.8465 11.1039 68.251 0.001**

ASR 100 - ASR 20  45.129 6.6498 16.5555 73.7026 0.00009432***

ASR 120 - ASR 20  37.1935 5.48E+00 8.62E+00 65.7671 0.002683**

ASR 60 - ASR 40  10.9355 1.6113 -17.6381 39.509 0.9151

ASR 80 - ASR 40 18.0323 2.6571 -10.5413 46.6058 0.4967

ASR 100 - ASR 40 23.4839 3.4604 -5.0897 52.0574 0.1847

ASR 120 - ASR 40 15.5484 2.2911 -13.0252 44.1219 0.6696

ASR 80 - ASR 60 7.0968 1.0457 -21.4768 35.6703 0.9899

ASR 100 - ASR 60 12.5484 1.849 -16.0252 41.1219 0.8479

ASR 120 - ASR 60 4.6129 0.6797 -23.9607 33.1865 0.9991

ASR 100 - ASR 80 5.4516 0.8033 -23.1219 34.0252 0.9976

ASR 120 - ASR 80 2.4839 0.366 -26.0897 31.0574 1

ASR 120 - ASR 100 7.9355 1.1693 -20.6381 36.509 0.9819

Note. * Denotes p < 0.05, ** Denotes p < 0.01, *** Denotes p < 0.001. The critical mean for the comparisons was 28.5736. The SE was 6.7865. N = 31 values.

Table 3. Post-hoc Tukey Honest Signi�cant Di�erence test comparing the impact of each ASR parameter condition on the average number of persevered trials with a 95%

con�dence interval (Session 1, Correct Rejections)

Experiment 1: Session 1, Hit condition

        In session 1 of the Hit condition, a one-way ANOVA determined that there was a signi�cant di�erence between conditions (Figure 1; f(6,210)=20.6679,

MSE = 703.5462, p = 0). This e�ect has medium power (1-β=0.7837), which further increases con�dence in this result. To characterize which conditions

were signi�cantly di�erent, a post-hoc Tukey’s Honest Signi�cant Di�erence test was used (Table 4). There were 11 statistically signi�cant di�erences

based on a Tukey's critical mean of 20.0577. 

            Hand rejection preserved 62.29 more trials on average than ASR 20 (p = 1.073 x 10-10). Hand rejection preserved 41.871 more trials than the ASR 40

condition (p = 5.705 x 10-8). ASR 120 preserved 26.968 more trials on average than ASR 60 (p = 0.001662). ASR 60 preserved 35.323 more trials on average

than ASR 20 (p = 7.932 x 10-6). ASR 80 preserved 43 more trials on average than ASR 20 (p = 2.307 x 10-8). ASR 100 preserved 50.161 more trials on average

than ASR 20 (p = 1.589 x 10-10). ASR 120 preserved 55.064 more trials on average than ASR 20 (p = 1.079 x 10-10). ASR 80 preserved 22.581 more trials on

average than ASR 40 (p = 0.01632). ASR 100 preserved 29.742 more trials on average than ASR 40 (p = 0.0003219). ASR 120 preserved 34.645 more trials on

average than ASR 40 (p = 1.277 x 10-5).
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        When checking the variances across each condition, a Levene’s test to assess the equality of variance determined that the variances were, in fact, not

all equal (F = 3.251009, p = 0.00446). ASR 20 had signi�cantly higher variance than ASR 120, with ASR 20 having a variance 14.161 trials higher on average

than ASR 120 (p = 0.013). See appendix B for full analysis. As such, an additional analysis was done to account for this reality. 

        The Kruskal-Wallis H test indicated that there is a signi�cant di�erence in the dependent variable between the di�erent groups, χ2(6) = 35.79, p < .001,

with a mean rank score of 147.53 trials for Hand Rejection, 60.81 trials for ASR 20, 90.63 trials for ASR 40, 105.81 trials for ASR 60, 117.94 trials for ASR 80,

125.92 trials for ASR 100, and 114.37 trials for ASR 120. The Post-Hoc Dunn's test using a Bonferroni corrected alpha of 0.0024 indicated that �ve mean

ranks were signi�cantly di�erent (Table 5).

