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1. Introduction

The study and application of fixed point theory are critical to the advancement of Functional analysis, Mathematics, and the
Sciences in general. In 1922, Banach W introduced a key result in metric fixed point theory, which has become known as the
Banach contraction principle. This principle is a widely used tool for establishing the existence and uniqueness of solutions to a
wide range of problems in Mathematics and Physical Sciences. Over the past few decades, the Banach contraction principle has

been extended and generalized in many ways, with applications in a variety of areas, some of which can be found in [21B14E16)T]

(8,

Wardowski ! introduced the concept of an F-contractive mapping on a metric space and proved a fixed point theorem for such a
map on a complete metric space. Tomar and Sharma %) employed the idea of F-contraction introduced by Wardowski to establish
coincidence and common fixed point theorems for a pair of discontinuous, noncompatible self-maps in a noncomplete metric

space.

Zadeh [ first proposed the idea of fuzzy sets. Later, Weiss (12] jntroduced the concept of fuzzy mappings and proved various fixed
point results. Building on this work, Heilpern (3] introduced the idea of fuzzy contraction mappings and proved a fixed point
theorem for fuzzy contraction mappings that is a fuzzy analogue of Nadler’s 4] fixed point theorem for multivalued mappings.

Shahzad et al. 1] introduced the notion of an F-contraction to establish some fixed point results for fuzzy mappings satisfying a

new Ciric type rational F-contraction in complete dislocated metric spaces.

In light of the discussion above, we establish the existence and uniqueness of a common fixed point of fuzzy mappings satisfying

Ciric type F-contraction and Hardy-Roger type F-contraction in a complete dislocated metric space. We also apply our main
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results to obtain a common fixed point result for multivalued mappings in dislocated metric spaces, and we provide some

illustrative examples to demonstrate the applicability of our results.

Throughout this article, we will denote the set of real numbers by R, the set of positive real numbers by R ¥, and the set of natural

numbers by N.

2. Preliminaries

In this section, we begin by introducing the notion of an F-contraction and providing some relevant definitions and examples.

Definition 2.1.06107] Let x be a nonempty set. A function d: X x X — R*. A pair (X, d) is called a distance space. If 4 satisfies the

following conditions:

idx,y)=0ifx =y,
ii. d(x,y) = d(y, x);

iii. d(x, y) < d(x,z) + d(z,y) forall x, y,z € X.

Then, a function d: X x X — R~ is called a dislocated metric on X. If 4 is a dislocated metric on X, then the pair (X, @) is said to be a

dislocated metric space.

Definition 2.2. 11081 T et (x; 4) be a metric space. A map f: X — X is an F-contraction if there exists z > 0 such that
T+ Fd(fx, /) < Fd(x, y)) (2.1)

forallx,y € xwith fx # fy, where F:R* — R is a function satisfying:

i. Fis strictly increasing, i.e., for all o, # € R such that a < g, F(a) < F(B);

ii. For each sequence {a,,} of positive numbers, lim,_, .a, = 0 if and only if lim,HwF(a,,) = —o;

nE€N
iii. There exists k € (0, 1) such that lim,,_, o+a*F(a) = 0.
We denote F, the family of all functions 7: R * — R satisfying the conditions (i)-(iii). Every F-contraction is a contractive map, i.e.,
d(fx, fy) < d(x, )
forallx,y € X, fx # £y and hence is necessarily continuous.

Definition 2.3.29 Let (X, 4) be a metric space andf, g: X — X. A pair of self-maps fand g have a coincidence point at x € Xif fx = gx.

Further, a point x € X is a common fixed point of fand g if fx = gx = x.

Definition 2.4.1201 A fuzzy set in X is a function whose domain is X and whose range is the interval [0, 1]. The set of all fuzzy sets
in X is denoted by F(X). Given a fuzzy set 4 and a point x in X, the value 4(x) is called the degree of membership of x in 4. The a-level

set of a fuzzy set 4 is denoted by [4] , and is defined as follows:
[4], = {x:A(x) > a} where a € (0, 1], [4]y = {x:A(x) > 0}.

Definition 2.5.21(22] Let x be a nonempty set and Y be a metric space. A mapping 7 is called a fuzzy mapping if it is a mapping
from X into F(Y), the set of all fuzzy sets on Y. The membership function of a fuzzy mapping 7, denoted 7(x)(»), is the degree to
which y is a member of 7(x). That is, 7(x)(y) is the degree of membership of y in the fuzzy set 7(x). For simplicity, we use the

notation [7x], to refer to the a-level set of 7(x), instead of [7(x)],.
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Definition 2.6.181 A point x € x is called a fuzzy fixed point of a fuzzy mapping 7T: X — F(X) if there exists « € (0, 1] such that

x € [Tx] .
Definition 2.7.16] et (X, d,) be a dislocated metric space.

(i) A sequence {x"} in (X, d,) is called a Cauchy sequence if, given & > 0, there corresponds r, € N such that, for all n, m > n;, we

have d/(xm, xn) <gor limn)mﬂwd,(xm, xn) =0.

(ii) A sequence {xn} dislocated converges (for short 4,-converges) to x if limnﬂwd](xn,x) = 0. In this case x is called a d,-limit of
fraf-

Definition 2.8.26l Let K bea nonempty subset of a dislocated metric space X, and let x € X.

