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Generative models hold great potential, but only if one can trust the evaluation of the data they

generate. We show that many commonly used quality scores for comparing two-dimensional

distributions of synthetic vs. ground-truth data give better results than they should, a phenomenon

we call the “grade in�ation problem.” We show that the correlation score, Jaccard score, earth-

mover’s score, and Kullback-Leibler (relative-entropy) score all su�er grade in�ation. We propose

that any score that values all datapoints equally, as these do, will also exhibit grade in�ation; we

refer to such scores as “equipoint” scores. We introduce the concept of “equidensity” scores, and

present the Eden score, to our knowledge the �rst example of such a score. We �nd that Eden avoids

grade in�ation and agrees better with human perception of goodness-of-�t than the equipoint

scores above. We propose that any reasonable equidensity score will avoid grade in�ation. We

identify a connection between equidensity scores and Rényi entropy of negative order. We conclude

that equidensity scores are likely to outperform equipoint scores for generative models, and for

comparing low-dimensional distributions more generally.

I. Introduction

The ability to compare pairs of two-dimensional distributions robustly and accurately is critical in

machine learning, and in data analysis more generally. This ability is especially valuable in the context

of generative models[1]  to measure model quality by assessing how well synthetic data �ts training

data. For example, generative modeling of tabular data, where each row is a datapoint and each

column is a feature, has important uses across many �elds[2][3][4][5]. Generative modeling is of great

interest for imaging and multi-modal data as well[1][6][7]. Although datasets for the latter applications
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are generally high-dimensional, two-dimensional analysis plays a critical role in quality assessment,

either for testing the �delity of pairwise relationships or via dimensionality reduction techniques such

as PCA, tSNE, or UMAP[8][9][10].

Despite its ubiquity, the task of comparing two-dimensional distributions is non-trivial and has led to

much work in developing quality scores. At a high level, quality scores can be classi�ed as statistical

vs. functional. Statistical scores are designed to demonstrate that some statistic, for example the mean

of one of the features, has the same value in the synthetic dataset as in the real dataset (up to sampling

error). In contrast, functional scores are meant to show that the outcome of some procedure, for

example inference, is indistinguishable regardless of whether the input data is real or synthetic

(again, up to sampling error) [11]. Statistical scores have the advantage of being easier to calculate and

of being generalizable from dataset to dataset; functional scores often take more human and/or

compute time and are more likely to be idiosyncratic to a particular dataset. For these reasons,

statistical scores are of general interest.

Statistical scores appear often in the literature on generative modeling, especially of synthetic tabular

data. For example, two widely-used and easy-to-compute statistics are the correlation coe�cient 

 and its square   (the coe�cient of determination), which measure the joint distribution between

pairs of features (e.g. columns in tabular data). In turn, two common types of correlation coe�cient

are Pearson’s, which measures linear relationships, and Spearman’s, which is a generalization for any

monotonic relationship. For a given pair of columns, one can calculate Pearson’s or Spearman’s   for

the real data ( ), do the same for the synthetic data ( ), and use them to calculate a correlation

score, for example as   [12] or  . (Division normalizes the range to 0-to-1;

subtraction converts the di�erence into a similarity score.) These two versions correlate closely with

each other; the �rst is used more often in the literature, where it is also known as the correlation

similarity.

There are two important challenges to using the correlation score as a measure of �t between a pair of

two-dimensional distributions. The �rst is the well-known problem that many di�erent distributions

can have the same correlation coe�cient, as illustrated by examples such as Anscombe’s quartet[13]

[14] (Fig. 1a). Second, there are many more ways to get a low correlation than a high correlation. These

two challenges can have the following e�ect. Suppose two columns in the real/training data have some

non-random relationship that happens to have a near-zero correlation, for example like columns in

the Datasaurus Dozen datasets, and that the synthetic/generated data fails to learn this relationship,
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resulting in a random distribution (Fig. 1b). Because random data has zero correlation (up to sampling

variance), the correlation score between the real and synthetic data will be high, despite the low

quality of the synthetic data. In principle such issues can to lead to inappropriately high quality scores,

a “grade in�ation” problem that can make a generative model look better than it is.

Figure 1. The grade in�ation problem. a: Two distributions from Anscombe’s quartet[13]. Both have a

Pearson’s   of 0.82, meaning their correlation score is 1.00 despite their di�erences (which are

appreciable in their KDEs, right). Black lines show least-squares regression �ts, to illustrate

indistinguishable slopes and intercepts. b: A highly non-random distribution from the Datasaurus

Dozen[14] and (Gaussian-distributed) synthetic data with the same means and standard deviations from

an untrained generative model. Pearson’s   of -0.06 and -0.11, respectively, resulting in the very high

correlation score of 0.97 despite the poor �t.