        Hand rejection preserved 86.726 more trials on average than ASR 20 (p = 5.371 x 10-8). Hand rejection preserved 56.903 more trials on average than ASR

40 (p = 3.592 x 10-4). ASR 80 preserved 57.129 more trials on average than ASR 20 (p = 3.402 x 10-4). ASR 100 preserved 65.113 more trials on average than

ASR 20 (p = 4.441 x 10-5). ASR 120 preserved 53.565 more trials on average than ASR 20 (p = 7.822 x 10-4). 

Five of the results were preserved from the one-way ANOVA test to the Kruskal-Wallis ANOVA, whereas six signi�cance were erased when accounting for

variance. The �ve that were consistent across ANOVAs were the following: Hand rejection - ASR 20, Hand rejection - ASR 40, ASR 80 - ASR 20, ASR 100 -

ASR 20, ASR 120 - ASR 20. 

 

Figure 3. Shown are the mean number of trials preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of

the 95% con�dence interval for session 1 Hit data. A one-way ANOVA demonstrated that there was a signi�cant di�erence somewhere across the conditions

(f(6,210)=20.6679, MSE = 703.5462, p = 0). There were 11 signi�cant di�erences across conditions. ASR 120 preserves similar numbers of trails as the hand rejection

condition. ASR 20 is signi�cantly more variable compared to ASR 120.
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      Con�dence interval  

Pair Di�erence Critical-Q Lower Upper p-value

Hand Rej - ASR 20 62.2903 13.0754 4.22E+01 82.348 1.073E-10***

Hand Rej - ASR 40 41.871 8.7892 21.8133 61.9287 5.705E-8***

Hand Rej - ASR 60 26.9677 5.6608 6.9101 47.0254 0.001662**

Hand Rej - ASR 80 19.2903 4.0492 -0.7674 39.348 0.06813

Hand Rej - ASR 100 12.129 2.546 -7.9287 32.1867 0.5494

Hand Rej - ASR 120 7.2258 1.5168 -12.8319 27.2835 0.9355

ASR 40- ASR 20  20.4194 4.2862 0.3617 40.477 0.04299*

ASR 60 - ASR 20  35.3226 7.4146 15.2649 55.3803 7.932E-6***

ASR 80 - ASR 20  43 9.0262 22.9423 63.0577 2.307E-8***

ASR 100 - ASR 20  50.1613 10.5294 30.1036 70.219 1.589E-10***

ASR 120 - ASR 20  55.0645 11.5586 35.0068 75.1222 1.079E-10***

ASR 60 - ASR 40  14.9032 3.1283 -5.1545 34.9609 0.2935

ASR 80 - ASR 40 22.5806 4.7399 2.523 42.6383 0.01632*

ASR 100 - ASR 40 29.7419 6.2431 9.6842 49.7996 0.0003219***

ASR 120 - ASR 40 34.6452 7.2724 14.5875 54.7028 1.277E-5***

ASR 80 - ASR 60 7.6774 1.6116 -12.3803 27.7351 0.9151

ASR 100 - ASR 60 14.8387 3.1148 -5.219 34.8964 0.2986

ASR 120 - ASR 60 19.7419 4.144 -0.3158 39.7996 0.05689

ASR 100 - ASR 80 7.1613 1.5032 -12.8964 27.219 0.9381

ASR 120 - ASR 80 12.0645 2.5325 -7.9932 32.1222 0.5558

ASR 120 - ASR 100 4.9032 1.0292 -15.1545 24.9609 0.9907

Note. * Denotes p < 0.05, ** Denotes p < 0.01, *** Denotes p < 0.001. The critical mean for the comparisons was 20.0577. The SE was 4.7639. N = 31 values.

Table 4. Post-hoc Tukey Honest Signi�cant Di�erence test comparing the impact of each ASR parameter condition on the average number of persevered trials with a 95%

con�dence interval (Session 1, Hit)
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Pair Di�erence Z-value p-value