An element y,, € K is called a best approximation in K if

dx,K) = d,(x, yo), where d/(x, K) = inf, ¢ v € K d/(x,)).

If each x € X has at least one best approximation in X, then X is called a proximal set.

Denote by P(X) the set of all proximal subsets of .

Definition 2.9.116] The function # 4, PO X P(Y) > R *+, defined by

H, (4, B) = max{ sup d/a,B), sup dA, b)}7
a€A bEB

is called the dislocated Hausdorff metric on P(X).

Lemma 2.10.7 Let 4 and B be nonempty proximal subsets of a dislocated metric space (X d,). Ifa € 4,then

dfa, B) < H,(4, B).

Lemma 2.11.123! Let (X, d,) be a dislocated metric space. Let (P(X), H, d/) be a dislocated Hausdorff metric space. Then, for all
4,B € P(X)and for each « € 4, there exists b, € B satisfying

dya,B) = d,(a, ba),

then

Hy(4,B) = dl(a, ha).

3. Main Results

In this section, we begin with the following theorem.

Theorem 3.1 Let (X dl) be a complete dislocated metric space with 4, B: X — W(X) as two fuzzy mappings on X and (4, B) a pair of
Ciric type fuzzy F-contraction. Suppose there exist ¥ € A and 7 > 0 such that for all x,y € {BA (xn)} and a(x) € (0, 1] satisfying

the following conditions:

ot F(Hd,([Axla(x )+ [Blagy) )) < F(Mfx.3)). 3.1)

where
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i), dy (x. (A5 o) ) i3 (B )-
d/("' U], )4, (y= LBy 1oy )

M(x,y) = max d(x.y) +d; (x, [By1u(y) )*d/ (Y- [Axy (1 )

dy (x, 148Dy )i (32 1BV Dauy )+ (32 145Dy )y (7- TBYNary )

(%, 1BV1uy )+ (s T3]0 )

Then, {BA (xn)} — x* € X. Moreover, if condition (3.1) holds for x*, then 4 and B have a common fixed point x* € x and

d,(x*,x*)=04

Proof. Let x, € Xbe any arbitrary point in X. Letx, € [Axo]a () be an element such that ¢ I(xo, [Axo]a (x) ) = d,(xo, x) ) Again, let
X, € [Bxl ]a (\- ) be an element such that d,(x I [Bxl]u (x )) = d/(xl, xz). Continuing this process, we construct a sequence x,, of
X 1

points in X such that x, € [AxZn]a(in) and x,,, € [Bx2n+1] ( for all n€Nu{0}. Also,

)
@ X2u+1)

dl(xz,,, [sz”]a(m) ) = d,(xzn, Xopt1 ) and dl(xz,lﬂ, [szﬂﬂ ]a (2 )) = d,(xz,ﬁl, x2”+2). Hence, we define the iteration by {BA (xn) }
.If M(x, y) = 0, obviously, x = y is a common fixed point of 4 and B. Then the proof is complete. Let M (x,y) > 0 for allx,y € {BA (xn) }

with x # y and by using (3.1) and Lemma 2.11, we obtain

F(dl(xzi+ 1,xZi+2)) s F(Hdl([AXZi]a (-’fzi )’ [BXZHI]“(XZ"*‘ )))
< F(Ml("zwxziﬂ)) o
foralli € N u {0}.
d1(X2,-, o ) dI(xz;, [szl.]a(le) ) dz(xzi+ i [Bx2[+ 1 ],, (21 ))

d,(xz,, [ )d,(xz,‘ N )
Mz(xzi’le'ﬂ) = max dy (%201 +d,(x2,., [ B ]”(xz...) ) +d,(x2,“, [szl.]”(le))

5

d,(le., [szi]”(le) )d,(le., [szl.ﬂ]”(le_l) )+d,(x2,+l, [AXZi]a(xz,) )d,(xzm, (BVa (., ))

"f(‘zw (B2 ] a(ar) )*"f (-‘zm' [’“Zf]a(m) )

dl(xzi’ X2i+1 ) dl(x2i’ X2i+1 ) dl(x2i+ l’x2i+2)’

d (inxzwl )dl (szl »X2i+2 )

>

= max d/(-"zivxz,‘-l )*dl("zv’fz,wz ) *dl("'z,‘-l X241 )
d/("zivxz,‘ﬂ )d[ (Xz,‘v’(zwz)*d[()fz,‘ﬂ X201 )d/ (12i+|>"2i+2)

4 ()‘zn-“zin ) +d (sz X241 )

< max {dl(XZI’ X2i+1 ) dl(x2[+]’x2[+2)} (3

If there exists i € N u {0} such that max {d,(le-,xziﬂ ) d,(xzm,xz,-ﬂ)} = d,(le-ﬂ,xmz), then (3.3) becomes

F(dl(xzwhxzwz)) < F(d[(x2i+ 1!x2i+2)> -7, (34)

which is a contradiction. Therefore, max {d,(xz,., Xoit 1), dl(x2i+l,x2i+2)} = d,(le., xz,.ﬂ) foralli € N u {0}. Hence, from (3.3), we get
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F(d)(%31 133312 ) ) < F(d)(v3 %3141 ) ) ~ o foralli € N U {0}, (3.5)
Similarly, we get
F(d(xp0x3101) ) < F(dy(va-1073) ) ~ 5 foralli € N. (3.6)