To further characterize the grade in�ation problem, here we evaluate several additional quality scores:

the earth-mover’s score, Jaccard score, and Kullback-Leibler or relative-entropy score. We �nd that

all can fall prey to grade in�ation. To address this problem, we introduce and describe a new score, the
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Eden score, that appears to avoid grade in�ation. Our investigation focuses on two-dimensional

distributions and pairwise relationships, which are often e�ective—sometimes “unreasonably” so[15]

[16]—at capturing key relationships in high-dimensional data.

II. Methods

A. Datasets

We generated synthetic data from both in-house two-dimensional toy datasets (called Dart,

Trimodal, and Stripes) and the following high-dimensional machine-learning datasets obtained from

the University of California Irvine machine-learning repository (UCIMLR): Covertype, Communities

and Crime, Energy E�ciency, and Rice (Cammeo and Osmancik) (UCIML ID nos. 31, 183, 242, and 545,

respectively). The latter were retrieved using the lucie Python package[2]. Anscombe’s Quartet was

obtained via the seaborn Python package. The Datasaurus Dozen were obtained via

https://www.autodesk.com/content/dam/autodesk/www/autodesk-

reasearch/Publications/pdf/SameStatsCode.zip from the �le DatasaurusDozen.tsv.

B. Generative models and KDEs

The following models/model architectures were used to generate synthetic data: an in-house

implementation of Gaussian Copula[17], the CTGAN implementation in the SDV package[12][18][19], a

�ow-based model from the Python package n�ow[20], as well as in-house energy-based models[21].

KDEs were generated using the kdeplot function of Python’s seaborn package with levels=5 but

otherwise default parameters[22]. Note in seaborn the bandwidth of the KDEs is given by Scott’s

method[23], and the lowest 5% of the probability mass is ignored when �nding the likelihoods of the

contours.

C. Correlation and earth-mover’s scores

We consider �ve di�erent quality scores. The correlation score, the earth mover’s score, the Jaccard

score, and the Kullback-Leibler (KL) divergence score are based on previous work[24]; the Eden score

is newly described in this work (see below). Correlation score is de�ned using Pearson’s    as 

, with   and    the two distributions (e.g. real vs. synthetic data), re�ecting the most

common de�nition we found the literature. The earth-mover’s score is de�ned as  , where   is

R
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a scaling factor that can be chosen to scale the score as desired (here,  ), and EMD is the

normalized earth-mover’s distance from the pyemd python package[25]. Details for the remaining

scores follow.

D. Jaccard score

The Jaccard score, also known as the intersection-over-union (IoU), is de�ned as

where the numerator is the size of the intersection between the two distributions   and  , and the

denominator is the size of their union[26].

The size of the union is straightforward to de�ne: it is the total number of points. In contrast, the

intersection is a fuzzy notion due to points in the real and synthetic data generally being disjoint sets.

Therefore, to de�ne the intersection, we �t one Gaussian KDE model to the real data and a second

Gaussian KDE to the synthetic data. We denote these real and synthetic KDEs   and  , respectively.

We take the intersection and union to be:

Thus, a point in the real data is in the intersection if its likelihood as evaluated by the synthetic KDE is

su�ciently close to the maximum likelihood of the synthetic KDE (“su�ciently close” is taken to

mean that the ratio of the the two likelihoods  ), and similarly for the synthetic data.

E. Kullback-Leibler score

The KL divergence (relative Shannon entropy) is a special case of the Rényi divergence between two

continuous distributions, de�ned as:

Here,   is called the order parameter; the KL divergence is the Rényi diverence in the limit of  .

We de�ned the KL score as the exponential of the negative KL divergence:
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with   and   as above, approximated using Gaussian KDE also as above. Since the KL divergence takes

values between   and  , the KL score has the desirable range  . We approximated the integral for 

  by the Monte-Carlo method, which introduces (minor) stochasticity into the KL score. The

Monte-Carlo approximation is as follows. We have:

which can be rewritten as an expectation value:

which in turn can be estimated from a sample of  :

where   is the sample size.

F. Eden score

In the Eden score, the di�erence between two KDEs is calculated by calculating the di�erence for each

successive ring or “annulus” de�ned by the contours of the KDEs, and averaging these di�erences.

For each annulus in the real/synthetic data, we de�ne a per-annulus similarity score. Without loss of

generality, label the outermost annulus 0, the second-outermost annulus 1, and so on. (The

unbounded region outside of all contours is excluded.) De�ne the   per-annulus score by a variation

of the Jaccard formula (Eq. 1), with the area playing the role of size:

The Eden score is obtained by averaging scores over all annuli:

Here   is the number of annuli. Note, technically the innermost annulus is usually a disk, and any

annulus can consist of non-contiguous densities (e.g. multiple peaks).   was used.