Hand Rej - ASR 20 86.7258 5.4386 5.37E-08***

Hand Rej - ASR 40 56.9032 3.5684 3.59E-04***

Hand Rej - ASR 60 41.7258 2.6166 0.00888

Hand Rej - ASR 80 29.5968 1.856 0.06345

Hand Rej - ASR 100 21.6129 1.3553 0.1753

Hand Rej - ASR 120 33.1613 2.0795 0.03757

ASR 40- ASR 20  29.8226 1.8702 0.06146

ASR 60 - ASR 20  45 2.8219 0.004773**

ASR 80 - ASR 20  57.129 3.5826 3.40E-04***

ASR 100 - ASR 20  65.1129 4.0832 4.44E-05

ASR 120 - ASR 20  53.5645 3.359 7.82E-04

ASR 60 - ASR 40  15.1774 0.9518 0.3412

ASR 80 - ASR 40 27.3065 1.7124 0.08683

ASR 100 - ASR 40 35.2903 2.2131 0.02689

ASR 120 - ASR 40 23.7419 1.4889 0.1365

ASR 80 - ASR 60 12.129 0.7606 0.4469

ASR 100 - ASR 60 20.1129 1.2613 0.2072

ASR 120 - ASR 60 8.5645 0.5371 0.5912

ASR 100 - ASR 80 7.9839 0.5007 0.6166

ASR 120 - ASR 80 3.5645 0.2235 0.8231

ASR 120 - ASR 100 11.5484 0.7242 0.4689

Note. ** Denotes p < 0.0024 *** Denotes p < 0.001. The critical mean for the comparisons was 48.4463. The SE was 15.9464. N = 31 values.

Table 5. Post-hoc Dunn's test comparing the impact of each ASR parameter condition on the average number of persevered trials (Session 1, Hit)

Experiment 1: Session 2, Hit condition

            In session 2 of the correct rejection condition, a one-way ANOVA determined that there was a signi�cant di�erence between conditions (Figure 4;

f(6,210)=11.0705, MSE = 887.5143, p=1.02 x 10-10). This e�ect has medium power (1-β=0.7837), which further increases con�dence in this result. To

characterize which conditions were signi�cantly di�erent, a post-hoc Tukey’s Honest Signi�cant Di�erence test was used (Table 6). There were seven

statistically signi�cant di�erences based on a Tukey's critical mean of 22.528. Unlike in session 1, the variances across conditions were considered to be

equal (F = 1.068148, p = 0.382747).

            Hand rejection preserved 52.226 more trials on average than ASR 20 (p = 1.36 x 10-9). Hand rejection preserved 32.097 more trials than the ASR 40

condition (p = 0.0006525). ASR 60 preserved 29.839 more trials on average than ASR 20 (p = 0.002082). ASR 80 preserved 36.129 more trials on average

than ASR 20 (p = 6.853 x 10-5). ASR 100 preserved 42 more trials on average than ASR 20 (p = 1.774 x 10-6). ASR 120 preserved 46.387 more trials on average

than ASR 20 (p = 0.002683). ASR 120 preserved 26.258 more trials on average than ASR 40 (p = 0.01111).
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Figure 4. Shown are the mean number of trials preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of

the 95% con�dence interval for session 2 Hit data. A one-way ANOVA demonstrated that there was a signi�cant di�erence somewhere across the conditions

(f(6,210)=11.0705, MSE = 887.5143, p=1.02 x 10-10). There were seven signi�cant di�erences across conditions. ASR 120 preserves similar numbers of trails as the

hand rejection condition. 
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      Con�dence interval  