Letting (3.6) in (3.5), we get

F(dl(xZH 1’x2i+2)) < F(d1(xzi—1ﬂ"2i)) 2

By continuing the same way, we have

F(dl(x2[+ 1,x2[+2)) < F(dl(xo, xl)) -2+ 1),

Similarly, we obtain

F(dy(va%3101) ) < F(d)(x0:x, ) ) ~ 207 3.8)

By (3.7) and (3.8), we have

F(dl(x,,,xnﬂ)) < F(dl(xo,xl )) —nt(3.9)

On taking the limit as » — o in (3.9), we get

tim F(d)(x,0%,41)) = o (3.10)

n—o

Consider (3.10) and (F,), we have

lim d (x,,x,., ) = 0. 3.11)

n— o

From (3.10), there exists k € (0, 1) such that

lim ((d,(xn,x,,ﬂ))kF(dl(xn,x,,H))) -0.(.12)

n—ow

From (3.10), forall» € N u {0}, we have

(i) (i r ) = F(di(xox1)) ) < = (dmxy ) )i < 0. 313)

Using (3.11), (3.12) and taking the limit as » — « in (3.13), we get

lim (n(d,(xn,xnﬂ))k) =0.(3.14)

n—e
Then, there exists », € N such that » (d, (xn, Xpi1 ))" <1foralln > n, thatis,
1
dl(xﬂ,xnﬂ) <7 foralln>n,. (3.15)
nk

For all m > n > n,, by using (3.15) and the triangle inequality, we get

d[(xn’xm) = dl(xn’xn+l)+ d/(xn+1’xn+2) ot d/(xm—lvxm)

m—1 @©

o0
=2 dl(xi’le) = zdl(xi’le) <
i=n

i=n i=n i=nj

=

1
Since the series Zf’: , T Is convergent, taking the limit as » — «, we get
i

lim d(x,.x,)=0.(3.17)

m,n—w
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This proves that {BA (xn) } is a Cauchy sequence in (X, d 1).

Since (X dl) is a complete dislocated metric space, there exists x* € xsuch that lim,_, {BA (x")} =x*. Thatis,
lim dl(xn,x * ) =0.(3.18)

n—ow

By Lemma 2.11, we have

o+ F((;z,(m+ N [Bx * ]a (++ ))) <o+ F(Hd[([szn]a ()’ [Bx * ],, (+*) )) (.19)
Contractive condition (3.1) also holds for x *, then we have

o F(d ey 00 [B%], (+*) )) = F (M0 * ). 3:20

where

Aranx*) ""(xzﬂ’ [, ) )’df(" “ )
e [ Lo Ja (e 3 L))

My x* ) = max (e )t (s [ o)) d( [, )

d( [ o) )d,(xz,,, [ox* ]“(x*))m,(x*, [a]. ) )d, (. [5 L))

(v, [ ]”(,*))+d,(x* : [sz,,]a(m)) ’

d/(xznsx*) i X x2n+l ( [BX* ](1 )
Jo(-+))
= max (520 ) (52 [B5 L) ) o (5% o H)’ (321
dl(xZn’XZ;H»l)dI(XZn'[Bx*]a(x*))+dl(x*'x2/1+l)d/( * [Bx ]a(x*))
d,(xz”, [Bx* ]a(x* ) ) +d1(.>:* sXopl )

Using (3.18) and taking the limit as » — « in (3.21), we get

d/ X9y Xop41 d,( [B\f*

lim M,(xzn,x* ) - d,(x*, [Bx * ]a(x* )) (3.22)

n—o

Since F is strictly increasing, then (3.20) implies

dl(xw N [Bx * ]a(x* )) < M,(sz,x * ) (3.23)

Again, using (3.22) and taking the limit as » — « in (3.23), we get

d,(x*, [Bx*]a(x* ))<d1(x*, [Bx*]a(x*))(3.24)

a contradiction. So d,(x *, [Bx * ]a (+*) ) =0orx* € [Bx * ]a (+*) Similarly, by using (3.18) and Lemma 2.11 and

1+F(d1(x2ﬂ+2, [Ax*] oo )))<,+F(Hd1([3x2ﬂﬂ] ) [Ax*]a(x*))),(&ZS)
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we can also show from (3.25) that d,(x *, [Ax * ]a (x* )) =oorx* € [Ax * ]a (X * ) Hence, 4 and B have a common fixed point x * in

X. Now,

L e L T A XA

=
*
—
A
f=1

Also,

0.

Thus, dl(x* x )

Theorem 3.2. Let (X, dl) be a complete dislocated metric space with 4:X — W(X) be fuzzy mappings on X satisfying Ciric type

fuzzy F-contraction. Suppose there exist F € Apand z > 0 such that for all x,y € {A (x,,)} and a(x) € (0, 1] satisfying the following

conditions:

o+ F(Hd/([Ax]u(x), [Ay]a(y))) <F(Mfx.y)), 3.26)

where

d 30, dy (3. (A5 ) ) (3 () )-

d/(»*x [4x] 5y )d/ (‘ (4141 )

B

M(x,y) = max d)(x,y)+d; (»’(’ [4y10 1) )*ﬂ'/ ()’, [Ax]y (1 )

(2. ATy )i (32 TV 10y ) i (v TxTa) ) (v Tv1agy )

(5 0 )+ (0 TavL )

Then, {A (x")} — x* € X. Moreover, if condition (3.26) holds for x *, then 4 has a fixed point x* € Xand dl(x *ox* ) =0.