To estimate the areas in the numerator and denominator of Eq. 8, a Monte-Carlo method is used: a

bounding rectangle centered at the data is sprinkled with a large number of uniformly distributed

points; the number of points that lie inside the union/intersection of a real and a synthetic annulus   is

p q

0 ∞ [0, 1]

(p||q)D1

(p||q) = ∫ dxp(x) log( )D1
p(x)

q(x)
(5)

(p||q) = [log( )]D1 Ex∼p

p(x)

q(x)
(6)

p

(p||q) ≈ log( )D1
1

N
∑

∼pxi

p( )xi

q( )xi

(7)

N

ith

=si
Area( annulus of p ∩ annulus of q)ith ith

Area( annulus of p ∪ annulus of q)ith ith
(8)

Eden =
1

nannuli

∑
i=0

−1nannuli

si (9)

nannuli

= 5nannuli

i

qeios.com doi.org/10.32388/SN51KH 6

https://www.qeios.com/
https://doi.org/10.32388/SN51KH


counted. To determine whether a point lies inside a union/intersection of two annuli, we compute the

likelihood of the point under   and   and check whether the likelihood falls within the likelihood

range that de�nes two adjacent contours. As with the KL score, this process introduces minor

stochasticity.

G. Validation

We used human visual inspection as a gold standard for comparison of two-dimensional distributions.

39 pairs of plots were shown to 20 human raters. Raters all had a background in data science, science,

and/or engineering, to increase the likelihood of exposure to/familiarity with the general practice of

data presented as KDEs. Each plot consisted of two superimposed KDEs in di�erent colors,

corresponding to training data and synthetic data output by a generative model. Plots were chosen so

that the plot with the higher Eden score received a lower score according to at least one of the other

scores. Scores were not shared with the human raters, making this a blind test.

Each human rater was asked to choose the plot in which the contours matched better, considering all

contours; the interpretation of “better” was otherwise left up to the rater. The 39 pairs corresponded

to 3 repeats of each of 13 unique pairs of columns. For each repeat, the pair was subjected to rotations

or color swaps, and the left-right order of the plots was randomized; this allowed for a per-person

test of consistency, to assess whether the rater picked the same plot all three times regardless of

position, orientation, and color. Separately (i.e. without the rater), the �t in each plot was scored

according to each scoring method—correlation, earth-mover’s, Jaccard, KL, and Eden—to determine

the higher-scoring plot in each pair. Cohen’s kappa was used to calculate the agreement between each

rater and each scoring method. The Mann-Whitney U test was used to test the null hypotheses that

each two scoring methods were equally good (Python, scipy.stats.mannwhitneyu).

III. Results

A. Correlation score

To illustrate how the correlation score can lead to grade in�ation, we �rst measured this score

between pairs of distributions from Anscombe’s quartet. The four distributions in this set were

devised in the 1973 to show how di�erent distributions can have identical Pearson’s    (to several

digits). Fig. 1a illustrates the outcome: a perfect correlation score, despite the two distributions

f̂ r f̂ s

R

qeios.com doi.org/10.32388/SN51KH 7

https://www.qeios.com/
https://doi.org/10.32388/SN51KH


di�ering materially from each other. This is grade in�ation. The “dino” dataset from the Datasaurus

Dozen illustrates the compounding problem that arises as a result of low-correlation distributions

being more common than high-correlation ones (Fig. 1b). Speci�cally, treating dino as the training

set, we randomly intialized a generative model with the same x and y means and standard deviations,

and sampled from that model without any training. The dino dataset has a Pearson’s    of close to

zero. Random data also has a Pearson’s    of close to zero. Because these values are similar, the

correlation score is nearly perfect—0.97 in the sample in Fig. 1b—despite the model having learned

literally nothing beyond the location and scale of the data. Again, this is grade in�ation.

To illustrate the phenomenon on datasets and generative models used in real-world data science, we

applied a variety of models to a selection of datasets from the UCIMLR and measured the correlation

score between the synthetic/generated data and the real/training data, for representative pairs of

columns (Fig. 2a-d). Even when �ts were low quality by eye, the correlation score was universally

high, ranging from 0.903 to 0.994 (Table I), demonstrating grade in�ation. As a positive control, we

also scored a high-quality model �t of an in-house dataset called Dart (Fig. 2e). Not surprisingly, the

correlation score was also excellent, at 0.981, but notably this score was actually lower than the 0.994

achieved by the low-quality �t in Fig. 2a (Table I). Thus, correlation score has di�culty di�erentiating

between high- and low-quality �ts, leading to grade in�ation for some of the latter.

R

R
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Figure 2. Fits scored in Table I. Left to right: real data (blue), generated synthetic data (yellow),

and KDEs. a is considered a very low-quality �t; b-d are considered low-quality �ts; e is

considered a high-quality �t. Datasets, sizes, features, and models are as labeled. UCIMLR=UC

Irvine Machine-Learning Repository. GC=Gaussian copula. nFlow=normalizing �ow.

ICA=independent component analysis.