Pair Di�erence Critical-Q Lower Upper p-value

Hand Rej - ASR 20 52.2258 9.76E+00 2.97E+01 74.7538 1.36E-09***

Hand Rej - ASR 40 32.0968 6.00E+00 9.5688 54.6248 0.0006525***

Hand Rej - ASR 60 22.3871 4.184 -0.1409 44.9151 0.05265

Hand Rej - ASR 80 16.0968 3.0084 -6.4312 38.6248 0.3406

Hand Rej - ASR 100 10.2258 1.9111 -12.3022 32.7538 0.8266

Hand Rej - ASR 120 5.8387 1.0912 -16.6893 28.3667 0.9874

ASR 40- ASR 20  20.129 3.762 -2.3989 42.657 0.1138

ASR 60 - ASR 20  29.8387 5.5766 7.3107 52.3667 0.002082**

ASR 80 - ASR 20  36.129 6.75E+00 13.6011 58.657 6.853E-05***

ASR 100 - ASR 20  42 7.85E+00 19.472 64.528 1.774E-06***

ASR 120 - ASR 20  46.3871 8.67E+00 23.8591 68.9151 8.97E-08***

ASR 60 - ASR 40  9.7097 1.8147 -12.8183 32.2377 0.859

ASR 80 - ASR 40 16 2.9903 -6.528 38.528 0.348

ASR 100 - ASR 40 21.871 4.0875 -0.657 44.3989 0.06339

ASR 120 - ASR 40 26.2581 4.9075 3.7301 48.786 0.01111*

ASR 80 - ASR 60 6.2903 1.1756 -16.2377 28.8183 0.9814

ASR 100 - ASR 60 12.1613 2.2729 -10.3667 34.6893 0.6779

ASR 120 - ASR 60 16.5484 3.0928 -5.9796 39.0764 0.3071

ASR 100 - ASR 80 5.871 1.0972 -16.657 28.3989 0.987

ASR 120 - ASR 80 10.2581 1.9172 -12.2699 32.786 0.8245

ASR 120 - ASR 100 4.3871 0.8199 -18.1409 26.9151 0.9973

Note. * Denotes p < 0.05, ** Denotes p < 0.01, *** Denotes p < 0.001. The critical mean for the comparisons was 22.528. The SE was 5.3507. N = 31 values.

Table 6. Post-hoc Tukey Honest Signi�cant Di�erence test comparing the impact of each ASR parameter condition on the average number of persevered trials with a 95%

con�dence interval (Session 1, Hit)

Experiment 1 Discussion

            In line with expectations for the exploratory analysis, more ‘aggressive’ parameters for ASR remove more trials than less aggressive parameters.

Throughout, ASR 120 performed similarly to the manual rejection condition. Surprisingly, in both session 2 conditions there was unequal variance across

certain conditions that suggest some data sets ASR is applied to can result in signi�cantly more variable data rejection compared to manual rejection. Since

the number of preserved trials that have high variance occurring at the more ‘aggressive’ end of the parameter spectrum relative to higher values with ASR

120 (which is comparable to manual rejection in the present case), researchers should be aware that more aggressive choices for ASR might remove certain

signals/artifacts unpredictably, relative to if a more conservative approach is taken. As such, researchers should investigate what type of artifacts exist in

their data set a priori and keep track of whether those artifacts are being rejected or if more brain signals are being rejected.

           The number of trials preserved on its own is a neutral metric on its own. In other words, having many trials preserved or rejected does not suggest

better or worse performance of ASR. Rather, it depends on the application. For example, it might make sense in event-related potential (ERP) studies to

retain more trials, since averaging elevates meaningful signals since random noise across trials theoretically cancels out. In the present case where data is

being prepared for MVAR models, without taking any other metrics into account, cleaner data might be a better direction (i.e., more aggressive
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parameters). However, the way to test whether having fewer trials and cleaner data involves looking at the number of ICs and the model order in context of

the number of trials preserved, which will be done in the following sections. For full discussion on this point, see ‘Full Discussion.’

Experiment 2. Model order of MVAR �tting modi�ed by ASR parameter choices

            When trying to improve the performance of rPDC, it is important to have the lowest model order of data possible without minimizing it arti�cially

(Barnett and Seth, 2014). In other words, over- and underspeci�ed models are not informative to infer directional �ow of information (Cohen, 2014; Seth,

2010). Downsampling, which was applied in the present study, is one popular way to minimize model order. However, low variance brain signals can also

produce low model orders because fewer parameters can capture the curvature of data. Thus, �nding an optimal approach for artifact rejection is

potentially an e�ective way to reduce model order, since it is not alternating data, but merely removing data that appears to be too variable to show

meaningful brain signals. It was expected that more aggressive parameters for ASR would decrease model order. This expectation was, in general,

corroborated, with an important caveat. It appears that more aggressive parameters decrease the number of participants with more than 1 ICs.

Experiment 2: Session 1, Correct Rejection condition

            In session 1 of the correct rejection condition, a one-way ANOVA determined that there was a signi�cant di�erence between conditions (Figure 5;

f(6,195)=2.5769, MSE = 0.4959, p=0.02002). This e�ect has medium power (1-β=0.747), which further increases con�dence in this result. To characterize

which conditions were signi�cantly di�erent, a post-hoc Tukey’s Honest Signi�cant Di�erence test was used. There was one statistically signi�cant

di�erence based on a Tukey's critical mean of 0.564. The hand rejection condition average model order was signi�cantly greater than ASR 20, speci�cally

by 0.61 units on average (p = 0.02305). The variances across conditions were considered to be equal in every condition.