Proof Let x, € X be any arbitrary point in X. Letx; € [Axo]a (x) be an element such that d,(xo, [Axo]a ( )) =d, (xo, xl). Again, let
0

RY)
x, € [Axl ]a (=) be an element such that d,(x], [Ax] ]a (s )) = d,(x], xz). Continuing this process, we construct a sequence x,, of

for all »nE€NuU{0}. Also,

*\Xan

points in X such that x,,,, € [szn]( ) and x,, ., € [szn +1](

A\ *an+1 ),
dl(xzn, [szn]a(le,)) = d,(xzn, Xon+ 1) and d,(x2n+ s [sz,,+ 1 ]a (sz )) = dz(xznﬂ, xz,,+2). Hence, we define the iteration by {A (x,,) }

If M(x,y) = 0, obviously, x = y is a fixed point of 4. Then the proof is complete. Let M(x,y) > 0 for all x,y € {A (xn) } with x # y and by

using (3.26) and Lemma 2.11, then the results follow from Theorem 3.1.

Example 3.3. Let X={0,1,2} and d/(x,y) =x+y be a complete dislocated metric space defined by a pair of fuzzy mappings

A, B: X — W(X) as follows:

. _X X
a ifgst<y
a
- fx < t < X
2 if-<t<:
axo={, * 2
- X
4 ;’f‘; <t<x
0 ifx<t<o
and
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X X
Ty=r<g
fX X
if-<t<;

B)0) = on

X
ffy<t<x

S ™ B ™

ifx<t<o
Define the function 7:R* — R by

F(x) = In(x) forallx € R"and F € A.

Consider,

. [x [y
[x]2 = [g, g] and [By]? = [g,;]

For x € X, we define the sequence {BA (xn) }

11
{1, P } generated by x, = 1 in X. We have
H, ([Ax]f, [By]f) = max { sup d;(tl, [By]ﬁ), sup dl([Ax]z,b),
! 2 4 a € Sx ‘) berx 2
Y.y
= max{ sup dl(a, [g, Z:I) sup d,( ]
a€Sx bETx
=max{ sup d;| =, = |, sup d, -,—)
a€se \0' 8 [ ern \6°4

where

M(x,y) = max dl(x,y)er,(x, [é‘;])w’,(v

d,(x,%)d,
N
ma)< d,(x,y)+d[(x,§
x y x y
etk e
y x
e

=xty

<
wl=
P
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X yx oyl ox vy B 8
Case 1. Suppose max stesta —g+§,andr—ln 5 | we get
16x + 12y < 36x + 36y
8(x y
“=+= )=
3le + 3 <xty
1 i 1 2.2 1
=|+n|l=-+=]< +
n3) n68_n(xy).
That is,
o+ F(Hd]([Ax]a(X), B,y )) < F(Mx)
. x oy Xx ¥ x y 8
Case 2. Again, suppose max steetirTet Z,andzzln 3 | we get

16x + 24y < 36x + 36y

8(x y
|-+ )<x+
sle 74"
8 Xy
lng +1n g+Z < In(x +y).
That is,

o+ F(Hd/([Ax]u(x), (B, () )) < F(Mx.))

Then, we can see that all the hypotheses in Theorem 3.1 are satisfied. Hence, 4 and B have a common fixed point
We have the following corollaries for Ciric type fuzzy F-contraction:

Corollary 3.4. Let (X dl) be a complete dislocated metric space with 4, B: X — W(X) be two fuzzy mappings on X and (4, B) a pair of
Ciric type fuzzy F-contraction. Suppose there exist F € A, and 7 > 0 such that for all x,y € {BA (xn)} and a(x) € (0, 1] satisfying

the following conditions:

T+F(Hd[([14x]a(x)» [By]a(y))) < F(M/(X,y)),

where

d, (x. (4], )d, (y, [Bv]a) )

dl( 5 [By]a(y) )’ di(xp) +d, (x, (B¥acr) )+d, (y, = ) s

M) —
fx,y) = max ) (5, 3Ly )i (181 )+ (0 061 ) (3 (B9 )

d/(x’ [Bv]ay) )*d/ (y, [Ax]4(x) )

Then, {BA (x")} — x* € X. Moreover, if condition (3.28) holds for x*, then 4 and B have a common fixed point x* € X and
dl(x*,x* ) =0.

Corollary 3.5. Let (X d 1) be a complete dislocated metric space with 4, B: X — W(X) be two fuzzy mappings on X and (4, B) a pair of
Ciric type fuzzy F-contraction. Suppose there exist ¥ € A and 7 > 0 such that for all x,y € {BA (x")} and a(x) € (0, 1] satisfying

the following conditions:

o+ F(H a4 s (B, )) < F(Mf.n)),
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where

i ). dy (%, A ) ) i (02 BV )

M/(X’y) = max dl("“’ [4x]4(x) )d,(y, [By]a()’))

4,y +dy (v 1By )+ (7, TA¥] ) )
Then, {BA (xn)} — x* € Xx. Moreover, if condition (3.29) holds for x*, then 4 and B have a common fixed point x* € x and
dl(x*,x* ) =0.
Corollary 3.6. Let (X d1) be a complete dislocated metric space with 4, B: X — W(X) be two fuzzy mappings on X and (4, B) a pair of