B. Earth-mover’s score

A more sophisticated score derives from the earth-mover’s distance (EMD; a.k.a. the Mallow,

Wasserstein, or Kantorovich-Rubenstein distance)  [27][28][29][30], which is the basis of the Frechet

inception distance that is commonly used in machine learning  [31]. If each two-dimensional

distribution is a pile of sand, the EMD is the minimum amount of work required to transform one

distribution into the other by moving sand around. EMD is easily converted to a score with range 

  via exponentiation (Methods). To apply this score, the �nite collections of datapoints in each

distribution are binned into histograms. (Note, the algorithm used here, from  [25], does not require

smoothing the data by KDE, though that is an alternative approach.) In its native form, the EMD has

the undesirable feature of being sensitive to the overall number of data points; to avoid this scale-

dependence, the real and synthetic data are generally normalized, as we do here, before computing the

score.

We calculated the earth-mover’s score for each �t in Fig. 2 and found this score also exhibits grade

in�ation (Table I). Interestingly, it resulted in high scores in all cases where the training data

exhibited sharp boundaries, regardless of whether the �t was of low quality, as in Figs. 2b and d, with

scores of 0.982 and 0.959, respectively, or high quality, as in Fig. 2e, which it gave a score of 0.949.

The earth-mover’s score did, however, result in (appropriately) low scores in the low-quality �ts of

the two multimodal distributions, Figs. 2a and c, with scores of 0.124 and 0.379, respectively. Of note,

scaling the scores by choosing a di�erent value of   does not resolve the grade in�ation in Figs. 2b and

d, because scaling so that lower quality �ts have lower scores has the adverse e�ect of also reducing

the score of high-quality �ts: because changing    does not change the ordering of scores,    cannot

thread this needle. Also of note, the earth-mover’s score can be highly sensitive to outliers, because

the optimal transport might be such that the outliers have to be moved over further distances

compared to more central points (see Discussion).

(0, 1)

k

k k
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Table I. Scores for the �ts and samples in Fig. 2. Fig. 2a-d are considered very low- or low-quality �ts

deserving lower scores; Fig. 2e is considered a high-quality �t deserving higher scores. See Results for

details. Standard deviations are reported for scores whose calculation involves a stochastic element

(Methods); they are not for repeat sampling (see Con�dence Intervals).

C. Jaccard score

A score often used in the evaluation of generative models is the Jaccard score or intersection-over-

union (IoU) [32][26]. It has the desirable range of 0 to 1. Of note, the Jaccard score does not exhibit the

outsize sensitivity to outliers that the earth-mover’s score has, since the relative distance between

non-intersecting densities does not enter into the equation (Methods). In our analysis, the Jaccard

score was found to behave like the correlation score in that values were similar regardless of whether

�ts were high- or low-quality (Table I). The main di�erences were (1) the range of scores was lower

than for the correlation score and (2) one of the low-quality �ts—Fig. 2d, with a Jaccard score of 0.644

—scored 0.2 lower than the others, which ranged from 0.811 to 0.870. Importantly, the score of 0.834

for the high-quality �t (Fig. 2e) was actually lower than for the lowest-quality �t (0.870 for Fig. 2a),

indicating grade in�ation. We found that the Jaccard score is especially prone to grade in�ation when

one distribution completely circumscribes the other. Together, these results support the conclusion

that, like the correlation and earth-mover’s scores, the Jaccard score is not a dependable discriminant

of quality in generative models, due to grade in�ation.

D. Kullback-Leibler score

A third relevant quality score is based on the Kullback-Leibler (KL) divergence, also known as relative

entropy. This quantity is interpreted as the information lost, or the “surprise,” in approximating one

distribution by another [33][34]. It is used widely in generative models, although in our reading of the

literature not as frequently for evaluating synthetic data as the correlation, earth-mover’s, or Jaccard
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scores. However, the ubiquity of the KL divergence and its utility comparing two-dimensional

distributions make it a natural comparator.

KL divergence is one of a family of Rényi divergences parameterized by  , the order. From Eq. 4, 

 weights the extent to which the density of   contributes to  . For  ,   is almost completely

determined by the highest-density region of  . In contrast, for   (the most extreme example

of negative order), the sign �ip results in    being almost completely determined by the highest-

density region of  ; i.e. the roles of    and    are essentially swapped ( ’s sign is also �ipped).

Meanwhile,   means density is not weighted at all, resulting in the trivial result of   for all 

  and    (assuming    and    do not vanish anywhere): this is because any distributions    and    are

trivially indistinguishable if one ignores their density distributions. KL divergence corresponds to 

. The divergence is easily converted into a score by exponentiation (Methods).

While the KL scores from Table I are not that high in absolute terms, the �t for Fig. 2a su�ers grade

in�ation relative to the �ts for Figs. 2c-d, which are better �ts by eye but have similar scores. The

reason for the grade in�ation in this case is because the real and synthetic data have similar support

but di�erent numbers of modes[34], as follows. Recall that KL divergence can be understood as the

amount of surprise at the real data, given the synthetic data. In Fig. 2a, the synthetic data has a single

mode, with a support that spans the the real data’s two main modes. Even though the �t is low quality,

it does have density that overlaps the centers of the two main modes in the real data. As a result, the

surprise factor at �nding density in these regions of the real data is low, in�ating the KL score (which

varies inversely with the divergence), despite the low-quality �t. This inconsistency is a drawback of

the KL score.