        Upon regression analysis, there was a strong association between the model order in each condition and the number of participants left in the analysis

after accounting for the participants with less than 2 ICs, r = 0.9203, p = 0.003298. In fact, 84.7% of the residual variance in model order is explained by the

number of participants left in the analysis. For every additional participant included in the analysis, the average model order increases by 0.0994 units.

Figure 5. Shown is the mean model order preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of the

95% con�dence interval for session 1 CR data. A one-way ANOVA demonstrated that there was a signi�cant di�erence somewhere across the conditions

(f(6,195)=2.5769, MSE = 0.4959, p=0.02002). ASR 20 had a signi�cantly lower model order on average compared to Hand rejection. All other conditions are

considered identical.

Experiment 2: Session 2, Correct Rejection condition

            In session 2 of the correct rejection condition, a one-way ANOVA determined that there was a signi�cant di�erence between conditions (Figure 6;

f(6,182)=2.9993, MSE = 0.4139, p=0.008). This e�ect has medium power (1-β=0.712), which further increases con�dence in this result. To characterize

which conditions were signi�cantly di�erent, a post-hoc Tukey’s Honest Signi�cant Di�erence test was used. There were three statistically signi�cant

di�erences. The variances across conditions were considered to be equal in every condition.
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        The hand rejection condition had a signi�cantly higher model order than ASR 20, with a 0.64 unit di�erence on average (p = 0.005816). ASR 80 had a

signi�cantly higher model order than ASR 20, with a 0.54 unit di�erence on average (p = 0.0404). ASR 120 had a signi�cantly higher model than ASR 20,

with a 0.62 unit di�erence on average (p = 0.0122). There was no signi�cant association between the model order and the number of participants included

in the analysis (p = 0.221).

Figure 6. Shown is the mean model order preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of the

95% con�dence interval for session 2 CR data. A one-way ANOVA demonstrated that there was a signi�cant di�erence somewhere across the conditions

(f(6,182)=2.9993, MSE = 0.4139, p=0.008). There were three signi�cant di�erences.

Experiment 2: Session 1, Hit condition

        In session 1 of the Hit condition, a one-way ANOVA determined that there was a signi�cant di�erence between conditions (Figure 7; f(6,201)=4.5583,

MSE = 0.3586, p=0.000233). This e�ect has medium power (1-β=0.762), which further increases con�dence in this result. To characterize which conditions

were signi�cantly di�erent, a post-hoc Tukey’s Honest Signi�cant Di�erence test was used. There were four statistically signi�cant di�erences. The

variances across conditions were considered to be equal in every condition.

            The hand rejection condition had a signi�cantly higher model order than ASR 20, with a 0.63 unit di�erence on average (p = 0.0023). The hand

rejection condition had a signi�cantly higher model order than ASR 40, with a 0.54 unit di�erence on average (p = 0.00994). ASR 80 had a signi�cantly

higher model order than ASR 20, with a 0.49 unit di�erence on average (p = 0.04178). ASR 120 had a signi�cantly higher model than ASR 20, with a 0.53

unit di�erence on average (p = 0.02272). There was no signi�cant association between the model order and the number of participants included in the

analysis (p = 0.106).
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Figure 7. Shown is the mean model order preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of the

95% con�dence interval for session 1 hit data. A one-way ANOVA demonstrated that there was a signi�cant di�erence somewhere across the conditions

(f(6,201)=4.5583, MSE = 0.3586, p=0.000233). There were four signi�cant di�erences. 

Experiment 2: Session 2, Hit condition

        In session 2 of the Hit condition, a one-way ANOVA determined that there was a signi�cant di�erence between conditions (Figure 8; f(6,194)=3.6203,

MSE = 0.4552, p=0.001993). This e�ect has medium power (1-β=0.745), which further increases con�dence in this result. To characterize which conditions

were signi�cantly di�erent, a post-hoc Tukey’s Honest Signi�cant Di�erence test was used. There were three statistically signi�cant di�erences. The

variances across conditions were considered to be equal in every condition.