Ciric type fuzzy F-contraction. Suppose there exist F € A, and 7 > 0 such that for all x,y € {BA (xn)} and a(x) € (0, 1] satisfying

the following conditions:

ot F(Hd[([Ax]a(x), [BY)a(y) )) < F(Mf.n)),

where

i, d(x, ¥ ) ) i, 1B )

M(x,y) = max d/(x’ [Ax], () )dl(X~ [Byla(y) ) *dl(% [Ax]g () )dz ()’> [Bylu(yy )

(% 1By )+ (v 450y )
Then, {BA (x")} — x* € X. Moreover, if condition (3.30) holds for x*, then 4 and B have a common fixed point x* € X and
dl(x*,x* ) =0.
Corollary 3.7. Let (X d,) be a complete dislocated metric space with 4, B: X — W(X) be two fuzzy mappings on X and (4, B) a pair of

fuzzy F-contraction. Suppose there exist F € A, and z> 0 such that for all x,y € {BA (x")} and a(x) € (0,1] satisfying the

following conditions:

o+ F(Hd/([Ax]a(X), [By]a(y))) < F(dfen). 63D

Then, {BA (xn)} — x* € X. Moreover, if condition (3.31) holds for x*, then 4 and B have a common fixed point x* € X and

dl(x*,x* ) =0.
Corollary 3.8. Let (X d,) be a complete dislocated metric space with 4: x — w(x) be fuzzy mappings on x satisfying fuzzy r-

contraction. Suppose there exist ¥ € A and > 0 such that for all x,y € {A (x,,)} and «(x) € (0, 1] satisfying the following

conditions:

T+ F(Hd’([Ax]a(x), 4 f]a(},))) < F(d,(x,y)), (3.32)

Then, {A (xn)} — x* € X. Moreover, if condition (3.32) holds for x *, then 4 has a fixed point x * € Xand dl(x * ox* ) =0.
Now, we consider Hardy-Rogers-type fuzzy F-contraction for a pair of mappings.

Theorem 3.8. Let (X, d,) be a complete dislocated metric space with 4, B: X — W(X) be a pair of fuzzy mappings on X satisfying
Hardy-Rogers-type fuzzy r-contraction. Suppose there exist F € A, and >0 such that for all x,y € {AB(xn)}, x#y and

a(x) € (0, 1] satisfying the following conditions:

o+ F(Hdl([Ax]a(X), [By]a(y))) <
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ard o, ) + axd(x, [4x] vy ) +

dl(x, [4x], ) )d, (y, [Bv],q, )

Y dx) v, (% 1By ) i (3 LT ) )

an/(y, [By]a(y)) +a

d, (x, [4x]0(x) )d, (\ [B9]uy) ) +d, (y, [4%]4) )d, (‘ (B85 )

+a5

d/(x’ [By1u(y )+d1(-‘/> [Ax], (v )

and a,,a,,as,a,,a5> 0 With a; +a, + a3 +a,+a5=1and ay # 1. Then, {BA(xn)} — x* € Xx. Moreover, if condition (3.32) holds for

x*, then 4 and B have a common fixed pointx * € Xand d,(x *oa¥ ) =0.

Proof. From the proof of Theorem 3.1, we see that x, € [Axo] () andx, € [Bxl] () with (3.32) and Lemma 2.11, we obtain
a a

~o 1

e r(afone)) <o efafs o] )
ol

o)
zl,(xo, [A"O]”(xo) )d/("l* [‘3"*1].1(xl ))
) o [ 1 ) o (2L )
) A ) R e Y R
o [0y ) o 7.

a3d1(xl, [Bxl]a(XI )) +a,

<F

+a

ayd g,y ) + ayd (v, ) +
d((x00%, )y (x1%,)
(30051 )+ (5052 ) +d(1.:, )
dy (xgry )i (xgres ) ey (1.3 )y (1.3 )
d,(.vo,xz)+d,(x].x| )

< F((al +a2+a4+a5)d/(x0,xl)+a3d,(xl,x2))

a3d1(x1,x2) +ay
=F

+as

Since F is strictly increasing, we have
d[(xl,xz) < (‘11 ta,tayt as)dl(xo,xl) + a3d1(xl,x2)
implies

+a2+a4+a5

o)< [ o)

Froma, +a,+ay+a,+as=1anda; # 1,we deduce 1 - a; > 0and so

dl(xl,xz) < dl(xo,xl)

Therefore,
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Fa(s1x2)) = #(d(s0 1)) -

Again, from the proof of Theorem 3.1, we see that x,,, , € [szl.] () and x,;,, € [szl. +1 ] (201)’ with (3.32) and Lemma 2.11, we
* A\ *2it1

X2i

obtain

o rllesn ) <ol (e L, )
Aolfeb )

a]d/(xz,.,le.ﬂ) + azd/(xzi, [sz,.]a ("2:‘) ) +

"( [#]. () )"( [ ]<>)

r “3”’1("2141» [BXZHI](X(XZIH ))*“4

4y (w3101 ) +d,(x21, [ B ]a(ml))m,(xzm, [Ax21]a(x21) )
4 (2 (] )d, (2 o . ) +a, (xm,, [ o) )d,(xm,, . ))