E. Eden score

The Eden score di�ers qualitatively from the correlation, earth-mover’s, Jaccard, and KL scores in

being an equidensity score, whence its name (see Discussion). Eden is based on the principle that a

distribution   is a good match of a distribution   if their regions of probability density   coincide, for all

densities  . Any reasonable method can be used for determining coincidence; we use the Jaccard score,

since Jaccard exhibits grade in�ation only when densities vary, which is de�nitionally not the case for

equidensity regions; therefore unlike when comparing complete distributions, comparison of

equidensity regions should not have this problem. To calculate the Eden score, the Jaccard score is

calculated for each annulus or ring of density   and these scores are then averaged (Fig. 3). All contours

α

α p Dα α → ∞ Dα

p α → −∞

Dα

q p q Dα

α = 0 = 0Dα

p q p q p q

lim(α → 1)

p q i

i

i
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of the distribution count equally, avoiding the issues encountered with the earth-mover’s and Jaccard

scores (and, of course, with the correlation score).

Figure 3. The Eden score. The Eden score comparing the blue and yellow distributions in the

high-quality �t in (a) is calculated as the mean intersection-over-union for each equidensity

contour (ring, annulus) (b). Peaks, slopes, and foothills contribute equally. Top row;

intersections; bottom row, unions (both in green). The ratios for the three contour levels shown

are 0.77, 0.81, and 0.78 (left-to-right), which average to an Eden score of 0.79 for the �t of the

two distributions in (a). For clarity, the score is calculated over three contours, instead of the �ve

used in the rest of this study. c-d: Similar for a low-quality �t. The peaks are disjoint (ratio,

0.00), the slopes intersect by only a sliver (ratio, <0.01), and the foothills’ intersection-over-

union is 0.09, yielding an Eden score of 0.03.

Indeed, calculation of the Eden score for each of the �ts in Fig. 2 showed that it avoids grade in�ation

(Table I). Scores for the low–quality �ts in Fig. 2a-d ranged from 0.162 to 0.261 vs. 0.853 for the high-

quality �t in Fig. 2e. (The con�dence intervals in Table I account for the stochastic element in our

implementation, which can be made arbitrarily small by scaling up the Monte Carlo; the same is true

for the KL score. The others are deterministic.) Eden was the only score to demonstrate a consistent

qeios.com doi.org/10.32388/SN51KH 13

https://www.qeios.com/
https://doi.org/10.32388/SN51KH


gap between low- and high-quality �ts, without exceptions. Moreover, this gap was sizable, at 3-4x.

Thus, it was immune to grade in�ation in these examples.

F. Validation

Human visual inspection leverages the visual cortex’s millions of years of evolved expertise at

comparing sizes and shapes to provide a gold-standard assessment of the similarity of two-

dimensional distributions. Quantitative expertise hones this ability. Therefore, to validate our results,

we showed 20 scientists, data scientists, and engineers 13 �ts from pairs of generative models and

asked them to choose the better �t. We then compared their choices to each of the �ve scores we

evaluated: correlation, earth-mover’s, Jaccard, KL, and Eden. Raters were not shown any scores,

making this a blind test.

Eighty percent of raters agreed most closely with the Eden score (Fig. 4a), vs. 15% for KL (MWU 

), 5% for Jaccard, and 0% for the earth-mover’s and correlation scores. Although Eden

consistently outperformed KL on a person-by-person basis (Fig. 4a), its advantage over KL was small

overall (Fig. 4b), with a median Cohen’s    of 0.722 across raters (the “excellent” range; 10th–90th

percentile: 0.429–0.852) vs. 0.606 (“moderate” agreement; 0.360–0.727) for KL. The explanation:

Eden and KL happened to agree on most pairs of �ts in the test (Fig. 4c), an artifact of how the pairs

were chosen (Methods). When the analysis in Fig. 4b was repeated on only those pairs on which Eden

and KL disagreed (not shown), 80% of raters agreed with Eden over KL, consistent with Fig. 4a.

p = 1.6 × 10−4

κ
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Figure 4. Validation. 20 human experts were each asked to rate which of two �ts was better

for several pairs. Ratings were then compared against each of the �ve statistical scoring

methods. Agreement between each human rater and the scoring method was measured by

Cohen’s  . a: Percent of raters who agreed the most with each scoring method (Eden, KL,

etc.). p-value is for Mann-Whitney U on the ranks. b: All   values for each score, with

Mann-Whitney U p-values (Methods). c: Agreement between methods for test pairs (again

measured by  ).

Both Eden and KL substantially outperformed the earth mover’s score (median  ; “low”

agreement, 10th-90th percentile 0.129–0.634), correlation score (median  ; -0.126–0.221),

and Jaccard score (median  ; -0.067–0.222). Of note, the near-zero median  s of the

correlation scores and Jaccard scores indicate that agreement between these scoring methods and

humans with domain expertise is no better than chance, arguing against their use. In contrast, Eden’s

showed excellent agreement with human gold standard. Together with its avoidance of grade

in�ation, including both its clear segregation between low- and high-quality �ts and its scoring

consistency, Eden’s performance supports its use for evaluating two-dimensional distributions.