The hand rejection condition had a signi�cantly higher model order than ASR 20, with a 0.64 unit di�erence on average (p = 0.01076). ASR 100 had a

signi�cantly higher model order than ASR 20, with a 0.59 unit di�erence on average (p = 0.01999). ASR 120 had a signi�cantly higher model than ASR 20,

with a 0.63 unit di�erence on average (p = 0.01107). 

        Upon regression analysis, there was a strong association between the model order in each condition and the number of participants left in the analysis

after accounting for the participants with less than 2 ICs, r = 0.825, p = 0.0223. In fact, 68.1% of the residual variance in model order is explained by the

number of participants left in the analysis. For every additional participant included in the analysis, the average model order increases by 0.116 units. 
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Figure 8. Shown is the mean model order preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of the

95% con�dence interval for session 1 hit data. A one-way ANOVA demonstrated that there was a signi�cant di�erence somewhere across the conditions

(f(6,194)=3.6203, MSE = 0.4552, p=0.001993). There were three signi�cant di�erences. 

Experiment 2: Discussion 

            In line with expectations for the exploratory analysis, more ‘aggressive’ parameters for ASR produces a lower model order than less aggressive

parameters. This is because fewer data allows for few parameters to be used during the MVAR �tting process; in other words, the data that is left is the

least variable and is the easiest to model with lower dimensional models. However, the results are complicated by an additional regression analysis. In CR

session 1 and Hit session 2, much of the e�ect was explained by the number of participants included in the analysis. More aggressive parameters of ASR

produce lower model order because it preserves fewer data; since fewer data is preserved, there is a lower ability for ICs to be �t (i.e., more participants are

excluded due to having only one IC, which means MVAR cannot be �tted to that data). This did not occur to a statistically signi�cant degree in CR session 2

and Hit session 1. However, it is reasonable to expect that, in general, the lower the model order produced from higher parameters of ASR, the lower the

overall power of the �nal analysis of interest (e.g., rPDC). Thus, there is incentive to not make model order as low as possible from artifact rejection alone.

        In terms of the performance of speci�c ASR parameters, the only consistently signi�cant result was that hand rejection produced a statistically higher

model order than ASR 20. However, because of the aforementioned issue of decreasing overall study power from forcing more participants to be excluded,

ASR 20 might be too aggressive for some types of data sets. Thus, since there were so few statistical di�erences across parameters choices of ASR, it is

reasonable to conclude that, more or less, ASR parameters choices from 20-120 perform similarly well for �tting model order. The only consistent

exception in the present study is ASR 20, which in two out of four cases was too aggressive and is at risk of lowering overall study power. ASR 20 can be

used in studies with a similar result if the research has good reasons for trading power for low variable data. 

Experiment 3:Independent Component Generation via Extended Infomax ICA

        Typically, the goal of decomposition is to maximize the number of dipolar ICs produced by ICA; in fact, the number of ICs is considered to be a direct

measure of the quality of ICA decomposition (Medaglia et al., 2011). Since dipolarity is a relatively strict criteria based on residual variance, there is no

reason to worry if an increase in ICs is being produced by non-brain related components. 

        There was no clear predict on the relationship between ASR parameter choice and the

number of ICs produced. In one sense, more aggressive ASR parameters could produce fewer ICs. This is because there would be fewer data, which would

provide fewer data to e�ectively sift through and identify ICs. However, more aggressive ASR parameters could also produce more ICs, because less

variable data increases the e�ectiveness of ICA decomposition. As such, this experiment was considered to be fully exploratory.

Experiment 3: Combined results

            There was no signi�cant di�erence across ASR parameters in any of the study conditions. For completeness, results for each condition are shown:

correct rejection session 1 (Figure 9), correct rejection session 2 (Figure 10), hit session 1 (Figure 11), hit session 2 (Figure 12).
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Figure 9. Shown are the mean number of ICs preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of the

95% con�dence interval for session 1 correct rejection data. There was no signi�cant di�erence across conditions.

Figure 10. Shown are the mean number of ICs preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of

the 95% con�dence interval for session 2 correct rejection data. There was no signi�cant di�erence across conditions.
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Figure 11. Shown are the mean number of ICs preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of

the 95% con�dence interval for session 1 hit data. There was no signi�cant di�erence across conditions.