5

+a

aldI(XZi’ X9+ 1) * aZdI(XZi’XZHI) *

dI(XZi'xZHI )d/(xzm ,inz)

a3dl(x2i+ s X2f+2) +ay

d/(xz,a—"z,ﬂ )+dl(x2l>x21+2) +d[(x2r+l X241 )

dp (XZA‘X21+| )d!(XZHXLAZ ) +d; (’fzm »X2ik1 )dl("'zm ’xzwz)

tas
‘11(’(2,""21+2 ) +d, (XZ:H Xkl )

< F((“l taytagt 05)d1(x2i’x2i+1) * “3d1(x2i+ 1’x2i+2))
Since F is strictly increasing, we have
dl(x2i+1’x2i+2) < (“1 taytagt ”5)d1("2i»"z;+ 1) + “3d1()‘2[+1a)‘2[+2)
implies

aytayta,tas

dl(x2i+l’x2i+2) < ( -« )dl(x2i7x2i+l)
3

Froma, +a,+a;+a,+as;=1anda, # 1, we deduce 1 —a; > 0and so

dl(x2i+l’x2i+2) < dl(XZi’x2i+1)
Hence,
F(dl(XZH 1’x2i+2)) < F(dl(x2i’ Xzi+1)) T
Following the same arguments in Theorem 3.1, we have {BA (xn) } — x* that s,
fim d(x,, %) = 0.3.33)
n-—ow

By Lemma 2.11, we have
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T+F(d[(x2n+l’ [Bx* ]a(x* ))) < T+F(Hd,(|:Ax2”]a(x2“)’ [Bx* ]a(x* )))

using (3.32), we have

T+F(d,(x2,,ﬂ, [Bx* ]a(x* ))) <

aldl(xzn,x * ) + “zdl(xw [sz"]a (qu ) ) +

s L) Jale* 571 ))
; a3d1<x*, [Bx* ]a(x* )) +a,
e R N RICH U Y

d,(xz,,, [szy,]a(vzu) )d,(xz,,, [Bx* ]a(x*))m,(x*, [/L\’Z"]a(xzn))d[(x* . [Bx* ]a()*))

5

+a

s [ L))+ [ )

16 (5300 * ) + 3 (333001 ) +
TYCE VYR P
s ) [36% L)) (s )
e Yo [0 oo (s e Yo (e [ o))
o [ Ty ) ()

r a3d1(x*, [Bx*]a(x*))+a4

+a5

Since F is strictly increasing, we have

dz(xz»v x2n+l)dl(x*’ [BX* ]a(x* ))

dl(xZn’X* )+dl(x2n’ [BX* ]a(x* ))+d1(X*’x2n+l)

d,(xz,ﬁl, [Bx* :I“(x* )) < a]dl(xzn,x* ) +a2d/(x2n,x2n+]) +a3dl<x*, [Bx* ]a (x* ))+a4

d/(xzn»x2n+1)d1(xzm [Bx* ]a(x* )) + dI(X*’XZnJrI)dI(X*s [Bx* ]a(x* ))
dz(xzm [BX* ]a(x* )) + dl(x *, x2n+1)

+as

Taking the limit as » — o in (3.33), we get

d,(x*, [Bx*]a(x* ))<a3d1(x*, [Bx*]a(x*))

a contradiction. So d,(x *, [Bx * ]a (X * ) ) =0orx* € [Bx * ]a (X * ) Similarly, by using (3.32), (3.33) and Lemma 2.11 and

o+ F(d,(xzm, [Ax* ]a(x* ))) <t+ F(Hd]([sz,,H]a(xzm : [Ax* ]a(x* ))), (3.34)
also, we can show from (3.34) that d,(x *, [Ax * ]a (x * ) ) =0orx* € [Ax * ]a (x* ) Hence, 4 and B have a common fixed point x * in

(X, dl). Now,

d,(x*,x*)idl(x*, [Bx*]a(x*))erl([Bx*]a(x* ),x*)SO

Also,

d,(x*,x*)sd,(x*, [Ax*]a<x*))+d,([Ax*]a(x*),x*)SO.
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Thus, dl(x* ¥ ) =0.
If we take 4 = B in Theorem 3.8, we have the following Theorem.

Theorem 3.9. Let (X d,) be a complete dislocated metric space with 4: X — W(X) be fuzzy mappings on X satisfying Hardy-Rogers-
type fuzzy F-contraction. Suppose there exist F € A and r > 0 such that for all x,y € {AA (xn)}, x #yand a(x) € (0, 1] satisfying

the following conditions:
o+ F(Hd/([Ax]a(x), [Ay]a(y))) <

ad/x,y)+ azd,(x, [Ax]a(x)) +

dl(x’ [4x] 400y )d/ (}’, (4]0, )

d;\ v, [A ,
aj 1( L y]a(_v))*% d,(x)",)er,(x)[Ay]”(y))+d,(_}r,[/{x]”(”)

d,(x,[Ax]a(X))d,(x,[Ay],lU.))HI, y,[Ax]aU))d,(y,[Ay]a(v])

+a5

(
(% 10Dy )+ (7 Ty )
and a,, a,, a3, ay, a5 > 0 with a; +a, +a;+a,+as=1and a; # 1. Then, {AA (xn)} — x* € X. Moreover, if condition (3.33) holds for
x* then 4 has a fixed point x * € Xand dl(x* x ¥ ) =0.

If we take ¢, = 0 in Theorem 3.8, we have the following Corollary.