κ

κ

κ

κ = 0.311

κ = −0.019

κ = 0.055 κ
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G. Con�dence intervals

For the most direct, apples-to-apples comparisons, generated synthetic data should have the same

number of datapoints as the training data. However, synthetic data is often needed precisely because

the training dataset is small; in principle, sampling the equivalent small number of synthetic

datapoints can result in comparatively large sampling error in quality scores. However, we found that

the alternative of oversampling from the model can result in a synthetic-data KDE that is qualitatively

sharper than that of the real dataset, potentially complicating comparisons (Fig. 5). To illustrate, we

trained a Gaussian copula on a target with a striped pattern (Fig. 5a). The normal KDE plot (i.e. without

oversampling of the synthetic data) does not pick up the stripes (Fig. 5b), whereas the KDE plot with

oversampled synthetic data does (Fig. 5c). This lowers the Eden score (from 0.452 to 0.160), as might

be expected from how di�erent the KDE becomes. Of the �ve scoring methods, only Eden and KL were

sensitive enough to fall in response to this di�erence. The correlation, earth-mover’s, and Jaccard

scores actually rose, but were all  0.941 to begin with, re�ecting the grade in�ation problem.

Our results support repeat sampling as a middle ground between sampling error and mismatch due to

oversampling: i.e., scoring each sample and reporting summary statistics such as the mean ± standard

deviation of the scores, the median, interquartile scores, or simply the  th percentile score. The latter

is more conservative than the mean or median: it is the score that   percent of the scores are better

than. Figs. 6a and 6c show the distribution of values for each score for 5,000 resamplings for the very

low-quality �t from Fig. 2a and the high-quality �t from Fig. 2e, respectively. (Figs. 6b and 6d show

KDEs from di�erent samples drawn from the range of scores for Eden.) Notably, the score

distributions spanned at least several percent for all �ve scoring methods. The earth-mover’s score on

the very low-quality �t was especially variable, with an interquartile range of    (5th-95th

percentiles,  - ). The extent of the variation observed in Fig. 6 supports caution in grading

generative models, and strongly suggests that results from single samples can be misleading, may

lack discriminative power, and therefore should be avoided if possible.

≥

n

n

0.22

0.23 0.72
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Figure 5. Oversampling a�ects scoring. a: Target (in-house “Stripes” dataset). b: Sample (orange) the

same size as the target. Correlation, earth-mover’s, Jaccard, KL, and Eden scores: 0.993, 0.941, 1.000,

0.996, and 0.452, respectively. (c) Oversampling. Scores (same order): 0.998, 0.992, 1.000, 0.862, and

0.160. Eden is the most sensitive to the di�erence in KDEs between normal sampling (b) and oversampling

(c).
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Figure 6. Con�dence intervals. a: Score distributions from 5,000 repeat samples for the �t

from Fig. 2a, a very low-quality �t; 5th- and 95th-percentile limits shown. Note, all 5,000

samples are from the same �t. b: Representative KDE plots for samples drawn (purple

lines) from di�erent parts of the Eden score distribution (with Eden scores shown). c:

Score distributions from 5,000 repeat samples for the �t from Fig. 2e, a high-quality �t,
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with 5th- and 95th-percentile limits. Again, all 5,000 samples are from the same �t. d:

Representative KDE plots for samples drawn from di�erent parts of the Eden score

distribution (with Eden scores shown).

IV. Discussion

All modeling bene�ts from reliable quality scores, including two-dimensional distributions resulting

from generative models. Scores can mislead in several ways, including over�tting and in leading to

selection of the wrong model[35]. Here we add to these dangers the grade-in�ation problem, named

for a perenially-decried phenomenon in U.S. higher education[36], in which a statistic scores a model

higher than it should. We describe why the commonly used correlation score should be particularly

prone to grade in�ation, and o�er examples from real-world datasets where other commonly used

scores—speci�cally, the earth-mover’s, Jaccard, and KL scores—still have this problem, while at least

one other score, our newly proposed Eden score, appears not to. We also show the value of multiple

sampling for measuring and reporting con�dence in these scores, which appears to be a relatively

uncommon practice in the literature. We suspect the grade-in�ation problem is not new, but is made

newly relevant by the explosive growth of data science, the need to select among high-performing

models, the inability to keep up via human visual inspection, and the computational resources

increasingly available for data visualization (for example, enabling pairwise scatter plots for ever

higher-dimensional datasets).