Figure 12. Shown are the mean number of ICs preserved after di�erent artifact rejection strategies, with the edge of the bars showing the upper and lower bound of

the 95% con�dence interval for session 2 hit data. There was no signi�cant di�erence across conditions.

Experiment 3: Discussion

            No clear prediction was made, since at least two opposing, equally valid predictions were positive. Ultimately, there was no signi�cant di�erence

between the number of ICs produced across all conditions. As such, it appears that there is no di�erence in the overall number of ICs produced by di�erent

ASR parameter choices between 20 and 120. The variance across all conditions was the same, as well.

Overall Recommendations

        After experiments 1-3, the results show that, in general, ASR is as e�ective or better than hand rejection of artifacts in EEG data. Speci�cally, there is

no di�erence in the choice between ASR with a parameter of 20 to 120 and hand rejection for the average number of ICs produced. As such, secondary

characteristics become more important when picking a parameter. 

            It was found, as expected, that higher or less aggressive values of ASR (e.g., 100, 120) preserved more trials on average than more aggressive

parameters of ASR (e.g., 20, 40). However, it appears that more aggressive parameters of ASR (e.g., 20, 40) produce lower model orders in MVAR model
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�tting, which is an important characteristic of rPDC and other information-theoretic techniques. As discussed, more aggressive parameters produce fewer

data, which in turn requires fewer parameters to �t an MVAR model to the data. However, as it was also noted, in one half of the conditions the lower

model order was explained primarily by there being fewer participants included in the analysis. A participant was removed when there was only one IC

identi�ed in decomposition, because two ICs are required for MVAR model �tting, by de�nition.  Thus, a parameter choice of 20 or 40 for ASR, if it removes

a large number of participants, is too aggressive given the number of ICs preserved is the same across conditions. 

        Taking all quantitative features into account, higher parameters of ASR (e.g., 120) performed as well as hand rejection with only a mild impact in model

order. However, as mentioned, the trade o� is that all participants remained included in the analysis which maximizes the ultimate statistical power of

rPDC to �nd an e�ect. This is the �rst evidence that parameters outside of 10-100 for ASR might be e�ective and also is the �rst clear evidence to show that

the optimal parameter choice of ASR is not 20 - 30 as Chang et al. (2019) suggest. It is recommended that authors do a similar quantitative analysis as the

one in this study to justify ASR parameter choice. Even though it is mildly time consuming, ASR increases the replicability of studies and allows researchers

to fully inform scientists of the choices and trade o�s made by selecting a particular parameter. 

        Future research should increase the types of data sets that ASR is tested on. This is the �rst study to look at ASR’s use in cognitive tasks. Because the

present results are di�erent compared to previously published research, it appears that ASR’s e�ectiveness depends on the type of data set it is applied to

(e.g., muscle movement, cognitive tasks). This will better inform “best practice” research.
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      Con�dence interval  