Corollary 3.8. Let (X, d,) be a complete dislocated metric space with 4, B: X — W(X) be a pair of fuzzy mappings on X satisfying
Hardy-Rogers-type fuzzy r-contraction. Suppose there exist F € A, and >0 such that for all x,y € {AB(xn)}, x#y and

a(x) € (0, 1] satisfying the following conditions:
o+ F(Hdl([Ax]a(X), [By]a(y))) <

ald,(x, [4x] 4 (xy ) + azd[( s [By]a(y))

d/(x, [Ax]5(x) )d/ (}’, [Byla(yy )

+a3
F dy(x.y) vy (x 1By )+ (30 D43 ) )

) (3 14¥Y ) )y (. 0B gy ) ey (3 L) )y (3 DB Doy )

tay

d,(x, [B9]uy) )+d, (‘ [Ax] 0 )

and ay, a,, a3, ay > Owith a; +a, + a3 +a, = 1 and a, # 1. Then, {BA (x,,)} — x* € x. Moreover, if condition (3.32) holds for x *, then
4 and B have a common fixed pointx * € Xandd ,(x *ox* ) =0.

If we take ¢, = a, = 0 in Theorem 3.8, we have the following Corollary.

Corollary 3.8. Let (X, d,) be a complete dislocated metric space with 4, B: X — W(X) be a pair of fuzzy mappings on X satisfying
Hardy-Rogers-type fuzzy F-contraction. Suppose there exist F € A, and >0 such that for all x,y € {AB(xn)}, x+#y and

a(x) € (0, 1] satisfying the following conditions:

o+ F(Hd,([Ax]a(x), [By]ﬂ_v))) <
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dl(x’ [Ax]5(x) )d/ (}’, [Byla(yy )

di\y, B ,
ay 1( [ y]a(,v))+az dl(x)",)er,(x,[By]”U,))*dl(.}’v[AX]n(xl)

dy (3 ATy )i (% T8V Ly ) ey (3 T Ty )i (2 B D )

+a3

(% BNy )+ (7 T3y )
(332)

and a,,a,,a; > 0with a; +a, +a;=1andq, # 1. Then, {BA(x")} — x* € X. Moreover, if condition (3.32) holds for x *, then 4 and B

have a common fixed point x * € Xand d,(x *ox ¥ ) =0.
If we take ¢ = a, = ay = 0 in Theorem 3.8, we have the following Corollary.

Corollary 3.8. Let (X, d,) be a complete dislocated metric space with 4, B: X — W(X) be a pair of fuzzy mappings on X satisfying
Hardy-Rogers-type fuzzy F-contraction. Suppose there exist F € A, and r> 0 such that for all x,y € {AB(xn)}, x+#y and

a(x) € (0, 1]satisfying the following conditions:
o+ F(Hdl([Ax]a(x), (B]a(y) )) <

d/(x, [Ax] 4 (x) )d/ (.V, [Byla(y) )

T (5. 1By ) i (v [Ty )
F
i (s Ty )i (35 1BV Dy )+ (9 D45y ) (0 D89y )

“ d,(x,[By]m))+d,(y,[Ax]m))

(3.32)
and a,, a, > 0 with a, + a, = 1. Then, {BA (xn)} — x* € X. Moreover, if condition (3.32) holds for x *, then 4 and B have a common
fixed pointx * € xand d,(x *ox* ) =0.

If we take a, = a; = 0 in Theorem 3.8, we have the following Corollary.

Corollary 3.8 Let (X, d,) be a complete dislocated metric space with 4, B: X — W(X) be a pair of fuzzy mappings on X satisfying
Hardy-Rogers-type fuzzy F-contraction. Suppose there exist F € A, and >0 such that for all x,y € {AB(xn)}, x#y and

a(x) € (0, 1] satisfying the following conditions:
o+ F(Hd’([Ax]a(x), [By]a(y))) <

d) (x, (4], ) )d, (y, (B, )

dx,y)+
felrEn TG i)+ (%, 1BV )+ (75 x40 )
F
d,(x,[AXJa(x))dl(xa[g)’]a(y;)*dz(,"a["’x]a(x))dl(y>[3y]a()‘))

+a3

d/(x. [Bylacy) )+d1 (y, [Ax] vy )

and a,,a,,a; > 0 with ¢, +a, + ay = 1. Then, {BA (x”)} — x* € X. Moreover, if condition (3.32) holds for x *, then 4 and B have a
common fixed point x * € xand d,(x * ok ) =0.
4. Application

As an application of our work, we will now show how Theorem 3.1 and Theorem 3.8 can be used to prove the existence of common
fixed points for multivalued mappings in a dislocated metric space. The following theorem follows directly from our previous

results.
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Theorem 4.1 Let (X, d,) be a complete dislocated metric space with R, S: X — W(X) be two multivalued fuzzy mappings on X and
(R, 5) a pair of Ciric type fuzzy F-contraction. Suppose there exist ¥ € Apand r > 0 such that forallx,y € {SR (xn) } and a(x) € (0, 1]

satisfying the following conditions:

o+ F(Hdl(Rx, Sy)) < F(M,(x, ). @1

where

dy(x,y), d(x, Rx), d\(y, S),
dy(x,Rx)d;(y,5)

M(x,y) = max dy(x.y) +d)(x,Sy) +d)(y.Rx)’

d)(x,Rx)d,(x,Sy) +d,(y,Rx)d,(y,Sy)

dy(x,8y) +d)(y,Rx)

Then, {SR(xn)} — x* € X. Moreover, if condition (4.1) holds for x*, then R and § have a common fixed point x* € X and
d,(x*,x* ) =0.
Proof. Let a: X — (0, 1 ] be an arbitrary mapping. Consider a fuzzy mapping 4, B: X — W(X) defined by

a(x), t € Rx,
(Ax)(®) = { 0, te Ryx,

a(x), t € Sx,
B0 = { 0, 1 & Sx.