It is interesting that the Eden score agrees substantially better with human perception of goodness-

of-�t than the other scores tested, in a blind head-to-head comparison on data from generative

models. This �nding suggests that when human raters compare distributions for similarity, they, like

the Eden score, might also be comparing distributions at multiple densities and subconsciously

averaging the result. The caveats: raters were speci�cally asked to consider all contours, were shown

the distributions as KDE plots (as opposed to, for example, as three-dimensional and/or interactive

renderings), and were limited to people with scienti�c backgrounds. This is an interesting topic for

further investigation.
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A. Equipoint vs. equidensity scores

What explains the di�erence between the earth-mover’s, Jaccard, and KL scores on the one hand,

which exhibited grade in�ation, and Eden, which did not? One answer is that these two sets of scores

di�er qualitatively in how they weight di�erent regions of the two distributions being compared. The

earth-mover’s score weights each datapoint equally, regardless of where in a distribution that point

lies. Because by de�nition there are more datapoints in areas of higher density, the earth-mover’s

score will tend to be high as long as the regions of highest density line up well between the two

distributions, almost regardless of how mismatched the low-density regions are (absent extreme

outliers). The Jaccard and KL scores also weight each datapoint equally, with similar results. Note,

these three scores are likely not the only ones with this property. For example, multi-dimensional

extensions of the Kolmogorov-Smirnov [KS] statistic also seem to have this issue[37], and the Frechet

inception distance is likely to su�er grade in�ation as well, since it is based on the earth-mover’s

distance. We see no obvious reason that scoring methods based on other  -divergences would not also

have this problem. We coin the term “equipoint” for scores of this kind. Based on these examples, we

hypothesize that all equipoint scores will su�er from this tyranny of the majority, yielding high scores

even when low-density regions are poorly �t, resulting in grade in�ation (Fig. 2 and Table I).

In contrast, the Eden score weights datapoints unequally, such that all densities contribute equally to

the score. In such “equidensity” scores, the region of lowest density carries equal weight to the region

of highest density, and indeed to all density regions in between (Fig. 3). Topologically, both the peaks

and the foothills of the real and synthetic distributions have to line up well to get a high equidensity

score, whereas only the peaks need to line up to get high equipoint scores. We propose that

equidensity scores such as Eden should be preferred whenever accuracy is required throughout the

distribution. (We exclude “unreasonable” equidensity scores from consideration, e.g. taking a trivially

large  th root of Eden such that all scores end up arbitrarily close to 1.) For example, for medical

applications, it is often just as important that generative models accurately capture the features of

rare presentations (foothills) as common ones (peaks)  [7]. Since one of the main purposes of

generative models is to �ll out rare cases, we conclude that equidensity scores will generally have the

advantage over equipoint scores for this application. Although to our knowledge the Eden score is the

�rst equidensity score, or at least the �rst recognized as such, it is possible that scores based on other

measures that up-weight tails also have something of an equidensity character; potential examples

include the one-dimensional Anderson-Darling statistic, which up-weights tails more than the KS

f

n
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and e.g. Cramér-von Mises statistics, and which can be extended to two dimensions[38]. This is a topic

for future study.

B. Score calibration

Like all scores, equidensity scores can be calibrated to a desired range of values, for example by raising

to an exponent (for scores that range from 0 and 1). Importantly, note that for a given scoring

statistic, calibration cannot change which of two �ts has the higher value. For example, no calibration

procedure can make the correlation score for Fig. 2e larger than for Fig. 2a (Table I). This is a

structural problem with the correlation score; as we have shown, it a�ects the equipoint scores as

well. This means that even though all correlation scores can be brought arbitrarily low in hopes of

resolving the absolute grade in�ation they exhibit, for example by raising the correlation score to a

su�ciently large exponent, structurally the correlation score will still always exhibit relative grade

in�ation, in which low-quality �ts will perform as well as or better than high-quality ones. Thus,

calibration cannot �x grade in�ation. The goal of the present work has been to investigate scores’

structural properties. Calibration of the Eden score or other scores, if desired, is left for future work.

C. Sampling error and con�dence

It is interesting to �nd that con�dence intervals were not negligible (Fig. 6). In several of the examples

we investigated, even the inter-quartile ranges, much less the 5th-95th percentile ranges, exceeded

the di�erences between mean values for scores on the example �ts in Fig. 2. This observation is

potentially important for comparing models: if the score used is one whose con�dence interval is

comparable to or even wider than the di�erence in score values between two models, one might

mistake the worse model for the better one, or conclude a di�erence when no statistically signi�cant

di�erence exists. We note that in the machine-learning literature, model performance is often

compared out to several decimal places without con�dence intervals being reported. Fig. 6 suggests

interpreting such results with caution.

Consideration of variance raises the question of whether the Eden score should always be calculated

with �ve annuli. We propose the choice should depend on the total number of datapoints, such that

su�ciently many points lie in each annulus to provide for acceptable sampling variation and

acceptable con�dence intervals. Because sampling error scales as the root of the number of points, we

suggest one approach is to choose the number of annuli so that there are at least roughly 30 points per
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annulus; more points per annulus will result in narrower con�dence intervals, but more annuli will

result in a higher-resolution comparison of the two distributions. We believe this is essentially a

precision-accuracy trade-o� that is the choice of the investigator. (In this study we used �ve annuli

throughout, to control for any e�ects variation in this choice might have.) For general applications

beyond synthetic data in which the number of points is non-limiting—for example, when the two

distributions are continuous and de�ned at every point—it could be interesting to de�ne a continuum

limit for  . This is left for future work.