Pair Di�erence Critical-Q Lower Upper p-value

Hand Rej - ASR 20 12.806452 3.418423 -2.966698 28.579602 0.196607

Hand Rej - ASR 40 13.387097 3.573414 -2.386053 29.160247 0.155109

Hand Rej - ASR 60 7.096774 1.89434 -8.676376 22.869924 0.832512

Hand Rej - ASR 80 3.322581 0.886896 -12.450569 19.095731 0.995867

Hand Rej - ASR 100 1.225806 0.327204 -14.547344 16.998956 0.999987

Hand Rej - ASR 120 6.774194 1.808234 -8.998956 22.547344 0.861067

ASR 40- ASR 20  0.580645 0.154991 -15.192505 16.353795 1

ASR 60 - ASR 20  5.709678 1.524083 -10.063472 21.482828 0.934037

ASR 80 - ASR 20  9.483871 2.531527 -6.289279 25.257021 0.556263

ASR 100 - ASR 20  11.580646 3.091219 -4.192504 27.353796 0.307663

ASR 120 - ASR 20  19.580646 5.226657 3.807496 35.353796 0.00513158 **

ASR 60 - ASR 40  6.290323 1.679074 -9.482827 22.063473 0.898341

ASR 80 - ASR 40 10.064516 2.686519 -5.708634 25.837666 0.482848

ASR 100 - ASR 40 12.161291 3.24621 -3.611859 27.934441 0.251128

ASR 120 - ASR 40 20.161291 5.381648 4.388141 35.934441 0.00346557 **

ASR 80 - ASR 60 3.774193 1.007444 -11.998957 19.547343 0.991745

ASR 100 - ASR 60 5.870968 1.567136 -9.902182 21.644118 0.925102

ASR 120 - ASR 60 13.870968 3.702574 -1.902182 29.644118 0.125803

ASR 100 - ASR 80 2.096775 0.559692 -13.676375 17.869925 0.999696

ASR 120 - ASR 80 10.096775 2.69513 -5.676375 25.869925 0.478822

ASR 120 - ASR 100 8 2.135438 -7.77315 23.77315 0.738623

Note. * Denotes p < 0.05, ** Denotes p < 0.01, *** Denotes p < 0.001. The critical mean for the comparisons was 15.77315. The SE was 3.746304. N = 31 values.

Appendix A. Levene’s test for the equality of variances comparing the variances of the data produced by each ASR parameter condition for the average number of persevered

trials with a 95% con�dence interval (Session 1, Correct Rejections)
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      Con�dence interval  

Pair Di�erence Critical-Q Lower Upper p-value

Hand Rej - ASR 20 14.16129 4.84E+00 1.840949 2.65E+01 0.013009*

Hand Rej - ASR 40 11.709677 4.001636 -0.610664 24.030018 0.0744356

Hand Rej - ASR 60 8.741935 2.987447 -3.578406 21.062276 0.349196

Hand Rej - ASR 80 6.903225 2.359091 -5.417116 19.223566 0.638026

Hand Rej - ASR 100 2.451612 0.837808 -9.868729 14.771953 0.996982

Hand Rej - ASR 120 2.32258 0.793713 -9.997761 14.642921 0.997767

ASR 40- ASR 20  2.451613 0.837808 -9.868728 14.771954 0.996982

ASR 60 - ASR 20  5.419355 1.851997 -6.900986 17.739696 0.846913

ASR 80 - ASR 20  7.258065 2.480353 -5.062276 19.578406 0.580662

ASR 100 - ASR 20  11.709678 4.001636 -0.610663 24.030019 0.0744355

ASR 120 - ASR 20  11.83871 4.05E+00 -0.481631 24.159051 0.0685786

ASR 60 - ASR 40  2.967742 1.014189 -9.352599 15.288083 0.991445

ASR 80 - ASR 40 4.806452 1.642545 -7.513889 17.126793 0.90764

ASR 100 - ASR 40 9.258065 3.163828 -3.062276 21.578406 0.280324

ASR 120 - ASR 40 9.387097 3.207923 -2.933244 21.707438 0.264451

ASR 80 - ASR 60 1.83871 0.628356 -10.481631 14.159051 0.999407

ASR 100 - ASR 60 6.290323 2.149639 -6.030018 18.610664 0.732547

ASR 120 - ASR 60 6.419355 2.193735 -5.900986 18.739696 0.713365

ASR 100 - ASR 80 4.451613 1.521283 -7.868728 16.771954 0.934592

ASR 120 - ASR 80 4.580645 1.565378 -7.739696 16.900986 0.925481

ASR 120 - ASR 100 0.129032 0.0440951 -12.191309 12.449373 1

Note. * Denotes p < 0.05, ** Denotes p < 0.01, *** Denotes p < 0.001. The critical mean for the comparisons was 12.320341. The SE was 2.926222. N = 31 values.

Appendix B. Levene’s test for the equality of variances comparing the variances of the data produced by each ASR parameter condition for the average number of persevered

trials with a 95% con�dence interval (Session 1, Hit)

Footnotes

[1] Model order acts essentially as a parameter that allows the constructed MVAR model to not over or under�t the data by specifying how many data points

to include in the model.

[2]  Power spectrum of four di�erent channels was measured, but was not analyzed in this draft due to time constraints. This will be addressed in the

summer. 

[3] Please see link for description on Ghost

ICs https://sccn.ucsd.edu/wiki/Makoto%27s_preprocessing_pipeline#Tips_for_copying_ICA_results_to_other_datasets_.2806.2F26.2F2018_updated.2
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