We have that
[Ax] () = {t:4x(0) 2 a(x)} = Rx,
and
[Bx](xy = 41:Bx(1) > a(x)} = Sx.
Thus, condition (4.1) becomes condition (3.1) in Theorem 3.1. It implies that there exists x* € [4x],, () N [B¥ly(x) = Ry N Sx.
Now, we consider Hardy-Rogers-type fuzzy F-contraction to a pair of mappings.

Theorem 4.2 Let (X, d,) be a complete dislocated metric space with R, S: X — P(X) be a pair of multivalued fuzzy mappings on X
satisfying Hardy-Rogers-type fuzzy F-contraction. Suppose there exist F € A, and ¢ > 0 such that for all x,y € {SR(xn)}, x#y

and a(x) € (0, 1] satisfying the following conditions:

T+ F(Hd,(Rx’ Sy)) <

ayd[x, y) + ayd (x, Rx) +
d)(x,Rx)d;(y,Sy)
r ayd|(y, Sy) +ay () +dy(x,Sy) +dy(y, Re)

dy(x,Rx)dy(x.8y) +dy(y,Rx)d)(v.Sy)

N
s )

and a,, ay, as, ay, as > O With a; + ay + a3 + a4+ as = 1and a5 # 1. Then, {SR(x,,)} — x* € X. Moreover, if condition (4.3) holds for x *,

then R and S have a common fixed point x * € Xand d,(x *ox* ) =0.
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Proof. Let a: X — (0, 1 ] be an arbitrary mapping. Consider a fuzzy mapping 4, B: X — W(X) defined by

a(x), t € Rx,
(dx)(0) = { 0.t ¢ Rx.

a(x), t € Sx,
B0 = { 0, t & Sx.

We have that
[Ax]au) = {t: Ax(¢) > a(x)} = Rx,
and

[Bx] = {t:Bx(f) > a(x)} = Sx.

a(x)

Hence, condition (4.3) becomes condition (3.32) in Theorem 3.8. It implies that there exists x * € [Ax] 5 () N [Bx]y(ry = R N Sx.

Theorem 4.3. Let (X d,) be a complete dislocated metric space with R: X — P(X) be a multivalued fuzzy mapping on X satisfying
Ciric type fuzzy F-contraction. Suppose there exist F € A,and r > 0 such that forall x,y € { R(xn) } and a(x) € (0, 1] satisfying the

following conditions:

T+ F(H 4 (Rx. Ry)) < F(M,(x, y)), (44)

where

d((x,y), di(x, Rx), d|(y, Ry),
d)(x, RY)dy (v, RY)
M(x,y) = max dy(x,y) +d;(x,Ry) +d;(y,Rx)’
d)(r R)dy(x Ry) +dy(y.Rx) dy (3. Ry)
d;(x,Ry) +d)(y,Rx)

Then, {R (xn)} — x* € X. Moreover, if condition (4.1) holds for x * , then there exists x* € xsuchthatx* € Rx*.

Proof. Let a: X — (0, 1 ] be an arbitrary mapping. Consider a fuzzy mapping 4: X — F(X) defined by

a(x), t € Rx,
()0 = { 0, 1 & Rx.

We have that

[Ax]a(x) = {t:Ax(f) = a(x)} = Rx.
Hence, condition (4.5) becomes condition (3.27) in Theorem 3.2. It implies that there exists x* € x such that
x* e [Ax*]a(x* ) =Rx*.

Corollary 4.3. Let (X, dl) be a complete dislocated metric space with R:.X — P(X) be a multivalued fuzzy mapping on X satisfying
Hardy-Rogers-type fuzzy F-contraction. Suppose there exist F € A, and r>0 such that for all x,y € {R(xn) },x #y and

a(x) € (0, 1]satisfying the following conditions:
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adi(x,y) + ayd(x, Rx) +
dy(x.Rx)d)(y.Ry)
d (v, Ry) +
r+F(Hd,(Rx,Ry))SF a0 R R a0 |, @)
dy(x,Rx)d;(y,Ry)

N
45 4)(x.y) +d)(x. Ry) +d)(y.Rx)

and a,, ay, ay,a, > 0 With a; + ay + a3 +a, =1 and a; # 1. Then, {R(xn)} — x* € X. Moreover, if condition (4.6) holds for x*, then

there exists x * € xsuchthatx* € Rx*.

5. Conclusion

In this paper, we have established the existence and uniqueness of common fixed points for fuzzy mappings that satisfy Ciric
type F-contraction and Hardy-Roger type F-contraction in complete dislocated metric spaces. In addition, we have applied our
main results to prove common fixed point theorems for multivalued mappings in dislocated metric spaces. To demonstrate the

usefulness of our approach, we have provided several examples.
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