D. Connections to entropy and diversity

The correspondence between unequal weighting at the level of datapoints and equal weighting at the

level of densities has an interesting connection to entropy and diversity, speci�cally to the Rényi

entropies    and the corresponding Hill diversities  . (Here  , a potentially

confusing but purely notational di�erence re�ecting the conventions in the respective literatures;

here we distinguish    the viewpoint parameter from    the distribution by context.) Both    and 

  can be interpreted as sums of the frequencies of species in a system, with    as a frequency-

weighting parameter such that rarer species contribute less as    rises.    is used to calculate the

e�ective number of species in a population, taking frequencies into account to a degree  . It has been

observed[39][40][33] that many commonly used statistics correspond to positive integer values of  . For

example,   corresponds to a simple count of the number of unique species,   corresponds to

the Shannon entropy,    corresponds to Simpson’s index, and so on up to  , which

corresponds to the Berger-Parker index[41]. (These correspondences generally take the form of simple

mathematical transformations of  .)

  ( ) can also take negative values; however, entropies/diversities with negative    have received

little if any attention in the literature, perhaps owing to a dearth of real-world examples for 

  [42]. We broach the possibility that equidensity scores might be interpreted as an example of

negative   if one considers the species in the entropy calculation to be datapoints, and that there is a

duality with    if instead one considers the species to be equidensity regions (i.e.,

annuli/rings/topological contours). Note this is qualitatively di�erent from how negative   operates

in the Rényi divergences, which is to swap distributions    and    (to a reasonable approximation,

increasingly true the further from  ). Insofar as equidensity regions are groupings or

“communities” of datapoints, there may also be connections with the

→ ∞nannuli
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subcommunity/metacommunity formulation in the diversity literature[43], which correspond to

concepts such as relative/joint entropy and mutual information in the entropy literature[33]. We note

that a Python package already exists that accepts negative   [44]. Exploring such connections could be

an interesting direction for future work.

E. Use cases and exceptions

The general use case for the Eden score is to compare pairs of two-dimensional, i.e. pairwise,

distributions. As we have shown, this makes it highly applicable for generative modeling, and for two-

dimensional pairwise comparisons more generally. We propose that Eden could also be useful for

comparing pairs of three-dimensional distributions, but caution that comparisons in still-higher

dimensions could incur the curse of dimensionality.

The question arises of whether there two-dimensional cases where Eden might not be preferred. We

believe there are at least two such cases. The �rst is where there is a strong prior on the two-

dimensional data, for example when the expectation is that the data follows a simple line or curve. For

example, suppose each of the two distributions is expected to lie on a simple straight line. In such

cases, a regression-based score such as the correlation score can potentially still be useful; however,

as Anscombe showed, it is still worth approaching with caution[13].

The second case where Eden might not be preferred is when the data con�guration is very highly

constrained. For example, in the extreme case where each feature is a binary variable (Boolean data),

the space of possibilities consists of only four possible points: the coordinates (0,0), (0,1), (1,0), and

(1,1). This constraint leaves no meaningful density regions as such. As a result, equidensity scores are

unlikely to be of bene�t. In such cases, an alternative approach is to treat the four coordinates as

categoricals, and score agreement between the resulting two distributions accordingly. In contrast,

Eden is for the general use case of complex and/or nonparameteric data de�ning meaningful densities

in two dimensions. Potential additional use cases and limitations are left for future investigation.

F. Limitations and conclusions

The primary limitations of this work are its focus on examples of two-dimensional distributions and a

small number of scoring methods; it does not investigate higher dimensions nor attempt to

systematically discover and/or evaluate all possible equipoint or equidensity scores. We note that

these scores do apply in higher dimensions; however as dimensionality rises, there is risk that the

α
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curse of dimensionality will a�ect equidensity scores as it does, for example, the Jaccard score,

leading to artifactually lower scores in higher dimensions than one might consider reasonable (in the

case of the Jaccard score, because the union grows much faster than the intersection as dimensionality

increases). How a one-dimensional version of the Eden score would compare to the KS statistic or a

one-dimensional KL score, is an interesting question. Studies of higher dimensions might be

considered useful, since non-trivial real datasets are often high-dimensional (e.g., many columns),

but using human raters as the gold standard would be complicated by the inability to easily visualize

higher dimensions and by potentially important losses if dimensionality reduction is used (e.g. PCA,

tSNE, UMAP)  [10][9][8]. Fortunately, lower-order relationships often carry a large amount of

information about the con�guration of complex systems [15][16]. For this reason, we expect Eden and

other equidensity scores to be useful additions to the generative-modeling toolkit.
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